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Motivation and Overview

AdS/CFT correspondence:

Duality mapping QFT (without gravity) to gravity theory

Original motivation from string theory (Maldacena ’97):
Near-horizon limit of D-branes

New approach to quantum gravity

Essential ingredients:

Conformal symmetry, large N limit (saddle point approximation)
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String theory origin of the AdS/CFT correspondence

near-horizon geometry
AdS  x  S

5
5

D3 branes in 10d

duality

⇓ Low-energy limit: gs = λ/N → 0, λ = L4/α′2 large

N = 4 SU(N) gauge theory
in four dimensions

⇔ Classical supergravity on
AdS5 × S5
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AdS/CFT correspondence

Field-operator correspondence:

〈e
∫
ddxφ0(~x)O(~x)〉CFT = e−Ssugra

∣∣∣
φ(0,~x)=φ0(~x)

Saddle point approximation
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Motivation and Overview

Is the duality valid more generally?



Motivation and Overview

Is the duality valid more generally?

Information and AdS/CFT

Ryu+Takayanagi 2006: Holographic Entanglement entropy

Leading term in entanglement entropy given by
area of minimal surface in holographic dimension
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Motivation and Overview

Concepts from information theory in quantum field theory related to geometry:

1. Information geometry; Fisher information metric

2. Modular Hamiltonian/ Modular flow

3. Computational Complexity



Motivation and Overview

Concepts from information theory in quantum field theory related to geometry:

1. Information geometry; Fisher information metric

2. Modular Hamiltonian/ Modular flow

3. Computational Complexity

Open question: Dynamics?
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1. Information geometry

Branch of mathematics: Uses differential geometry to study probability theory

Shun-ichi Amari

Statistical manifold:

Riemannian manifold whose points correspond to probability distributions

Probability distributions p(x, ~θ);
∫
dx p(x, ~θ) = 1

x stochastic variable, parameters ~θ

Smooth manifold spanned by the ~θ coordinates
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Fisher information metric

Fisher metric in information theory: Metric on space of probability distributions

Probability distribution p(x, ~θ), x a stochastic variable, ~θ a set of n external parameters

Spectrum γ(x, ~θ) ≡ − ln p(x, θ)

Fisher metric

gµν(~θ) =

∫
dx p(x, ~θ)

∂γ(x, θ)

∂θµ
∂γ(x, θ)

∂θν
= 〈∂µγ∂νγ〉

For Gaussian distribution (saddle point approximation)

p(x1, . . . , xn) =
1

(
√

2πσ)n
exp

(
−

n∑
i=1

(xi − x̄i)2

2σ2

)

Fisher metric gives Anti-de Sitter space:

ds
2

=
1

σ2

(
dx̄idx̄

i
+ 2ndσ

2
)
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Fisher metric: Discussion

Fisher metric for Gaussian probability distribution is AdS metric!



Fisher metric: Discussion

Fisher metric for Gaussian probability distribution is AdS metric!

Caveats: Clingman, Murugan, Shock 1504.03184

Non-uniqueness: Infinitely many distributions give the same geometry

(eg. 1d Gaussian and Cauchy-Lorentz give 2d hyperbolic space)

Many statistical models lead to the same information geometry

Fisher metric inherits symmetries of statistical model but can have more

(Example in CMS’15 of a probability distribution that gives 2d hyperbolic space
but has none of its symmetries)
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Fisher metric: Examples

Blau, Narain, Thompson hep-th/0108122:

Yang-Mills instantons in 3+1 dimensions

Uses prescription of Hitchin (1990): Probability distribution is taken to be the
Lagrangian density on the state

p(Λ,a)(x) = trFµνFµν , F aµν = −4ηaµν
Λ2

(x− a)2 + Λ2

FIsher metric gives AdS metric (Radial coordinate given by instanton radius)

Works also for scalar instanton
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Fisher metric for theory space and state space

J.E., Grosvenor, Jefferson 2020

Theory space spanned by (renormalized) couplings (Ising model, RG flows)

State space (Examples: Instantons, coherent states)



Fisher metric for theory space and state space

J.E., Grosvenor, Jefferson 2020

Theory space spanned by (renormalized) couplings (Ising model, RG flows)

