Electromagnetic Quasitopological Gravities

Ángel Jesús Murcia Gil Instituto de Física Teórica UAM/CSIC, Madrid.

Iberian Strings 2021
19/01/2021, Instituto Superior Técnico (Lisboa).
JHEP 10125 (2020) (arXiv 2007.04331)
with Pablo A. Cano (KU Leuven, Belgium)

Table of Contents

(1) Introduction and Motivation
(2) Definition of Electromagnetic Quasitopological Gravities
(3) Properties of Electromagnetic Quasitopological Gravities and its solutions
(4) Conclusions and Future Directions

Introduction

- Higher-derivative theories of gravity (also called higher-curvature or higher-order theories) $=G R+$ terms with any number of Riemann tensors and covariant derivatives. For instance:

$$
\mathcal{L}=\frac{1}{16 \pi G}\left(R+\ell^{2} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}\right)
$$

- Relevance: effective action of UV-complete theory of gravity expected to have infinite tower higher-derivative terms (String Theory).
- However, recently interest in studying higher-order gravities by themselves and take an EFT approach:

$$
\mathcal{L}=\frac{1}{16 \pi G}\left(R+\sum_{n=2}^{\infty} \ell^{2 n} \mathcal{R}_{n}\right)
$$

\mathcal{R}_{n} : terms with p Riemanns and $2 q$ covariant derivatives, $2 q+p=n$.
E.g. for $n=2$:

$$
\mathcal{R}_{2}=\alpha_{1} R^{2}+\alpha_{2} R_{\mu \nu} R^{\mu \nu}+\alpha_{3} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}
$$

Examples of higher-curvature gravities

- Lovelock gravities [Lovelock]:

$$
\mathcal{L}=\frac{1}{16 \pi G}\left(R+\sum_{n=2}^{[(d-1) / 2]} \lambda_{n} \ell^{2 n-2} \chi_{2 n}\right)
$$

where $\quad \chi_{2 n}=\frac{(2 n)!}{2^{n}} \delta_{\nu_{1}}^{\left[\mu_{1}\right.} \ldots \delta_{\nu_{2 n}}^{\left.\mu_{2 n}\right]} R_{\mu_{1} \mu_{2}}{ }^{\nu_{1} \nu_{2}} \ldots R_{\mu_{2 n-1} \mu_{2 n}}^{\nu_{2 n-1} \nu_{2 n}}$.

- Most general theory with second-order Equations of Motion (EoM).
- The term $\chi_{2 n}$ only dynamical when $d>2 n$.
- $f(R)$ theories [Buchdahl]:

$$
\mathcal{L}=\frac{1}{16 \pi G} f(R)
$$

- Easier than generic higher-order theory but encapsulate higher-curvature phenomena.
- In general, EoMs are not second-order.

Generalized Quasitopological Gravities (GQs).

- Apart from Lovelock gravities, no other theory will have 2nd order EoMs \rightarrow Try to find theories whose EoMs are second-order under certain circumstances.
- With this idea \rightarrow Generalized Quasitopological Gravities (GQs) ${ }^{1}$ [Bueno, Cano, Hennigar, Kubizňak, Mann, Oliva, Ray...].
- GQs are defined by admitting static, spherically-symmetric (SSS) solutions satisfying $g_{t t} g_{r r}=-1$:

$$
\mathrm{d} s_{f}^{2}=-f(r) \mathrm{d} t^{2}+\frac{1}{f(r)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-2}^{2}
$$

- Equivalently, a theory is a GQ iff its Lagrangian \mathcal{L} satisfies that

$$
\frac{\partial L_{f}}{\partial f}-\frac{d}{d r} \frac{\partial L_{f}}{\partial f^{\prime}}+\frac{d^{2}}{d r^{2}} \frac{\partial L_{f}}{\partial f^{\prime \prime}}+\cdots=0, \quad L_{f}=\left.r^{2} \mathcal{L}\right|_{d s_{f}^{2}}
$$

[^0]
Properties of GQs.

