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Introduction

* Holography has provided insights into dynamics of strongly-coupled in
flat space, specially out of equilibrium.

* Example: Quark-gluon plasma created in heavy ion collisions.

e Today I would like to extend this to curved spacetime.



Introduction

* Theoretical motivation: Curvature may lead to new interesting effects.

e Some phenomenological motivations come from Cosmology:
» QCD phase transition.

» GUT theories.
» Dark Matter could be strongly self-interacting.

* For simplicity I will take the cosmological background to be dS4.



Introduction

* Disclaimer: Holography will only describe the strongly coupled matter in
dS, not dS itself.

In other words I am not doing dS/CFT.

5D dynamical gravity
with dS4 boundary conditions

Non-dynamical dS4 metric

\ + dynamical matter



Introduction

e Simplifications:

» Simplest expanding metric: dS with Hubble rate H.
mem s SS&.Q&.S% — —dt? + 272

» Ignore back reaction of matter on dS metric.
» Spatially homogeneous states.

» Simple non-conformal 4D gauge theory.

* Non-conformality is crucial because dS is conformal to Minkowski.



I'he model

® In 5D: Gravity + scalar field with potential with two AdS extrema.
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I'he model

e Important: Energy density and pressure are scheme-dependent.

e Therefore, I will often subtract their late-time value, since this
difference is scheme-independent.

* Equivalently, I could choose a renormalization scheme such that their
values at asymptotically late times vanish.



Initial states

® Start with equilibrium thermal state in Minkowski and turn
on H smoothly:.

® This leads to a transient period with non-constant H in which the
boundary metric interpolates between Mink4 and dS4.

o After this we are left with what we want to study:
An excited gauge theory state in dS4.



Dynamics

* Late-time state is independent of the turn-on procedure:
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Dynamics

* Energy density and pressure dilute exponentially due to expansion
(recall late-time values are scheme-dependent):
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Dynamics

* Interesting physics is in how they dilute.

e For scheme-independence we will look at AP/AE

* For example, is this close to equilibrium EoS in flat space?

* Or is it well predicted by hydrodynamics during the evolution?

® Let us start with small H compared to M:






Dynamics

Transient period
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Dynamics

UV fixed point
IR fixed point
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Dynamics

System described by hydro with important viscous effects
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Dynamics

3 AP/ASE

1.5

—0.5

—-1.0"

System described by hydro with important viscous effects
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Dynamics
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* As H increases, system no longer described by hydro:
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* As H increases, system no longer described by hydro:

3 AP/AE

3 AP/AE

3 AP/AE

1.5¢

—-0.5}

-1.0°

1.5¢

1.0

0.5

—— Strong coupling

0.0f

........ Ideal hydrodynamics

..... Viscous hydrodynamics |

3 AP/AE

1.5¢

—0.5¢

-1.0°

1.0f

0.5}

0.0

Pressure in effective
EoS can become
negative for H ~M



[ate-time state

Non-dynamical dS4 metric
+ dynamical matter




[ate-time state

Non-dynamical dS4 metric
+ dynamical matter

No full dS4 symmetry because of
excited matter




[ate-time state

Non-dynamical dS4 metric
+ dynamical matter

Asymptotic state has full dS4

symmetry

No full dS4 symmetry because of
excited matter

e This means that emergent, effective EoS can be determined from
QNM-like perturbations of late-time state.



Three horizons in the late-time state

Asymptotic late-time state

Event horizon
Surface gravity = H



Three horizons in the late-time state

Apparent horizon
Surface gravity = - H

Asymptotic late-time state

Event horizon
Surface gravity = H



Three horizons in the late-time state

Apparent horizon
Surface gravity = - H

Asymptotic late-time state

Entanglement horizon
Surface gravity = o

Event horizon
Surface gravity = H



Three horizons in the late-time state

* Difference between EH and AH due to dynamical nature of the state.

* Both areas grow as exp(3Ht).



Three horizons in the late-time state

* Difference between EH and AH due to dynamical nature of the state.
* Both areas grow as exp(3Ht).
e Dividing by this factor:

I atdiand H 2 0,0 dashed)

O R D s A AR AR ]
ol bl ]
SR — event horizon
Ele. 1l N — apparent horizon |
oS \
0.5} N\ ;
0.1: _ | it | -
0 1 2 3 4 3



Entanglement entropy

* Consider entanglement entropy of ball of radius r at the boundary:



Entanglement entropy

» Consider entanglement entropy of ball of radius r at the boundary.

® Ifris smaller than dS cosmological horizon then extremal surface does
not penetrate the EH.

o Ifris larger than dS cosmological horizon then extremal surface
penetrates the EH but only top to Entanglement Horizon.
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Outlook

® More general cosmologies.
e Non-homogeneous states.
* Theories with phase transitions.

e Backreaction on the 4D metric.






