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— How do they admit a statistical mechanics description? 
— Non-thermal ensembles that govern stationary states after quenches

— Temporal approach to such ensembles

— Suppressed transport and propagation of quantum information

— Novel phases of matter protected by localisation, infinite-
temperature glasses, time-crystals…
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Many-body localisation: Fate of Anderson localisation upon 
adding interactions between quantum particles 

Microscopics ThermodynamicsStatistical Mechanics

Minimal model — random matrix Hamiltonian:            HRMT =

Minimal many-body Hamiltonian 
with a stable MBL phase?

HMBL = ?

Minimal ingredients in a many-body Hamiltonian for a stable and robust MBL phase ?
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With Fock-basis state  - product state| I⟩ ≡ ≡ σz

Dimension of the graph exponentially large in system size: 


Connectivities on the graph typically extensive: 


Effective variance of the Fock-space site energies also extensive: 
                             

Nℋ ∼ exp(N)

∑
K

𝒯2
IK ∼ N

⟨ℰ2
I ⟩ − ⟨ℰI⟩2 ∼ N
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MBL on Fock space is NOT standard Anderson localisation problem on a high-dimensional graph 

QREM: many-body systems with uncorrelated Fock-space disorder doesn’t host a MBL phase


Presence of Fock-space correlations, such as in disordered local Hamiltonians crucial
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General form of the covariance

 generally a -order polynomial of  for a -spin system 
 for 

ρ(r, N) p r/N p
⇒ ρ(r, N) → 1 r/N → 0

For the distribution to be stable in the  limit,

one needs to rescale


N → ∞

ℰ̃ = ℰ/ N

PNℋ
({ℰ̃I}) =

1
(2π)Nℋ |W2ρ |

exp [−
1
2

⃗ℰ̃T ⋅ (W2ρ)−1 ⋅ ⃗ℰ̃]
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ΔI(ω) ∼ η

Rate of loss of probability from site  into states at energy I ω
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How does a state initially localised on a Fock-space site spread out ? (a)

####"

###""

##"""

#""""

#"#""

#"##"

Encoded in the local Fock-space propagator:   GI(t) = − iΘ(t)⟨I |e−iHt | I⟩

Self-energy: SI(ω) = XI(ω) − iΔI(ω)

In the frequency domain: 


                                                   

GI(ω) = ⟨I | (ω + iη − H)−1 | I⟩
= [ω+ − ℰI−SI(ω)]−1

Deep in a delocalised phase:

number of channels  DoS( )Δ(ω) ∼ Γ2 × × ω

  ∼ Γ2 × N ×
1

N

Δ(ω) ∼ Γ2 N
For the problem to remain well defined in the  limit, 
the energy scales need to be rescaled by 

N → ∞
N

Rate of loss of probability from site  into states at energy I ω
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Renormalised perturbation series

Feenberg, Phys. Rev. 1948

ΔI(ω) = Im[∑
K

𝒯2
IK

ω+ − ℰK − SK(ω)
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Δ̃I(ω) = Im[∑
K

�̃�2
IK

ω̃+ − ℰ̃K − S̃K(ω)
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In terms of rescaled variables: ˜(⋯) = (⋯)/ N

Δ̃I(ω) = Im[∑
K

�̃�2
IK

ω̃+ − ℰ̃K − S̃typ(ω)
+ ⋯]

replace by its typical value

Obtain distribution of  from the joint distributions of ΔI(ω) {ℰK}

1

2

3

information of correlations gets fed in !

4
Impose self-consistency:  arising from distribution must 
coincide with input 

Δtyp
Δtyp

Non-trivial correlations in Fock-space 
disorder the root of all complications
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Δ̃I(ω) = Im[∑
K

�̃�2
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QREM: uncorrelated Fock-space 
disorder

Δ̃I(ω) = Im[∑
K

Γ2

ω̃+ − ℰ̃K − S̃typ(ω)
+ ⋯]

—Upshot: the self-energy is a sum of 
extensive number of independent terms
— localised phase never self-consistently 
stable

 for ρ(r, N) = 1 r/N → 0

 for all ρ(r, N) = 0 r

 standard Anderson 
localisation on infinite-
dimensional graph.

