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@ Lightning review of many-body localisation

® Fock-space correlations and origins of MBL
® MBL on Fock-space — how and why ?
® Why not standard Anderson localisation on high dimensional graph ? Phys. Rev. B 101, 134202 (2020)
® Fock-space correlations as a necessary requirement for MBL

® Classical percolation in Fock space as a proxy for MBL Phys. Rev. B 99, 220201(R) (2019)
® Fock-space fragmentation due to local frozen degrees of freedom Phys. Rev. B 99’ 104206 (2019)
® Heuristic picture for the effect of correlations |

@® Anderson localisation on graphs with strongly correlated disorder
® Disorder correlations analogous to Fock-space correlations Phys. Rev. Lett. 125, 250402 (2020)
® Arguably a more controlled setting
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Microscopics << Statistical Mechanics <% Thermodynamics

Can guantum systems fail to thermalise ?

Many-body localisation: Fate of Anderson localisation upon
adding interactions between quantum particles
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Many-body localisation

Microscopics <€ Statistical Mechanics <% Thermodynamics

Can guantum systems fail to thermalise ?

energy

space
Anderson localisation (1958)

Exponential localisation of non-interacting quantum
particles on a disordered lattice

— How do they admit a statistical mechanics description?

— Non-thermal ensembles that govern stationary states after quenches

— Temporal approach to such ensembles

— Suppressed transport and propagation of quantum information

— Novel phases of matter protected by localisation, infinite-

temperature glasses, time-crystals...

[Gornyi et al., Basko et al., Oganesyan+Huse, Znidaric et al., Pal+Huse, Kjall et al.,
Luitz et al., Nandkishore+Huse, Abanin+Papic, Vasseur+Potter+Parameswaran,

Vosk+Huse+Altman, SR+Logan+Chalker, ....]
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Minimal model — random matrix Hamiltonian: Hpyvr =

| |
II.I |

Can guantum systems fail to thermalise ?

Many-body localisation: Fate of Anderson localisation upon
adding interactions between quantum particles

energy

space
Anderson localisation (1958)

Exponential localisation of non-interacting quantum
particles on a disordered lattice



Many-body localisation

Microscopics <<

Minimal model — random matrix Hamiltonian:

Can guantum systems fail to thermalise ?

energy

Statistical Mechanics

<4 Thermodynamics

space

Anderson localisation (1958)

Exponential localisation of non-interacting quantum
particles on a disordered lattice

HRMT —

Many-body localisation: Fate of Anderson localisation upon
adding interactions between quantum particles

Minimal many-body Hamiltonian
with a stable MBL phase?

Hygp = ?




Many-body localisation

Minimal ingredients in a many-body Hamiltonian for a stable and robust MBL phase ?




MBL on Fock space

® Fock-space correlations and origins of MBL
® MBL on Fock-space — how and why ?
® Why not standard Anderson localisation on high dimensional graph ? Phys. Rev. B 101, 134202 (2020)
® Fock-space correlations as a necessary requirement for MBL



MBL on Fock space

Any many-body Hamiltonian = tight-binding Hamiltonian on the Fock-space graph
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MBL on Fock space

Any many-body Hamiltonian = tight-binding Hamiltonian on the Fock-space graph

N
=1

With |I) = Fock-basis state = o°- product state

H=Y &N+ Y Tl INK]
I/

I#K

® Dimension of the graph exponentially large in system size: N, ~ exp(/V)

» Connectivities on the graph typically extensive: Z Vi %K ~ N
K
® Effective variance of the Fock-space site energies also extensive:

<Cg%> — <Cgl>2 ~ N
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MBL on Fock space

Quantum Random Energy Model: uncorrelated random energies on every spin-configuration

Horpm = 2 E DI+ T Z o Independent Gaussian random numbers:
1 l <C51%K> — 5IKNW

Disordered quantum spin chain
Effective disorder on the Fock space is correlated:

Hrpyp = Z [Vio;o; + o] + 1 Z o; (€/8k) # 0

A

W.~ 1/e

>

Disorder strength W

h

Energy density E/N = ¢

Luitz, Laflorencie, Alet, PRB (2015)




MBL on Fock space

Quantum Random Energy Model: uncorrelated random energies on every spin-configuration

Horem = Z & || + FZ o}
I/ [

Disordered quantum spin chain

A

Ergodic

MBL

Independent Gaussian random numbers:

<<51<5K> — 5H<N 14

Energy density E/N = ¢

MBL

>

Disorder strength W

Effective disorder on the Fock space is correlated:

(8,8) #0

DoS

® DoS in at any finite energy density is
exponentially small

® DoS = 6(€) inthe N = oo limit
® Dynamics in general controlled
entirely by nature of states at ¢ = ()



MBL on Fock space

Quantum Random Energy Model: uncorrelated random energies on every spin-configuration

Horem = Z & || + FZ o}
i l

Disordered quantum spin chain

A

Ergodic

» these mobility edges possibly misleading

- what about mobility edges at £ ~ \/N?

Energy density E/N = ¢

MBL

Disorder strength W

Independent Gaussian random numbers:

<%I%K> — 5H<N 14

> g o

Effective disorder on the Fock space is correlated:

(8,8) #0

DoS

® DoS in at any finite energy density is
exponentially small

® DoS = 6(€) inthe N = oo limit
® Dynamics in general controlled
entirely by nature of states at ¢ = ()



MBL on Fock space

® MBL on Fock space is NOT standard Anderson localisation problem on a high-dimensional graph

® QREM: many-body systems with uncorrelated Fock-space disorder doesn’t host a MBL phase

® Presence of Fock-space correlations, such as in disordered local Hamiltonians crucial




Correlations in Fock-space site energies

Diagonal part of the Hamiltonian for a system with local interactions

N IR TVT
= o7 6267 ARAR
Hgiag Z hio; + Z Ji0; 0141 W AE =20+ Ty FIly) T
l=1 l=1 '; .:’
— number of random numbers required is polynomially large in N IRRARA “a
— they constitute the ~ exp(/N) Fock-space site energies { &/} Tt

~ exp(/V) such linked pairs in Fock space



Correlations in Fock-space site energies

Diagonal part of the Hamiltonian for a system with local interactions

N
_ Z 2,2
Hdiag — Z higi T Z Jiai i1
i=1 i=1

— number of random numbers required is polynomially large in N
— they constitute the ~ exp(/N) Fock-space site energies { &/}

) ¢ Energies of Fock-space sites at finite distance from each other
the Fock-space graph are completely slaved to each other

RRAN]

. RARAR
““_- Acg — 2(hl + Jl-l-l + Jl—l) - v

tHHTt
NRERY

~ exp(/V) such linked pairs in Fock space

{|K)} = set of FS sites
at distance r from |I) P(&,| %, = 0)




Correlations in Fock-space site energies
Problem fully specified by the joint distribution of the site energies

—

1 1
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T /@ C 2 |

— Covariance matrix C completely specifies the distribution
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Problem fully specified by the joint distribution of the site energies

—

1 1
Py ({&;}) = exp |-——&1-C 1. &
T /@ C 2 |

— Covariance matrix C completely specifies the distribution
— matrix elements of C depend on the distance between the sites

General form of the covariance
C(r) = W’Np(r,N); p(r=0,N)=1

v ! I T v

Effective disorder  Scaling with All dependence
system size on Hamming
distance

% p(r, N) generally a p-order polynomial of /N for a p-spin system
= p(r,N) - 1 forr/N — 0

b ¢ Energies of Fock-space sites at finite distance from each other
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Correlations in Fock-space site energies
Problem fully specified by the joint distribution of the site energies

—

1 1
Py ({&;}) = exp |-——&1-C 1. &
T /@ C 2 |

— Covariance matrix C completely specifies the distribution
— matrix elements of C depend on the distance between the sites

General form of the covariance
C(r) = W’Np(r,N); p(r=0,N)=1

v ! I T v

Effective disorder  Scaling with All dependence
system size on Hamming
distance

% p(r, N) generally a p-order polynomial of /N for a p-spin system
= p(r,N) - 1 forr/N — 0

b ¢ Energies of Fock-space sites at finite distance from each other
the Fock-space graph are completely slaved to each other
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Correlations in Fock-space site energies
Problem fully specified by the joint distribution of the site energies

—

1 ] —
Py ({&;}) = exp |-——&1-C 1. &
Ny I \/(27[)N%‘ C| 2 _

— Covariance matrix C completely specifies the distribution
— matrix elements of C depend on the distance between the sites

General form of the covariance
C(r) = W°Np(r,N); p(r=0,N)=1

| ;

