R^2 corrected AdS₂ holography

Pedro Aniceto

with G. L. Cardoso, S. Nampuri arXiv:2010.08761

Iberian Strings 2021

Pedro Aniceto

э

Outline

Introduction

Variational principle with R² terms and holographic renormalization
 Variational principle
 Holographic renormalization

S Asymptotic symmetries and anomalous transformations

Residual gauge symetries Composite scalar field $4D/5D \rightarrow 2D/3D$ comparison

4 Summary

1 Introduction

2 Variational principle with R^2 terms and holographic renormalization

3 Asymptotic symmetries and anomalous transformations

4 Summary

э

Main goal

Find the holographic dictionary of a specific subset of 4-derivative $\mathcal{N}=2$ low energy effective actions of gravity in 4D.

Extremal static near horizon backgrounds factorize into $\mathsf{AdS}_2\times S^2$

Apply $\mathsf{AdS}_2/\mathsf{CFT}_1$ to compute degeneracy of ground states

Main goal

Find the holographic dictionary of a specific subset of 4-derivative $\mathcal{N}=2$ low energy effective actions of gravity in 4D.

Extremal static near horizon backgrounds factorize into $AdS_2 \times S^2$

Apply AdS_2/CFT_1 to compute degeneracy of ground states

Constant scalar field: $AdS_3 \rightarrow AdS_2$ [Cvetič, Papadimitriou '16]

- holographic stress tensor vanishes identically
- dual operator to constant scalar field is non-trivial and transforms anomalously with Brown-Henneaux central charge
- microstates accounting for black hole entropy survive and should be related to the expectation value of the dual operator

Introduction

Variational principle with R² terms and holographic renormalization
 Variational principle
 Holographic renormalization

S Asymptotic symmetries and anomalous transformations

4 Summary

Theory

Four derivative, $\mathcal{N}=2$ low energy effective actions in 4D obtained from CY₃ compactification of superstring theory

[Cardoso, de Wit, Mahapatra '07]

- Gravity coupled to Abelian gauge fields and scalars;
- Extremal static near horizon backgrounds;
- BPS configurations;
- 2D reduced theory encodes R^2 corrections and exhibits EM duality;
- Given in terms of symplectic functions.

2D effective action

4D metric $ds^2 = ds_2^2 + v_2 d\Omega^2 \implies R_4 = R_2 - 2/v_2$.

AdS₂ background $v_1R_2 = 2$ with $v_1 \sim L^2$. Locally, use FG gauge:

$$ds_2^2 = dr^2 + h_{tt} dt^2$$
, $\sqrt{-h} = \alpha(t) e^{r/\sqrt{v_1}} + \beta(t) e^{-r/\sqrt{v_1}}$

4D background supported by e^{I} , p^{I} , Υ^{I} , Υ and holomorphic function $F(\Upsilon^{I})$ homogeneous of degree 2. Incorporate 4-derivative terms W^{2} by including Weyl multiplet into F and preserving its homogeneity