∼



Central result

Ωr = 0 Ωr = 1Ωr < 1

QREM

No MBL

Disordered local Hamiltonians

Finite Wc, MBL for W > Wc

MBL possible only if Fock-space site energies at finite distances 
maximally correlated; minimum requirement for MBL to be stable 

Any randomness/independence in them leads to delocalisation

SR, D. E. Logan, Phys. Rev. B 101, 134202 (2020) 



Classical Percolation and MBL on Fock space

Phys. Rev. B 99, 220201(R) (2019)

Phys. Rev. B 99, 104206 (2019)


Lightning review of many-body localisation 

Fock-space correlations and origins of MBL 
MBL on Fock-space — how and why ?

Why MBL on Fock space  Anderson localisation on high dimensional graph ?

Fock-space correlations as a necessary requirement for MBL


Classical percolation in Fock space as a proxy for MBL 
Fock-space fragmentation due to local frozen degrees of freedom

Heuristic picture for the effect of correlations


Anderson localisation on graphs with strongly correlated disorder 
Disorder correlations analogous to Fock-space correlations

Arguably a more controlled setting

≠ Phys. Rev. B 101, 134202 (2020) 

Phys. Rev. Lett. 125, 250402 (2020)
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Classical percolation on Fock space

Define a correlated bond percolation problem

H = ∑
i

[Jiσz
i σz

i+1 + hiσz
i + Γσx

i ]

- product state| I⟩ ≡ σz

Statistics of connected clusters in Fock space ?

H = ∑
I

ℰI | I⟩⟨I | + ∑
I≠K

𝒯IK | I⟩⟨K |

𝒯IK

ℰI − ℰK
> 1A link between  and  present ifI K

Disorder strength W

α

Styp ∼ Nα
ℋ How does  vary with disorder strength ?α

Delocalised phase

W < Wc ⇒ Styp ∼ Nℋ

1

0

Localised phase

 with W > Wc ⇒ Styp ∼ Nα

ℋ α < 1

Analytic solution of the percolation problem




Critical exponent 
α = 1 − (W − Wc)2; W > Wc

ν = 2

SR, D. E. Logan, J. T. Chalker, Phys. Rev. B 99, 220201(R) (2019)



Classical percolation on Fock space: cartoon for the effect of correlations

𝒯IK

ℰI − ℰK
> 1A link between  and  present ifI K

HQREM = ∑
I

ℰI | I⟩⟨I | + Γ∑
i

σx
i

• Exponentially large number of possible energy scales 
for any spin


• Impossible to avoid at least one resonance in the 
thermodynamic limit; enough to force delocalisation

Baldwin+Laumann+Pal+Scardichhio (2016), SR+ Logan+Chalker(2019), SR+Logan (2020) 



Classical percolation on Fock space: cartoon for the effect of correlations

𝒯IK

ℰI − ℰK
> 1A link between  and  present ifI K • Only a few energy scales control the flipping of a local spin


• A few energy scales becoming off-resonant can kill 
exponentially large number of links on the Fock space


• Correlations help in defeating the high-connectivity of the 
graph

HTFI = ∑
i

[Jiσz
i σz

i+1 + hiσz
i ] + Γ∑

i

σx
i

SR+ Logan+Chalker(2019), SR+Logan (2020) 



Fock-space correlations and origins of MBL

Ωr = 0 Ωr = 1Ωr < 1

QREM

No MBL

Disordered local Hamiltonians

Finite Wc, MBL for W > Wc

• MBL possible only when the correlations are maximal at finite distances on the Fock-space graph

• Generally the situation for local disordered Hamiltonians

• Any randomness/independence enough to delocalise the system

• Classical percolation picture on the Fock space



QREM + constrained dynamics = MBL

HEastREM = ∑
I

ℰI | I⟩⟨I | +
Γ
2 ∑

i

σx
i (1 + σz

i+1)
a spin can flip only if the one 
to its right is up 

Frozen block of spins; can melt only from the right; arrested dynamics !!
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On Fock space