- The EoM for $f(r)$ is at most 2 of order 2.
- Linearized EoM on max. symmetric backgrounds are second-order.
- BH thermodynamics can be computed analytically.
- Any higher-derivative theory can be mapped ${ }^{3}$ via field redefinitions to a GQ [Bueno, Cano, Moreno, ÁM].
- There exist non-trivial GQs in 4 dimensions: Einsteinian Cubic Gravity [Bueno, Cano]:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ECG}} & =\frac{1}{16 \pi G}\left(R+12 R_{a}{ }^{c}{ }_{b}{ }^{d} R_{c}{ }^{e}{ }_{d}{ }^{f} R_{e}{ }^{a}{ }_{f}{ }^{b}\right. \\
& \left.+R_{a b}^{c d} R_{c d}^{e f} R_{e f}^{a b}-12 R_{a b c d} R^{a c} R^{b d}+8 R_{a}^{b} R_{b}^{c} R_{c}^{a}\right)
\end{aligned}
$$

[^1]
Motivation for Electromagnetic Quasitopological Gravities

- GQs are purely gravitational theories, no coupling to matter.
- Desirable to extend definition of GQs to include matter. Simple and relevant example: an Abelian gauge field.
- GQs with minimally-coupled vector field have been considered [Bueno, Cano, Frassino, Hennigar, Rocha...]. But this is very restrictive. In general, higher-derivative actions may contain all possible couplings.
- Question: is it possible theories analogous to GQs with non-minimal couplings between curvature and gauge field?
- Answer: Yes! Electromagnetic Quasitopological Gravities (EQs).

Definition of Electromagnetic Quasitopological Gravities

(1) Introduction and Motivation
(2) Definition of Electromagnetic Quasitopological Gravities
(3) Properties of Electromagnetic Quasitopological Gravities and its solutions

4 Conclusions and Future Directions

Electromagnetic Quasitopological Gravities (EQs)

- We will fix from now on the space-time dimension to 4.
- We search for higher-order theories of gravity with a non-minimally coupled vector field satisfying (EQ conditions):
(1) Diffeomorphism- and gauge-invariance.
(2) Assuming electric or magnetic ansatz for vector field, existence of SSS solutions characterised by single function $f(r)$:

$$
\mathrm{d} s_{f}^{2}=-f(r) \mathrm{d} t^{2}+\frac{1}{f(r)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-2}^{2} \quad \text { and } \quad\left\{\begin{array}{l}
F^{\mathrm{e}}=-\Phi^{\prime}(r) \mathrm{d} t \wedge \mathrm{~d} r \\
F^{\mathrm{m}}=\chi^{\prime}(\theta) \mathrm{d} \theta \wedge \mathrm{~d} \varphi
\end{array}\right.
$$

(3) The equation of motion for $f(r)$ is at most second-order ${ }^{4}$.

[^2]
Electromagnetic Quasitopological Gravities (EQs)

- A clever way to implement EQ conditions:
(1) Set $F=-\Phi^{\prime}(r) \mathrm{d} t \wedge \mathrm{~d} r$ or $F=\chi^{\prime}(\theta) \mathrm{d} \theta \wedge \mathrm{d} \varphi$.
(2) Search for some choice of $\Phi_{\text {sol }}(r)$ or $\chi_{\text {sol }}(\theta)$ solving Maxwell equation for any higher-order theory (under general SSS ansatz).
(3) Determine which theories become GQs after imposing $F_{\text {sol }}$.
- For magnetic vector fields, the previous programme can be carried out, because

$$
F^{\mathrm{m}}=P \sin \theta \mathrm{~d} \theta \wedge \mathrm{~d} \varphi
$$

always solves ${ }^{5}$ the Maxwell equation for an SSS metric.

- For electric vector fields, the programme does not work: if $F^{\mathrm{e}}=-\Phi^{\prime}(r) \mathrm{d} t \wedge \mathrm{~d} r$, then $\Phi(r)$ depends on the theory.
- How to define theories canonically admitting electric solutions? \rightarrow Dualizing theory with magnetic solutions!

[^3]
Electromagnetic Quasitopological Gravities (EQs)

- Dualization: A map between two theories:

$$
\left(\begin{array}{c}
g_{\mu \nu} \\
F_{\mu \nu}=2 \partial_{[\mu} A_{\nu]} \\
\mathcal{L}(R, F)
\end{array}\right) \longrightarrow\left(\begin{array}{c}
g_{\mu \nu} \\
G_{\mu \nu}=2 \partial_{[\mu} B_{\nu]} \\
\mathcal{L}^{\prime}(R, G)=\mathcal{L}(R, F(G))-2 F(G)^{\mu \nu}(\star G)_{\mu \nu}
\end{array}\right)
$$

where $F_{\mu \nu}\left(G_{\rho \sigma}\right)$ is obtained by inverting

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial F^{\mu \nu}}=2(\star G)_{\mu \nu} \tag{1}
\end{equation*}
$$

- Imposing (1) on the EoMs and Bianchi identity of dual theory, one recovers the set of EoMs and Bianchi of original theory ${ }^{6}$.
- If we have a theory with an SSS magnetic solution, the dual theory will have SSS electric solutions!