State space (Examples: Instantons, coherent states)

String theory: Heckman 1305.3621

Worldsheet action for Fisher metric

Conformal invariance of 2d worldsheet action implies Einstein equations for
target space
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Fisher metric for 2d Ising model

J.E., Grosvenor, Jefferson 2020
Square lattice

gab = ∂a∂bf with f reduced free energy per site

Previous work in condensed matter/ quantum field theory:

Janke et al, Brian Dolan et al

See also the recent Di Giulio, Tonni 2006.00921
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Fisher metric for 2d Ising model
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Fisher metric for 2d Ising model

This may be reproduced in field theory:
The critical 2d Ising model corresponds to a field theory of free fermions
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Fisher metric: States

‘Divergence’: Bifunctional D(p||q)of two probability distributions p and q measu-
ring their difference

Example: Relative entropy D(p||q) =
∫
dxp ln p

q

Bures metric for quantum states given by density matrix ρ:
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Fisher metric: Coherent States

Nozaki, Ryu, Takayanagi 2012

Consistent with the density matrix symmetries ρ→ ρ′ = UρU†
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Fisher information on the gravity side of AdS/CFT

Banerjee, J.E., Sarkar 1701.02319

Fidelity susceptibility F –Related to Bures distance by DB = 2(1− F )

Fisher metric

Gmn =
∂2F

∂λm∂λn

Couplings λm dual to to deformations of the AdS metric

Takayanagi et al 1507.07555: For pure states and marginal couplings:

G
pure

=
nd

G

vold−1

εd−1

Proposal for mixed states: F = Cd
(
vol(m2)− vol(0)

)
(finite expression)

For m a metric or relevant scalar deformation, the result has the expected scaling behaviour
with the size of the entangling region, R2∆
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II. Modular Hamiltonian and modular flow

Starting point: State given by density matrix ρ

Entangling region V

Entropy generalizes to entanglement entropy SV = −tr(ρV ln ρV )

Hamiltonian generalizes to modular Hamiltonian KV , defined implicitly via

ρV :=
e−KV

tr (e−KV )

Generalized time evolution

Entanglement spectrum has many applications in many body physics and QFT

Topological order; relative entropy

AdS/CFT: Essential for gravity bulk reconstruction from QFT boundary data
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Modular Hamiltonian and modular flow

Modular Hamiltonian known explicitly only in a small number of cases

Universal and local result for QFT on Rindler spacetime:
(accelerated reference frame in Minkowski spacetime)

K −Kvac =
2π

~

∞∫
0

dxxTtt

(Bisognano-Wichmann theorem)

Further examples: CFT vacuum on a ball,
CFT2 for single interval, vacuum on the cylinder or
thermal state on real line

(WIkipedia)
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Modular Hamiltonian and modular flow

Modular flow generated by modular Hamiltonian:

Generalised time evolution with the density matrix:

σt(O) := ρitOρ−it

In general, modular flow is non-local
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Modular Hamiltonian and modular flow

J.E., Fries, Reyes, Simon 2008.07532 for free fermions in 1+1 dimensions:

For disjoint intervals V =
⋃
n[an, bn]:

σt
(
ψ†(y)

)
=

∫
V

dxψ†(x)Σt(x, y) ,

Σt =

(
1−G|V
G|V

)it
.

Modular flow expressed in terms of reduced propagator G|V
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Modular flow

A few facts from Tomita-Takesaki modular theory: (see S. Hollands, 1904.08201)

Tomita conjugation:
SO|Ω〉 := O†|Ω〉

for operator O in von Neumann algebra R

S may be decomposed into J∆1/2, J antiunitary and ∆ positive

Tomita theorem: JRJ† = R′ , ∆itR∆−it = R

Modular flow: σt(O) = ∆itO∆−it

Modular Hamiltonian: e−itK := ∆it

Two operators satisfy the KMS (Kubo-Martin-Schwinger) condition

〈Ω|O1σt(O2)|Ω〉 = 〈Ω|σt+i(O2)O1|Ω〉

by analogy to time evolution at finite temperature
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Modular two-point function for free fermions

Modular two-point function

Gmod(x, y; t) :=

{
−〈Ω|σt(ψ†(y))ψ(x)|Ω〉 for 0 < Im(t) < 1

+〈Ω|ψ(x)σt(ψ
†(y))|Ω〉 for − 1 < Im(t) < 0.