$$F(\lambda Y', \lambda^2 \Upsilon) = \lambda^2 F(Y', \Upsilon)$$

Legendre transform 2D Lagrangian w.r.t p^{I} to make EM duality manifest

$$H(e',f_I) = \mathcal{L}(e',p') + p'f_I$$

▲日▶ ▲帰▶ ▲ヨ▶ ▲ヨ▶ - ヨ - のなの

2D effective action

$$\begin{split} H &= \frac{1}{4} \left(\sqrt{-h_2} / v_2 \right)^{-1} \left(e^{I}, f_{I} \right) \begin{bmatrix} N_{IJ} + R_{IK} N^{KL} R_{LJ} & -2R_{IK} N^{KJ} \\ -2N^{IK} R_{KJ} & 4N^{IJ} \end{bmatrix} \begin{pmatrix} e^{J} \\ f_{J} \end{pmatrix} \\ &+ \left(e^{I}, f_{I} \right) \begin{bmatrix} 2i \begin{pmatrix} F_{I} - \bar{F}_{I} \\ -(Y^{I} - \bar{Y}^{I}) \end{pmatrix} + 4\Upsilon \begin{pmatrix} \bar{F}_{IK} N^{KL} F_{\Upsilon L} \\ -N^{IJ} F_{\Upsilon J} \end{pmatrix} + 4\bar{\Upsilon} \begin{pmatrix} F_{IK} N^{KL} \bar{F}_{\Upsilon L} \\ -N^{IJ} \bar{F}_{\Upsilon J} \end{pmatrix} \end{bmatrix} \\ &+ \frac{\sqrt{-h_2}}{v_2} \left\{ \frac{8i}{\sqrt{-\Upsilon}} (\bar{Y}^{I} F_{I} - Y^{I} \bar{F}_{I}) - 2i (\bar{Y}^{I} F_{I} - Y^{I} \bar{F}_{I}) \\ &- 2i (\Upsilon F_{\Upsilon} - \bar{\Upsilon} \bar{F}_{\Upsilon}) + 8\Upsilon \bar{\Upsilon} \bar{F}_{\Upsilon I} N^{IJ} F_{\Upsilon J} \\ &+ 2\Upsilon F_{\Upsilon I} N^{IJ} (F_{J} - \bar{F}_{JL} Y^{L}) + 2\bar{\Upsilon} \bar{F}_{\Upsilon I} N^{IJ} (\bar{F}_{J} - F_{JL} \bar{Y}^{L}) \\ &+ 2i (F_{\Upsilon} - \bar{F}_{\Upsilon}) \left(32 - 8\sqrt{-\Upsilon} \right) \right\} - \sqrt{-h_2} P(R_2) \end{split}$$

$$\frac{P(R_2)}{4i} = \frac{(\bar{Y}^I F_I - Y^I \bar{F}_I)}{\sqrt{-\Upsilon}} R_2 - \frac{(F_{\Upsilon} - \bar{F}_{\Upsilon})}{2} \left[8 v_2 R_2^2 - 32R_2 - 4R_2 \sqrt{-\Upsilon} \right]$$

-2

イロト イヨト イヨト イヨト

Dynamical fields: $h_{ij}, A'_i, \tilde{A}_{iI}, Y^I, \Upsilon, v_2$

$$e' \equiv F'_{rt} = \partial_r A'_t - \partial_t A'_r, \quad f_I \equiv G_{rt\,I} = \partial_r \tilde{A}_{t\,I} - \partial_t \tilde{A}_{r\,I}.$$

Steps to take into account

1 Metric in FG gauge and $A_r^I = \tilde{A}_{rI} = 0$.

- **2** Add counterterms to impose Dirichlet boundary conditions at $r \to \infty$.
 - · Compatible with the symplectic structure on the space of solutions
 - Compatible with gauge symmetries of the symplectic variables
 - \implies A_t requires special care

[Papadimitriou '10]

[Cvetič, Papadimitriou '16]

[Castro, Larsen, Papadimitriou '18]

[Castro, Mühlmann '20]

Variational principle for A' and \tilde{A}_I

$$\begin{pmatrix} \tilde{A}_{tl} \\ -A'_t \end{pmatrix} = \sqrt{v_1} \frac{\alpha(t) e^{r/\sqrt{v_1}}}{\sqrt{-h_2}} \left(1 - \frac{\beta}{\alpha} e^{-2r/\sqrt{v_1}} \right) \begin{pmatrix} f_l \\ -e' \end{pmatrix} + \begin{pmatrix} \tilde{\mu}_l(t) \\ -\mu'(t) \end{pmatrix} ,$$

with $f_I, e^I \propto \sqrt{-h_2} \implies$ leading mode is the one $\propto \alpha(t)$. For the canonical momenta we have $\pi_I = -q_I$ and $\tilde{\pi}^I = p^I$. Add counterterms