[^4]
Electromagnetic Quasitopological Gravities (EQs)

Definition 1 (Electromagnetic Quasitopological Gravities)

A given theory $\mathcal{L}(R, F)$ is an Electromagnetic Quasitopological
Gravity iff its Lagrangian or the Lagrangian of its dual theory admits SSS magnetic solutions characterised by a single metric function $f(r)$.

Equivalently, a theory is an EQ iff its Lagrangian or the Lagrangian of its dual theory \mathcal{L}, after evaluation on the magnetic SSS ansatz with $g_{t t} g_{r r}=-1$:

$$
L_{f}=\left.r^{2} \mathcal{L}\right|_{d s_{f}^{2}, F^{\mathrm{m}}}
$$

the Euler-Lagrange equation for $f(r)$ vanishes identically:

$$
\frac{\partial L_{f}}{\partial f}-\frac{d}{d r} \frac{\partial L_{f}}{\partial f^{\prime}}+\frac{d^{2}}{d r^{2}} \frac{\partial L_{f}}{\partial f^{\prime \prime}}+\cdots=0
$$

Examples of EQs

- Any GQ with a minimally-coupled Abelian vector field is an EQ.
- Non-trivial examples:

$$
\begin{aligned}
\mathcal{L}_{n, m}^{(a)} & =\left(2 n R_{\mu}{ }^{\alpha} \delta_{\nu}{ }^{\beta}-(3 n-3+4 m) R^{\alpha \beta}{ }_{\mu \nu}\right)\left(R^{n-1}\right)^{\mu \nu}{ }_{\rho \sigma} F^{\rho \sigma} F_{\alpha \beta}\left(F^{2}\right)^{m-1}, \\
\mathcal{L}_{n, m}^{(b)} & =\left(F^{2}\right)^{m-1} F_{\mu \nu} F^{\rho \sigma}\left(\frac{n}{2} R\left(R^{n-1}\right)^{\mu \nu}{ }_{\rho \sigma}+\right. \\
& \left.+\frac{(n+4-4 m)}{4}(3 n-3+4 m)\left(R^{n}\right)^{\mu \nu}{ }_{\rho \sigma}\right)-n\left(F^{2}\right)^{m-1} F_{\alpha \nu} F^{\rho \sigma} R_{\mu}{ }^{\alpha}\{ \\
& \left.(1+2 n)\left(R^{n-1}\right)^{\mu \nu}{ }_{\rho \sigma}-(n-1) R_{\rho}^{\beta}{ }_{\rho}\left(R^{n-2}\right)^{\mu \nu}{ }_{\beta \sigma}\right\}, \\
\mathcal{L}_{n, m}^{(c)} & =\left(R^{n-1}\right)^{\mu \nu}\left[n R g^{\alpha \beta}-(4 n+4 m-3) R^{\alpha \beta}\right] F_{\mu \alpha} F_{\nu \beta}\left(F^{2}\right)^{m-1} .
\end{aligned}
$$

- Both $\mathcal{L}_{n, m}^{(a)}$ and $\mathcal{L}_{n, m}^{(b)}$ have algebraic EoM for $f(r)$, while $\mathcal{L}_{n, m}^{(c)}$ has a 2nd-order EoM for $f(r)$.
- This proves that EQs exist at all orders, both with algebraic and 2nd-order EoMs.

Properties of Electromagnetic Quasitopological Gravities and its solutions

(1) Introduction and Motivation
(2) Definition of Electromagnetic Quasitopological Gravities
(3) Properties of Electromagnetic Quasitopological Gravities and its solutions
4. Conclusions and Future Directions

Properties of EQs

Most relevant properties of EQs:
(1) They admit electrically/magnetically charged solutions (by def.).
(2) The EoM for $f(r)$ is at most second-order.
(3) The only gravitational mode propagated on maximally-symmetric backgrounds is a spin 2-massless graviton.
(9) BH thermodynamics can be computed analytically. In addition, the following first law of BH thermodynamics holds:

$$
\mathrm{d} M=T \mathrm{~d} S+\Psi_{h} \mathrm{~d} P
$$

where M mass, T temperature, S entropy, Ψ_{h} the electric potential and P the (electric or magnetic) charge. Also, perfect match between Noether charge and Euclidean action approaches for free energy.
(5) There is a subset of EQs which admit regular solutions.