• Constraints switch off some of the links

• Increase the typical distance between two nodes

• Decrease the number of paths between two nodes
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SR + A. Lazarides, Phys. Rev. Research 2, 023159 (2020) 

https://www.google.com/url?q=https%3A%2F%2Fjournals.aps.org%2Fprresearch%2Fabstract%2F10.1103%2FPhysRevResearch.2.023159&sa=D&sntz=1&usg=AFQjCNHkoIeHCQaq5jfuH-0QirYwleu1xg


Anderson localisation with strongly correlated disorder

Phys. Rev. B 99, 220201(R) (2019)

Phys. Rev. B 99, 104206 (2019)


Lightning review of many-body localisation 

Fock-space correlations and origins of MBL 
MBL on Fock-space — how and why ?

Why MBL on Fock space  Anderson localisation on high dimensional graph ?

Fock-space correlations as a necessary requirement for MBL


Classical percolation in Fock space as a proxy for MBL 
Fock-space fragmentation due to local frozen degrees of freedom

Heuristic picture for the effect of correlations


Anderson localisation on trees with strongly correlated disorder 
Disorder correlations analogous to Fock-space correlations

Arguably a more controlled setting

≠ Phys. Rev. B 101, 134202 (2020) 

Phys. Rev. Lett. 125, 250402 (2020)



Anderson localisation with strongly correlated disorder
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Disordered tight-binding problem on a tree

H = Γ∑
⟨i,j⟩

[ | i⟩⟨j | + h . c.] + ∑
i

ϵi | i⟩⟨i |

For uncorrelated randomness ⟨ϵiϵj⟩ = δijW2

Wc ∼ ΓK ln K

Abou-Chacra, Anderson, Thouless (1983) and many others…

Branching number K = 2

i = 0

Disorder strength W
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i2
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t

Disordered tight-binding problem on a tree

H = Γ∑
⟨i,j⟩

[ | i⟩⟨j | + h . c.] + ∑
i

ϵi | i⟩⟨i |

Disorder strength W

For uncorrelated randomness ⟨ϵiϵj⟩ = δijW2

Wc ∼ ΓK ln K

Abou-Chacra, Anderson, Thouless (1983) and many others…

Fate of localisation in the presence of maximal disorder correlations

⟨ϵiϵj⟩ = f(rij /L); lim
x→0

f(x) → 1

Branching number K = 2

Distance between sites  and i j Number of generations in the tree

i = 0

On Fock space for a many-body problem:

 generally a -order polynomial of  for a -spin system 

 for 
ρ(r, N) p r/N p
⇒ ρ(r, N) → 1 r/N → 0

• With increasing system size, energies of nearby sites on the tree 
become more and more uniform 


• The presence of a localised phase itself a priori not remotely obvious

i1

i2
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Abou-Chacra, Anderson, Thouless (1983) and many others…

i = 0

i1

i2

S0(ω) = Γ2 ∑
i1

[ω+ − ϵi1 − S(0)
i1

]−1 ( exact!! )

S0(ω) = ∑
i1

Γ2

ω+ − ϵi1 − ∑i2

Γ2

ω+ − ϵi2 − ∑i3

Γ2

⋱
• The continued fraction to all orders takes into account all the correlated energies

• Instead of a self-consistent theory, one looks for convergence properties of the 

continued fraction

• The treatment is formally exact

Phys. Rev. Lett. 125, 250402 (2020)
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Localised phase indeed present



Summary and Outlook

MBL possible only if Fock-space site energies at finite distances 
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Summary and Outlook

MBL possible only if Fock-space site energies at finite distances 
maximally correlated; minimum requirement for MBL to be stable 

Ωr = 0 Ωr = 1Ωr < 1

QREM

No MBL

Disordered local Hamiltonians

Finite Wc, MBL for W > Wc

Classical percolation proxy to highlight how the correlations 
stop local degrees of freedom from thermalising

Possible connections between the Fock-space approach 
and results from phenomenological treatments ?


Connecting the microscopic theory on Fock-space to real-
space pictures ?

Important outstanding questions
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