$$-\int_{\partial M} dt \left(\pi_{I} A_{t}^{I} + \tilde{\pi}^{I} \tilde{A}_{tI}\right) + S^{\prime} \left[\pi_{I}, \tilde{\pi}^{I}\right] + \int_{\partial M} dt \left(\pi_{I} A_{t}^{\mathrm{ren}\,I} + \tilde{\pi}^{I} \tilde{A}_{tI}^{\mathrm{ren}}\right) \,,$$

inducing the canonical transformations

$$\begin{pmatrix} A_t^{I} \\ \pi_I \end{pmatrix} \to \begin{pmatrix} -\pi_I \\ A_t^{\text{ren}\,I} \end{pmatrix} = \begin{pmatrix} -\pi_I \\ A_t^{I} - \frac{\delta S^{I}}{\delta \pi_I} \end{pmatrix}, \quad \begin{pmatrix} \tilde{A}_{t\,I} \\ \tilde{\pi}^{I} \end{pmatrix} \to \begin{pmatrix} -\tilde{\pi}^{I} \\ \tilde{A}_{t\,I} \end{pmatrix} = \begin{pmatrix} -\tilde{\pi}^{I} \\ \tilde{A}_{tI} - \frac{\delta S^{I}}{\delta \tilde{\pi}^{I}} \end{pmatrix}.$$

Boundary action

$$\begin{split} S_{\partial} &= \int_{\partial M} dt \sqrt{-\gamma} \Biggl\{ 2F'(R_2)K + \frac{64i}{\sqrt{v_1}} \left(F_{\Upsilon} - \bar{F}_{\Upsilon}\right) \left(v_2 R_2 - \frac{\sqrt{-\Upsilon}}{4}\right) \\ &+ \frac{1}{4\sqrt{v_1}} \left(\pi_I, \tilde{\pi}^I\right) \begin{bmatrix} 4N^{IJ} & 2N^{IK} R_{KJ} \\ 2R_{IK} N^{KJ} & N_{IJ} + R_{IK} N^{KL} R_{LJ} \end{bmatrix} \begin{pmatrix} \pi_J \\ \tilde{\pi}^J \end{pmatrix} \\ &+ \frac{4}{\sqrt{v_1}} \Re \left[\left(Y^I - 2i\Upsilon F_{\Upsilon J} N^{JI}, F_I - 2i\Upsilon F_{\Upsilon L} N^{LK} \bar{F}_{KI}\right) \right] \begin{pmatrix} \pi_I \\ \tilde{\pi}^I \end{pmatrix} \\ &- \frac{i \left(\bar{Y}^I F_I - Y^I \bar{F}_I\right)}{\sqrt{v_1}} \left(2 + \frac{8}{\sqrt{-\Upsilon}}\right) + \frac{8}{\sqrt{v_1}} \Upsilon \bar{\Upsilon} F_{\Upsilon J} N^{JI} \bar{F}_{\Upsilon I} \\ &- \frac{2}{\sqrt{v_1}} \left[\Upsilon F_{\Upsilon J} N^{JI} \left(F_I - \bar{F}_{IK} Y^K\right) + \text{h.c.} \right] \Biggr\} \end{split}$$

Pedro Aniceto

IST, Jan 19 2021

3

11 / 25

イロト イヨト イヨト イヨト

Solution to the equations of motion

2D metric: $ds_2^2 = dr^2 + h_{tt} dt^2$

$$h_{tt} = -\left(\alpha(t)e^{r/\sqrt{v_1}} + \beta(t)e^{-r/\sqrt{v_1}}\right)^2$$

• $v_2 R_2 = 2$ on-shell $\implies v_2 = v_1$

• focus on class of solutions which includes BPS black hole solutions:

$$Y' - \bar{Y}' = ip'$$
, $F_I - \bar{F}_I = iq_I$, $\Upsilon = -64$, $\frac{i(\bar{Y}'F_I - Y'\bar{F}_I)}{v_2} = G_4^{-1}$