Regular solutions

- Let us consider:

$$
\mathcal{L}=R+\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \ell^{2(n+m-1)}\left(\lambda_{n, m} \mathcal{L}_{n, m}^{(a)}+\gamma_{n, m} \mathcal{L}_{n, m}^{(b)}\right)
$$

- After setting magnetic SSS ansatz with $g_{t t} g_{r r}=-1$, we find:

$$
1-f-\frac{2 M}{r}+\sum_{n=0}^{\infty}(1-f)^{n-1}\left[\alpha_{n}(r)+\beta_{n}(r) f\right]=0
$$

with $\alpha_{n}(r)=\sum_{m=1}^{\infty} \frac{\alpha_{n, m}}{r^{4 m+2 n-2}}$ and $\beta_{n}(r)=\sum_{m=1}^{\infty} \frac{\beta_{n, m}}{r^{4 m+2 n-2}}$, being $\alpha_{n, m}$ and $\beta_{n, m}$ linear combinations of $\lambda_{n, m}$ and $\gamma_{n, m}$.

- Polynomial equation for $f(r)$! It generically ${ }^{7}$ admits a well-behaved $f(r)$ which produces a globally regular metric!

[^5]
Regular solutions

- When it comes to analyse the electric potential ${ }^{8}$, it does not need to be always regular...
- However, for subspace of moduli space of couplings, the electric potential $\Psi(r)$ is also regular everywhere.

$$
\begin{aligned}
& \text { (a) } 2 P=M=2 \ell, \\
& 2 \gamma_{1,1}=2=-2 \gamma_{2,1}=\lambda_{1,1} \text { and } \lambda_{2,1}=\frac{25}{16} .
\end{aligned}
$$

(b) $P=M=\ell$,
$3 \gamma_{1,1}=6=-6 \gamma_{2,1}=\lambda_{1,1}$ and $\lambda_{2,1}=\frac{53}{4}$.

[^6]
Regular solutions

- How to obtain electric regular solutions? \rightarrow By dualization of magnetic ones with regular electric potential!
- Proceeding this way \rightarrow first explicit theory regularizing gravitational and EM fields for any M and Q [Cano, ÁM]:

$$
\mathcal{L}(R, F)=R-F_{\mu \nu} F_{\rho \sigma} \chi^{\mu \nu \rho \sigma}, \quad \chi_{\rho \sigma}^{\mu \nu}=6 \delta_{\rho \sigma}^{[\mu \nu}\left(\mathcal{Q}^{-1}\right)^{\alpha \beta]}{ }_{\alpha \beta},
$$

where $\left(\mathcal{Q}^{-1}\right)^{\alpha \beta}{ }_{\mu \nu} \mathcal{Q}^{\mu \nu}{ }_{\rho \sigma}=\delta^{\alpha \beta}{ }_{\rho \sigma}$ and

$$
\begin{aligned}
\mathcal{Q}^{\mu \nu}{ }_{\rho \sigma} & =\delta^{\mu \nu}{ }_{\rho \sigma}+\alpha\left(6 R_{[\sigma}^{[\mu} \delta_{\rho]}^{\nu]}+7 R_{\rho \sigma}^{\mu \nu}+\frac{1}{2} R \delta^{\mu \nu}{ }_{\rho \sigma}\right) \\
& +\alpha^{2}\left(\frac{9}{4} R_{\alpha}{ }^{[\mu} R^{\nu] \alpha}{ }_{\rho \sigma}+\frac{9}{4} R^{\alpha}{ }_{[\rho} R^{\mu \nu}{ }_{\sigma] \alpha}+\frac{1}{4} R R_{\rho \sigma}^{\mu \nu}\right. \\
& \left.+\frac{35}{8} R^{\mu \nu \alpha \beta} R_{\alpha \beta \rho \sigma}+\frac{1}{2} R_{\lambda}{ }^{[\mu} \delta^{\nu] \lambda}{ }_{\beta[\rho} R_{\sigma]}{ }^{\beta}\right),
\end{aligned}
$$

Regular solutions

- No need to know $\left(\mathcal{Q}^{-1}\right)^{\alpha \beta}{ }_{\rho \sigma}$ to solve the EoMs!