Introduce Σt as test or smearing function

σt
(
ψ†(y)

)
=

∫
V

dxψ†(x)Σt(x, y)

From fermion anticommutator it follows that

Gmod(x, y; t− i0+)−Gmod(x, y; t+ i0+) = Σt(x, y)
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Locality properties

We compute the free fermion modular flow for a number of examples:

plane, cylinder (Ramond and Neveu-Schwarz sectors), torus

Locality:

Non-local: Kernel Σt(x, y) is a smooth function on all of the region V

Bi-local: Σt(x, y) ∼ δ(f(x, y)). Discrete set of contributions. Couples pairs of
distinct points since x 6= y at t = 0.

Local: As bi-local but with x = y at t = 0

Locality properties depend on boundary conditions and temperature

Reflected in structure of poles and cuts in modular two-point function
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Degree of locality as function of temperature

High temperatures: Thermal and local behaviour of modular flow

Lowering the temperature, modular flow adds bilocal couplings between an infi-
nite discrete set of points

Can be traced back to anti-periodicity of thermal propagator that is required by
KMS condition

For T → 0, the discrete couplings condense to a continuum (branch cut)
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Modular two-point function: Pole structure

Presence of poles and cuts in Gmod gives information about
non-locality of modular flow

Causes couplings between isolated points or entire regions

Plane: Only simple poles, modular flow local

Cylinder (P): Additional branch cuts
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Modular two-point function: Pole structure

Torus (AP):

Reproduces result for cylinder when T ⇒ 0
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III. Circuit complexity

Complexity:

Consider set of predefined unitary transformations in a Hilbert space

How many of these need to be applied to reach any given state
from a reference state?
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Complexity

Consider a reference state |r〉 and a set of unitary operators U1, U2, ... (gates)

The complexity C(|ψ〉) of a state |ψ〉 is given by the minimal number of gates
required to map |r〉 to |ψ〉 up to a given tolerance

C(|ψ〉) = min {n ∈ N| Ui1 . . . Uin|r〉 = |ψ〉, up to tolerance}

Well-defined for pure states in finite-dimensional Hilbert spaces

No standard definition for quantum field theories

(Recent progress for free field theories (Myers et al, Heller et al)

also Headrick et al, 1804.01561; Policastro and Ge 1904.03003)
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Holographic complexity proposals

Susskind et al: Fortsch.Phys. 64 (2016) 24-43, Phys.Rev.Lett. 116 (2016) no.19, 191301

Consider evolution of two copies of a CFT initially entangled in a thermofield
double state

‘Complexity = Volume’:
Volume of Einstein-Rosen bridge

‘Complexity = Action’:
Action on Wheeler-de Witt patch

Both proposals evolve linearly with time.
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Complexity for quantum field theories

Continuous set of gates to be determined

Examples for reference states:

Spatially unentangled states

Highest weight state in a symmetry multiplet

Cost function determines expense of applying a particular gate
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Complexity for conformal field theories

Caputa, Magan 1807.04422

Gates from conformal transformations: Q(t) = 1
2π

∫
dσε(σ, t)T (σ)

Reference state: Primary state

Q(t) generates unitary transformations

Cost function: Expectation value of gate w.r.t state, F = |tr[ρ(t)Q(t)]|

J.E., Gerbershagen, Weigel 2004.03619

Complexity functional equivalent to geometric group action on coadjoint orbits
of the Virasoro group

Extension to Kac-Moody algebras
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Complexity for conformal field theories

Flory, Heller 2005.02415, 2007.11555

Assign cost to circuits based on the
Fubini-Study metric (fidelity susceptibility)

Optimal circuits are determined by Euler-Arnold equations

Equations of classical mechanics viewed as geodesic flow on Riemannian ma-
nifold
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Conclusion and outlook

Inspired by gauge/gravity duality, many beautiful new connections between
quantum field theory and geometry have recently emerged

Important ingredient: Information theory

Challenge: To understand working mechanisms of gauge/gravity duality in
general

Dynamics ?
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