These imply

$$\begin{pmatrix} f_l \\ e^l \end{pmatrix} = \frac{\sqrt{-h_2}}{v_2} \begin{pmatrix} F_l + \bar{F}_l \\ Y^l + \bar{Y}^l \end{pmatrix} \,.$$

3

On-shell variation of the renormalized action

Renormalized action: $S_{\rm ren} = I_{\rm bulk} + I_{\rm ct}$

$$\delta S_{\rm ren} = \int_{\partial M} dt \left(\pi_{\rm ren}^{tt} \delta h_{tt} + \pi_I \delta A_t^{\rm ren\,I} + \tilde{\pi}^I \delta \tilde{A}_{t\,I}^{\rm ren} + \pi_{v_2}^{\rm ren} \delta v_2 \right)$$

• Consider variations in the space of asymptotic solutions

$$\delta h_{tt} = e^{2r/\sqrt{v_1}} \delta \left(-\alpha^2 \right) \,, \quad \delta A_t^{\text{ren}\,I} = \delta \mu^I \,, \quad \delta \tilde{A}_{t\,I}^{\text{ren}} = \delta \tilde{\mu}_I$$

• Add a source $\nu(t)$ for the irrelevant operator dual to v_2

$$\delta \mathbf{v}_2 = e^{\mathbf{r}/\sqrt{\mathbf{v}_1}} \delta \nu$$

 $Y' \propto v_2$ and $\Upsilon \propto {v_2}^2 \implies \pi_{v_2}^{\rm ren}$ has contributions from these terms.

On-shell variation in terms of the sources

$$\delta S_{\rm ren} = \int_{\partial M} dt \left(\underbrace{\pi_{\rm ren}^{tt} \delta h_{tt}}_{\hat{\pi}^{tt} \delta (-\alpha^2)} + \underbrace{\pi_I \delta A_t^{\rm ren\,I}}_{\hat{\pi}_I \delta \mu^I} + \underbrace{\pi' \delta \tilde{A}_{t\,I}^{\rm ren}}_{\hat{\pi} \delta \tilde{\mu}_I} + \underbrace{\pi_{v_2}^{\rm ren} \delta v_2}_{\hat{\pi}_{v_2} \delta \nu} \right).$$

$$\hat{\pi}^{tt} = 0, \quad \hat{\pi}_I = -\frac{q_I}{\alpha}, \quad \hat{\pi}_I^I = \frac{p_I^I}{\alpha}, \quad \hat{\pi}_{v_2} = -\frac{2}{G_4 \sqrt{v_1}} \frac{\beta}{\alpha},$$

$$\hat{\pi}_I = -\frac{q_I^I}{\alpha}, \quad \hat{\pi}_I^I = \frac{p_I^I}{\alpha}, \quad \hat{\pi}_{v_2} = -\frac{2}{G_4 \sqrt{v_1}} \frac{\beta}{\alpha},$$

with $G_4^{-1} = i \left(\bar{Y}^I F_I - Y^I \bar{F}_I \right) / v_2$. Renormalized action written in terms of the sources

$$S_{\mathrm{ren}} = \int dt \left(-rac{2}{G_4 \sqrt{v_1}} eta \,
u - q_I \mu^I + p^I \tilde{\mu}_I + \mathcal{O}\left(
u^2
ight)
ight) \, .$$

- Obtained result similar to the one in [Cvetič, Papadimitriou '16];
- Functional form of result does not depend on R^2 corrections.