Scaling with All dependence
system size on Hamming
distance

% p(r, N) generally a p-order polynomial of /N for a p-spin system
= p(r,N) - 1 forr/N — 0

b ¢ Energies of Fock-space sites at finite distance from each other
the Fock-space graph are completely slaved to each other

For the distribution to be stable in the N — oo limit,
one needs to rescale

& = &/\/N

PN%({ %1}) —

V@R W)

1= —
exp ) ET-Wp)y L. &




Self-consistent theory of MBL

How does a state initially localised on a Fock-space site spread out ?
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Self-consistent theory of MBL

How does a state initially localised on a Fock-space site spread out ?

Encoded in the local Fock-space propagator: G/(t) = — i®(¢)(/| e | I

In the frequency domain: Gy(w) = (I| (w + in — H)™ 1)
= [w0* — &S ()]

Self-energy: $/(w) = X (w) — A (w)

Rate of loss of probability from site / into states at energy w >

— probabilistic order parameter for localisation-delocalisation transition
— delocalised phase: A (@) is non-vanishing typically
— localised phase: A;(w) is vanishing ( ~ 77)




Self-consistent theory of MBL

How does a state initially localised on a Fock-space site spread out ?

Encoded in the local Fock-space propagator: G/(t) = — i®(¢)(/| e | I

In the frequency domain: Gy(w) = (I| (w + in — H)™ 1)
= [w0* — &S ()]

Self-energy: $/(w) = X (w) — A (w)

Rate of loss of probability from site / into states at energy w >

Deep in a delocalised phase:

A(w) ~ I'? X number of channels X DoS(aw)

, |
~]“XNX—
VN
A(w) ~ T*/N | o -
For the problem to remain well defined in the N — o0 limit,
the energy scales need to be rescaled by \/N



Self-consistent theory of MBL

T |

— &g — Sk(w) |

Renormalised perturbation series
P Aw) =Tm[ ) —
0

Feenberg, Phys. Rev. 1948

In terms of rescaled variables: (-7-) = (---)/\/N

o~2

1 (a))—Im[Z B o]

replace by its typical value

2 Afw) =Im[ — + -]
: Z o gK Styp(a))

Non-trivial correlations in Fock-space

disorder the root of all complications
3 Obtain distribution of A (@) from the joint distributions of { &}

information of correlations gets fed in !

Impose self-consistency: A,
p yp

coincide with input A

arising from distribution must

typ
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T ]

— &g — Sk(w) |

Renormalised perturbation series
P Aw) =Tm[ ) —
0

Feenberg, Phys. Rev. 1948

In terms of rescaled variables: (-7-) = (---)/\/N

o~2

1 (co)—Im[Z B o]

its typical value

Non-trivial correlations in Fock-space

disorder the root of all complications
3 Obtain distribution of A (@) from the joint distributions of { &}

information of correlations gets fed in !

Impose self-consistency: A,
p yp

coincide with input A

arising from distribution must

typ



Self-consistent theory of MBL

Local Hamiltonians: maximally
correlated Fock-space disorder P(%,| &, = 0)

P(&)

—sum over states K that are a finite
distance away from / on Fock space
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Local Hamiltonians: maximally
correlated Fock-space disorder P(&y| &; = 0)

P(&) \/ 1IN

~S

p(r,N)=1forr/N —- 0 &

—sum over states K that are a finite
distance away from / on Fock space



Self-consistent theory of MBL

Local Hamiltonians: maximally

correlated Fock-space disorder P(&y| &; = 0)
_ -
Afw) = Im[————— + -] P(&
! wt — &1 — Syp(w) (&) \/ /N
~ O(1)

—Upshot: the self-energy is just a single term

—Break down of self-consistency of either phase

Indicates the MBL transition ~
p(r,N)=1forr/N —- 0 &

—sum over states K that are a finite
distance away from I on Fock space



Self-consistent theory of MBL

Local Hamiltonians: maximally

correlated Fock-space disorder P(&y| &; = 0)
_ I
Afw) = Im[————— + -] P(&
! wt — &1 — Syp(w) (&) \/ /N
~ O(1)

—Upshot: the self-energy is just a single term

—Break down of self-consistency of either phase

Indicates the MBL transition ~
p(r,N)=1forr/N —- 0 &

A

—sum over states K that are a finite QREM: uncorrelated Fock-space

distance away from / on Fock space disorder ; P(&.| &, = 0)
P(%)