$$
\begin{aligned}
2 \mathcal{E}_{\mu \nu}^{E} & =R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-12 \hat{F}_{\mu}{ }^{\alpha} \hat{F}_{[\nu \alpha} \mathcal{Q}_{\rho \sigma]}{ }^{\rho \sigma}+3 g_{\mu \nu} \hat{F}^{\alpha \beta} \hat{F}_{[\alpha \beta} \mathcal{Q}_{\rho \sigma]}^{\rho \sigma} \\
& +6 \hat{F}^{\alpha \beta} \hat{F}_{[\alpha \beta} \frac{\partial \mathcal{Q}_{\rho \sigma]}^{\rho \sigma}}{\partial R^{\mu \lambda \tau \gamma}} R_{\nu}{ }^{\lambda \tau \gamma}+12 \nabla^{\lambda} \nabla^{\gamma}\left(\hat{F}^{\alpha \beta} \hat{F}_{[\alpha \beta} \frac{\partial \mathcal{Q}_{\rho \sigma]}^{\rho \sigma}}{\partial R^{\mu \lambda \nu \gamma}}\right)+(\mu \leftrightarrow \nu), \\
\mathcal{E}_{\nu}^{M} & =\nabla_{\mu} \hat{F}^{\mu}{ }_{\nu}, \quad \text { where } F_{\mu \nu}=6 \hat{F}_{[\rho \sigma} \mathcal{Q}_{\mu \nu]}^{\rho \sigma} .
\end{aligned}
$$

- Setting $F=-\Phi^{\prime}(r) \mathrm{d} t \wedge \mathrm{~d} r$ and single-function SSS ansatz for metric:

Extremal Black Holes

- We want to study properties of extremal BHs in EQs.
- In general, inaccessible problem: we'd better focus on subfamilies of EQs to try to grasp general features of extremal BHs in EQs.
- First: among theories with algebraic EoM for $f(r)$ and magnetic solutions, we restrict to those which are at most quadratic in F :

$$
\frac{2 M}{\ell}=\rho-U(\rho) \frac{P^{2}}{\ell^{2}}, \quad U(\rho)=-\sum_{n=0}^{\infty} \frac{2^{n}}{\rho^{2 n+1}} \lambda_{n, 1}, \quad \rho=\frac{r_{h}}{\ell}
$$

- Extremal charge-to-mass ratio:

$$
\left.\frac{P}{M}\right|_{\mathrm{ext}}=\frac{2 \sqrt{U^{\prime}(\rho)}}{\rho U^{\prime}(\rho)-U(\rho)}
$$

- Pick different choices of $U(\rho)$ to understand behaviour of extremal charge-to-mass ratio.

Extremal Black Holes

- WGC: $P /\left.M\right|_{\text {ext }}$ must not increase as mass increases.
- Extremal BH solutions do not exist below a minimal mass.

Extremal Black Holes

- Now we study extremal BHs in EQs with 2nd-order EoM for $f(r)$.
- On top of previously commented phenomena, we find EQ theories whose extremal solutions do not represent the minimal mass state for a given charge!

- It happens when $\left.\left(\frac{\partial^{2} M}{\partial T^{2}}\right)_{P}\right|_{\text {ext }}<0$.

Conclusions and Future Directions

(1) Introduction and Motivation
(2) Definition of Electromagnetic Quasitopological Gravities
(3) Properties of Electromagnetic Quasitopological Gravities and its solutions
(4) Conclusions and Future Directions

Conclusions and Future Directions

- Message to take Home: A new type of gravitational theories with a non-minimally coupled Maxwell field has been identified. These theories are defined by admitting electrically/magnetically charged SSS solutions with nice and reasonable properties:
(1) Amenability to computations.
(2) Physically meaningful solutions.

Future directions:

- How general are EQs? Can every theory be mapped via field redefinitions to an EQ? (this happens for GQs...)
- Holographic dual of these theories?
- Higher-dimensional generalizations of EQs?

Obrigado pela sua atenção

Obrigado pela sua atenção

"O que não tem solução, solucionado está."

[^0]: ${ }^{1}$ Lovelock gravities are a subclass of GQs.

[^1]: ${ }^{2}$ We assume no explicit covariant derivatives of the curvature appear in the action.
 ${ }^{3}$ Proven for theories without covariant derivatives; strong evidence for theories with covariant derivatives.

[^2]: ${ }^{4}$ We shall not consider any explicit covariant derivative on the curvature or the field strength in the action.

[^3]: ${ }^{5}$ For theories constructed out of monomials of Riemanns and field strengths.

[^4]: ${ }^{6}$ Net effect is exchange of Bianchi identities and Maxwell equations.

[^5]: ${ }^{7}$ Up to possible bounds on $\lambda_{n, m}$ and $\gamma_{n, m}$. If only $n=1$ and $m=0$ terms are included, couplings must be related though.

[^6]: ${ }^{8}$ Obtained from dual field strength.