Pedro Aniceto

Introduction

2 Variational principle with R^2 terms and holographic renormalization

3 Asymptotic symmetries and anomalous transformations

Residual gauge symetries Composite scalar field $4D/5D \rightarrow 2D/3D$ comparison

4 Summary

Residual gauge symmetries

PBH diffeos $(\xi^i \partial_i)$ + gauge transformations $(\Lambda^I, \tilde{\Lambda}_I)$ preserving

$$\underbrace{\mathcal{L}_{\xi}h_{rr} = \mathcal{L}_{\xi}h_{rt} = 0}_{\text{FG gauge}} \quad \underbrace{\mathcal{L}_{\xi}A_{r}^{I} + \partial_{r}\Lambda^{I} = 0}_{A_{r}^{I} = 0} \quad \underbrace{\mathcal{L}_{\xi}\tilde{A}_{r\,I} + \partial_{r}\tilde{\Lambda}_{I} = 0}_{\tilde{A}_{r\,I} = 0}$$

Solution:

$$\xi^{t} = \varepsilon(t) + \partial_{t} \sigma(t) \int_{r}^{\infty} h^{tt} (r', t) dr', \quad \xi^{r} = \sigma(t),$$

$$\Lambda^{\prime} = \varphi^{\prime}(t) - \partial_{t} \sigma(t) \int_{r}^{\infty} h^{tt}(r', t) A_{t}^{\prime}(r', t) dr',$$

$$\tilde{\Lambda}_{I} = \tilde{\varphi}_{I}(t) - \partial_{t} \sigma(t) \int_{r}^{\infty} h^{tt}(r', t) \tilde{A}_{tI}(r', t) dr'.$$

- $\varepsilon(t)
 ightarrow$ generator of boundary diffeos
- $\sigma(t)
 ightarrow$ generator of boundary Weyl transformations
- $\varphi^{I}(t), \ \tilde{\varphi}_{I}(t) \rightarrow \text{generators of residual boundary } U(1)$ transformations

Pedro Aniceto

Asymptotic symmetries

PBH acting on the sources α , μ' , $\tilde{\mu}_I$, ν :

$$\delta_{\text{PBH}} \alpha = \frac{\sigma}{\sqrt{v_1}} \alpha + \partial_t (\varepsilon \alpha) \qquad \qquad \delta_{\text{PBH}} \nu = \varepsilon \partial_t \nu + \frac{\sigma}{\sqrt{v_1}} \nu$$
$$\delta_{\text{PBH}} \mu' = \partial_t (\varepsilon \mu' + \varphi') \qquad \qquad \delta_{\text{PBH}} \tilde{\mu}_I = \partial_t (\varepsilon \tilde{\mu}_I + \tilde{\varphi}_I)$$
$$\delta_{\text{PBH}} \beta = \partial_t (\varepsilon \beta) - \frac{\sigma}{\sqrt{v_1}} \beta - \frac{\sqrt{v_1}}{2} \partial_t \left(\frac{\partial_t \sigma}{\alpha}\right)$$

Asymptotic symmetries at $\nu = 0$: $\delta \alpha = \delta \mu' = \delta \tilde{\mu}_I = 0$

$$\varepsilon = \frac{\zeta(t)}{\alpha} \qquad \qquad \sigma = -\sqrt{\nu_1} \frac{\partial_t \zeta}{\alpha} \varphi' = -\varepsilon \,\mu' + \kappa' \qquad \qquad \tilde{\varphi}_I = -\varepsilon \,\tilde{\mu}_I + \tilde{\kappa}_I$$

Symmetry algebra: Witt $\oplus u(1)^{2n}$

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ㅋㅋ ㅋㅋㅋ ㅋ

Define
$$dx^+ = \alpha \, dt \implies \sigma = -\sqrt{v_1}\partial_+\zeta$$

 $\underbrace{\delta_{\text{sym}}\beta = \alpha \,\partial_+\left(\frac{\zeta}{\alpha}\beta\right) + \partial_+\zeta \,\beta + \frac{\alpha \, v_1}{2} \,\partial_+^3\zeta , \quad \hat{\pi}_{v_2} = -\frac{2}{G_4 \,\sqrt{v_1} \,\alpha}}_{\delta_{\text{sym}}\hat{\pi}_{v_2}} = \zeta \,\partial_+\hat{\pi}_{v_2} + 2\partial_+\zeta \,\hat{\pi}_{v_2} - \frac{\sqrt{v_1}}{G_4} \partial_+^3\zeta ,$