~ O(1)

p(r,N) =0forall r &



Self-consistent theory of MBL

Local Hamiltonians: maximally

correlated Fock-space disorder P(&| &, =0)
. [
e =, S /WS
—Upshot: the self-energy is just a single term ) \~ o)
—Break down of self-consistency of either phase

Indicates the MBL transition ~
p(r,N)=1forr/N —- 0 &

A

—sum over states K that are a finite QREM: uncorrelated Fock-space

i disorder -
distance away from I on Fock space P(&,| &, =0)

P& 4#

2

Afw)=Tm[ ) l + o]
(@) = -
~ 0t — & — Syyp(@)

—Upshot: the self-energy is a sum of
extensive number of independent terms

~ standard Anderson
localisation on infinite-
dimensional graph.

— localised phase never self-consistently p(r,N) =0forall r
stable



Central result

QREM Disordered local Hamiltonians
No MBL Finite W,., MBL for W > W,

Y MBL possible only if Fock-space site energies at finite distances
maximally correlated; minimum requirement for MBL to be stable

) ¢ Any randomness/independence in them leads to delocalisation

SR, D. E. Logan, Phys. Rev. B 101, 134202 (2020)



Classical Percolation and MBL on Fock space

® Classical percolation in Fock space as a proxy for MBL Phys. Rev. B 99, 220201(R) (2019)
® Fock-space fragmentation due to local frozen degrees of freedom Phys. Rev. B 99, 104206 (2019)
® Heuristic picture for the effect of correlations



Classical percolation on Fock space

Define a correlated bond percolation problem H = Z g | 1| + Z T e | K]
I I#K

LO/VIK
%I o %K

> 1

A link between [ and K present if

Statistics of connected clusters in Fock space ?

S

typ N gf How does a vary with disorder strength ?

®
H = Z [Jio7o? | + ho; + 167 ]
i

| I) = o°- product state
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Statistics of connected clusters in Fock space ?
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W< W, =S5, ~ Ny | I) = o product state
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Disorder strength W




Classical percolation on Fock space

Define a correlated bond percolation problem H = Z g | 1| + Z T e | K]
I I#K
7 Ik
&1— &k

> |

A link between [ and K present if

Statistics of connected clusters in Fock space ?

S

typ ™ N;/ How does a vary with disorder strength ?

Localised phase H = Z [Jio7o? | + ho; + 167 ]

a .
Delocalised phase ~ Ng, witha <1

W<WC=>SZ‘ NN%

— ~<_
yp | I) = o°- product state

Disorder strength W



Classical percolation on Fock space

Define a correlated bond percolation problem H = Z & | H{| + Z T | D{K]|
I I#£K
T Ik
A link between I and K present if > 1
&1— &k

Statistics of connected clusters in Fock space ?

Styp ~ N;/ How does a vary with disorder strength ?

. Analytic solution of the percolation problem @

a=1-W-W); W>W

1- Critical exponent v = 2 @

Localised phase H = Z [Jio7o? | + ho; + 167 ]

a .
Delocalised phase ~ Ng, witha <1

W<WC:>SZ‘ NN%

— ~<_
yp | I) = o°- product state

Disorder Strength W SR, D. E. Logan, J. T. Chalker, Phys. Rev. B 99, 220201(R) (2019)



Classical percolation on Fock space: cartoon for the effect of correlations

Hogem = ), &1 DI +T ) oF
I/ l

A link between I and K present if > ]  Exponentially large number of possible energy scales
& — Ex for any spin
* Impossible to avoid at least one resonance in the
thermodynamic limit; enough to force delocalisation
(-2
‘7 000 T 000 / \
| —
- € —
L =
QQQT o000 (—__ > oool K
c €
© e
o00 T 000 ¢— —)p> o000 l (X Y
e d
000 T 000 « “' 000 000

Baldwin+Laumann+Pal+Scardichhio (2016), SR+ Logan+Chalker(2019), SR+Logan (2020)



Classical percolation on Fock space: cartoon for the effect of correlations

T Ik 1
. . >
Alink between /.and K present if E— S * Only a few energy scales control the flipping of a local spin
* A few energy scales becoming off-resonant can Kill
exponentially large number of links on the Fock space
* Correlations help in defeating the high-connectivity of the
graph
(-2
/ \
.7 QQQTTT o000 QQQTlT 000
e —
< —
[ =
oooTTlooo T— > oooTu o0
L —

SR+ Logan+Chalker(2019), SR+Logan (2020)



Fock-space correlations and origins of MBL

* MBL possible only when the correlations are maximal at finite distances on the Fock-space graph
* Generally the situation for local disordered Hamiltonians

* Any randomness/independence enough to delocalise the system

* (Classical percolation picture on the Fock space

pr =0 pr <1 Mfl
QREM Disordered local Hamiltonians
No MBL Finite W., MBL for W > W.




