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Chaos and the butterfly effect

{q(t), p(0)} =
∂q(t)

∂q(0)
∼ eλLt Lyapunov growth



Overview

〈[W (t),V (0)]2〉 ≈ 〈WW 〉〈VV 〉 − Re 〈V (0)W (t)V (0)W (t)〉︸ ︷︷ ︸
OTOC(t)

≈ e2λLt

In extremal BTZ:
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I WKB/geodesic approximation

20 40 60 80 100
Δt

0.1

0.2

0.3

0.4

0.5

δ

I λL alternates between TL and TR

with overall cubic law



OTOCs in gravity



Butterfly effect in AdS/CFT

AdS black hole

|∆t|

E 2
collision ∼ eλL|∆t|EinEout with λL = 2πTHawking



Original gravity formula
[Shenker-Stanford ’14]

OTOC = 〈W (t, x)V (0)W (t, x)V (0)〉β

OTOC =

∫
e iδ(t,x′−x′′)

[
pUΨ∗1(pU , x ′)Ψ3(pU , x ′)

] [
pV Ψ∗2(pV , x ′′)Ψ4(pV , x ′′)

]
I Ψ: Fourier transform of the boundary-to-horizon propagator

I e iδ: eikonal scattering amplitude along the horizon (t � β)

I evaluation by saddle point approximation



Geodesic approximation
[Balasubramanian-Craps-De Clerck-KN ’19]

New alternative formula:

OTOC

〈WW 〉〈VV 〉 ≈ e iδ
∣∣∣
saddle

with the eikonal phase shift

δ =

∫ (
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During the early-time Lyapunov growth, we simply have

CS ≡ 〈[φW , φV ]2〉
〈φVφV 〉〈φWφW 〉

≈ δ2 ∼ (E 2
collision)2 (δ � 1 or t � t∗)



AdS black hole

|∆t|

E 2
collision ∼ eλL|∆t|EinEout with λL = 2πTHawking



Slow scrambling in vacuum

The original computational method of [Shenker-Stanford ’14] assumes t � β, and
is therefore not suited to study the zero temperature limit.

Our new method allows to recover slow scrambling at zero temperature
[Balasubramanian-Craps-De Clerck-KN ’19]

CS(t, x) ∼
(
GN (t − |x |)2

)2

,

in agreement with CFT computations [Roberts-Stanford ’14].



Slow scrambling in extremal BTZ



Extremal BTZ

Metric

ds2 = `2
AdS

[
−
(
r2 − 2r2

+

)
dt2 +

r2 dr2(
r2 − r2

+

)2 − 2r2
+ dt dϕ+ r2 dϕ2

]
,

to which we can associate three temperatures

THawking = 0, TL = 0, TR =
r+
π
.



Shock wave of outgoing particle in the decompactified limit:

The solution in the compact case is obtained via a sum over images.

The shockwave decays exponentially to the left of the particle and polynomially to
its right.



Eikonal phase in extremal BTZ

δ(t, ϕ) =
∑
n∈Z
|ϕn|≤t

f (t, ϕn), ϕn = ϕ+ 2πn

Each term in the sum corresponds to one interaction of a geodesic with the
shockwave of the other geodesic. There are many such interactions due to the
ϕ ∼ ϕ+ 2π periodicity.

As the time separation t between the two insertions is increased, the number of
interactions grows. We find O(t) interactions with the polynomial sheet of the
shockwave and O(ln t) with the exponential sheet.
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Altogether we find that overall increase of the eikonal phase is

δ(t) ∼ GNmVmW btct2 .
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Scrambling in microstate geometries



(1, 0, n) superstratum geometries

[Bena-Martinec-Walker-Warner-... ’16-’20]

ρcap ∼
√
n a

ρthroat ∼
√
n b

AdS3AdS2×S1

BTZ ρtidal



Departures from BTZ computation

As we increase the time separation t between boundary insertions, the interaction
takes place deeper in the bulk. We take the scrambling time as a reference
timescale

ts =

(
N1N5

h2

) 1
3

.

We expect departures from the BTZ computation when the process probes bulk
regions

1. where tidal forces are strong such that the geodesic approximation breaks
down

|θ| & m ←→ t > ttidal ∼
(
h7N1N5

T 3
R

) 1
6

ts

2. near the cap where the geometry significantly from the classical BTZ solution

t > tcap ∼
N1N5

TR
∼
(
h2(N1N5)2

T 3
R

) 1
3

ts > ttidal



Summary and open problems

OTOC by geodesic approximation

I pros: position space, applicable to any AlAdS spacetime, behavior at finite
time (slow scrambling)

I cons: no account for late-time dissipation (OTOC late-time decay)

OTOC in extremal BTZ and superstratum geometries

I average slow scrambling ∼ t3

I alternation between ∼ t2 and ∼ eTR t behavior on small time scales

I departures occurring at ttidal and tcap

Open problems

I inclusion of dissipation within the geodesic approximation [Festuccia-Liu ’08]

I quantify departures from classical BTZ solution

I ...