Anomalous transformation with

$$c \sim \frac{\sqrt{v_1}}{G_4} = \frac{\sqrt{v_1}}{2\sqrt{-h_2}} \left(p^I f_I - q_I e^I \right)$$

→ < ∃ →</p>

18 / 25

æ

Composite scalar field

$$F(\lambda Y, \lambda^2 \Upsilon) = \lambda^2 F(Y, \Upsilon), \quad \frac{8I}{V_2 \sqrt{-\Upsilon}} \left(\bar{Y}^I F_I - Y^I \bar{F}_I \right) = G_4^{-1}.$$

Consider a composite scalar field $\hat{\Omega}$ with asymptotic variation

$$\delta_{\hat{\Omega}} = e^{r/\sqrt{v_1}} \delta \Omega \mathcal{D} \,, \quad \mathcal{D} \equiv Y^I \partial_{Y^I} + 2 \Upsilon \partial_{\Upsilon} + \mathrm{h.c.}$$

 S_{ren} transforms as

$$\delta S_{\rm ren} = \int_{\partial M} dt \, \alpha \, \hat{\Pi} \, \delta \Omega \,,$$

with $\hat{\Pi}=\Upsilon^{I}\hat{\Pi}_{I}+2\Upsilon\hat{\Pi}_{\Upsilon}+\mathrm{h.c.}$

$$\hat{\Pi}_{I} = \lim_{r \to \infty} \left(\frac{e^{2r/\sqrt{v_{1}}}}{\sqrt{-\gamma}} \frac{\delta S_{\text{ren}}}{\delta Y^{I}} \right), \quad \hat{\Pi}_{\Upsilon} = \lim_{r \to \infty} \left(\frac{e^{2r/\sqrt{v_{1}}}}{\sqrt{-\gamma}} \frac{\delta S_{\text{ren}}}{\delta \Upsilon} \right)$$

•

Composite scalar field

Non-trivial contribution comes from $S_{GHY} \propto P'(R_2)$ and we find $\mathcal{D}P'(R_2) = P'(R_2)$ on-shell. Consequently

$$\hat{\Pi} = -\frac{4}{\sqrt{\nu_1}} P'(R_2) \frac{\beta}{\alpha}, \quad \delta_{\rm sym} \hat{\Pi} = \zeta \ \partial_+ \hat{\Pi} + 2\partial_+ \zeta \ \hat{\Pi} - 2\sqrt{\nu_1} P'(R_2) \partial_+^3 \zeta.$$

Setting $\alpha = 1$ and $\beta = 0$ (4D BPS solution)

$$\delta_{\rm sym}\hat{\Pi} = -\sqrt{v_1} \, 2P'(R_2) \, \partial_t^3 \varepsilon \, .$$

4D BPS entropy $S = 2\pi P'(R_2)$ [Cardoso, de Wit, Mohaupt '99] Viewing the action as a combination of

$$z \underbrace{\overset{A}{\underbrace{}}_{\text{invariant under } \mathcal{D}}^{A}}_{\text{invariant under } \mathcal{D}}, \quad \Upsilon \left(\Upsilon^{0} \right)^{2} \implies \tilde{\Omega} \sim \ln \left[\Upsilon \left(\Upsilon^{0} \right)^{2} \right]$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

$4D \rightarrow 5D \rightarrow 3D$

Restrict to 4D solutions with charges (q_0, p^A) with A = 1, ..., n, i.e. no p^0 charge! Interpret A_0 gauge field as KK field.