QREM + constrained dynamics = MBL

I
Hg,srEM = Z &l D + > Z o;(1+0; )
! i I . aspin can flip only if the one
to its right is up

HR At

L. Frozen block of spins; can melt only from the right; arrested dynamics !!

On Fock space
0.75
Py
[
-
S
g 0.0
O
)
-
LL]
-0.25
z
. . : Middle of the spectrum — 0
e Constraints SWI’[.Ch off_ some of the links 0.0 .2 0.4 0.6 0.8 1.0
* Increase the typical distance between two nodes [FSA I

* Decrease the number of paths between two nodes
SR + A. Lazarides, Phys. Rev. Research 2, 023159 (2020)


https://www.google.com/url?q=https%3A%2F%2Fjournals.aps.org%2Fprresearch%2Fabstract%2F10.1103%2FPhysRevResearch.2.023159&sa=D&sntz=1&usg=AFQjCNHkoIeHCQaq5jfuH-0QirYwleu1xg

Anderson localisation with strongly correlated disorder

@® Anderson localisation on trees with strongly correlated disorder
® Disorder correlations analogous to Fock-space correlations Phys. Rev. Lett. 125, 250402 (2020)
® Arguably a more controlled setting



Anderson localisation with strongly correlated disorder
() i=0

O O O O O O O O Qb

Disordered tight-binding problem on a tree

H=T) [l +h.cl+ ) eli)i]
(i) -
Branching number K = 2 Disorder strength W

For uncorrelated randomness (¢;€;) = 5sz2

W.~T'KInkK

Abou-Chacra, Anderson, Thouless (1983) and many others...



Anderson localisation with strongly correlated disorder

() i=0
Fate of localisation in the presence of maximal disorder correlations

(€;€;) = flry/L);  limf(x) - 1

x—0

Distance between sites i and j Number of generations in the tree

On Fock space for a many-body problem:
p(r, N) generally a p-order polynomial of r/N for a p-spin system
= p(r,N) - 1 forr/IN - 0

O O O O O O O O Qb

Disordered tight-binding problem on a tree

H=T) [l +h.cl+ ) eli)i]
(i) ]
Branching number K = 2 Disorder strength W e With increasing system size, energies of nearby sites on the tree
become more and more uniform

_ 2 * The presence of a localised phase itself a priori not remotely obvious
For uncorrelated randomness (¢€;) = 6;W

W.~T'KInkK

Abou-Chacra, Anderson, Thouless (1983) and many others...



Anderson localisation with strongly correlated disorder
() i=0

O O O O O O O O Qb

So(w) =T Z [0 —€; — Sl.(lo)]_1 (exact!!)

Abou-Chacra, Anderson, Thouless (1983) and many others...



Anderson localisation with strongly correlated disorder

() i=0

O O O O O O O O Qb

So(w) =T Z [0 —€; — Si(l())]_l (exact!!)

Abou-Chacra, Anderson, Thouless (1983) and many others...

* The continued fraction to all orders takes into account all the correlated energies
* Instead of a self-consistent theory, one looks for convergence properties of the

continued fraction
* The treatment is formally exact

Phys. Rev. Lett. 125, 250402 (2020)



Anderson localisation with strongly correlated disorder

() i=0

Abou-Chacra, Anderson, Thouless (1983) and many others...

Colour-map of Agyp

localised

- 0.2

0.0

Localised phase indeed present

* The continued fraction to all orders takes into account all the correlated energies
* Instead of a self-consistent theory, one looks for convergence properties of the

continued fraction
* The treatment is formally exact
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Important outstanding questions

Possible connections between the Fock-space approach
and results from phenomenological treatments ?

Connecting the microscopic theory on Fock-space to real-
space pictures ?
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