Can lift to solutions of 5D ${\cal N}=2$ SUGRA with 4-derivative corrections and near-horizon AdS_3 \times S^2 [Castro, Davis, Kraus, Larsen '07]

- **1** rewrite reduced theory in units of $k_2^2 \equiv G_4 B^{-2}$;
- Perform lift to 3D [Cvetič, Papadimitriou '16];
- **3** Compare with AdS_3 results of [Castro, Davis, Kraus, Larsen '07].

Define $v_2 = e^{-\psi} B^2$, $ds_2^2 = e^{-\psi} d\tilde{s}_2^2$

$$\hookrightarrow \mathcal{O}_{\psi} = -\hat{\pi}_{\psi} = -\frac{2}{B} \left[\frac{1}{k_2^2} + 16i \left(F_{\Upsilon} - \bar{F}_{\Upsilon} \right) \sqrt{-\Upsilon} \right] \frac{\beta}{\alpha}$$

 \implies Anomalous variation modified by R^2 corrections

▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

From the 5D point of view

$$ds_{5}^{2} = \underbrace{d\tilde{s}_{2}^{2} + B^{2} d\Omega_{2}^{2}}_{e^{\psi} (ds_{2}^{2} + v_{2} d\Omega_{2}^{2})} + e^{-2\psi} (dx^{5} - A^{0})^{2}$$

4D theory:

$$F(Y,\Upsilon) = -\frac{1}{6} \frac{C_{ABC} Y^A Y^B Y^C}{Y^0} - \frac{1}{24} \frac{1}{64} c_{2A} \frac{Y^A}{Y^0} \Upsilon,$$

with C_{ABC} , c_{2A} constants associated with CY3 data. Take $q_0 > 0$ and $p^A < 0$ and use [Castro, Davis, Kraus, Larsen '07]

$$\frac{c_L}{6} = p_L^3 = \frac{1}{6} \left(C \cdot p^3 + c_2 \cdot p \right) > 0, \quad \frac{c_R}{6} = p_R^3 = \frac{1}{6} \left(C \cdot p^3 + \frac{1}{2} c_2 \cdot p \right) > 0$$

э

From [Castro, Davis, Kraus, Larsen '07] we have

$$B \, e^{\psi} rac{\mathcal{S}_{ ext{Wald}}}{\pi} = \sqrt{2 \, extsf{G}_4} p_L^3$$

Using [Cvetič, Papadimitriou '16], 2D CFT stress tensor τ_{++} contains term $\propto \mathcal{O}_{\psi}$:

$$\delta \tau_{++} = 2\tau_{++} \partial_{+}\zeta + \zeta \partial_{+}\tau_{++} - \underbrace{\frac{k_{2}^{2}}{k_{3}^{2}}\sqrt{2} G_{4} p_{L}^{3}}_{=\frac{c}{24\pi}} \partial_{+}^{3}\zeta$$

Since $k_3^2 = 2\pi R_5 k_2^2$ $\frac{c}{24\pi} = \frac{\sqrt{2} G_4}{12\pi R_5} c_L$

- CFT₁ naturally embeds in chiral half of CFT₂.
- For au_{--} only L^R_0 survives for constant dilaton o u(1) algebra

Introduction

2 Variational principle with R^2 terms and holographic renormalization

3 Asymptotic symmetries and anomalous transformations

4 Summary

Summary and Outlook

- 1 Obtained renormalized variational principle for constant scalar fields;
- 2 Identified the expectation value of irrelevant operators dual to scalar fields. Using asymptotic symmetries we found
 - Composite operator with $c \sim \mathcal{S}$;
 - Under a lift $AdS_2 \rightarrow AdS_3$, \mathcal{O}_{ψ} has $c \propto c_L$ of AdS_3 .
- 3 Hints that holographic dual of 2D QG encodes data that is embedded in chiral half of 2D CFT.

Outlook

- 1 Study near-BPS BHs in $nAdS_2/nCFT_1$
- **2** Investigate $AdS_2 \hookrightarrow AdS_3$ embedding in presence of R^2 terms