Parter vertices and Parter Sets

Rosário Fernandes and Henrique F. da Cruz

27 de maio 2016

Notation

- Let T be a tree on n vertices $1,2, \ldots, n$.
- $\mathcal{S}(T)$ is the set of all $n \times n$ real symmetric matrices $A=\left(a_{i j}\right)$ whose graph is T,

That is $a_{i j} \neq 0$, with $i \neq j$, if and only if there is an edge between i

Notation

- Let T be a tree on n vertices $1,2, \ldots, n$.
- $\mathcal{S}(T)$ is the set of all $n \times n$ real symmetric matrices $A=\left(a_{i j}\right)$ whose graph is T,

That is $a_{i j} \neq 0$, with $i \neq j$, if and only if there is an edge between i and j.

Consider the following tree with $n=7$ vertices.

Consider the following tree T with $n=7$ vertices.

Consider the following tree T with $n=7$ vertices.

Consider the following tree with $n=7$ vertices.

Consider the following tree with $n=7$ vertices.

Consider the following tree with $n=7$ vertices.

$$
A=\left(\begin{array}{ccccccc}
-1 & 0 & 5 & 0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 & 0 \\
5 & -1 & 3 & -\frac{1}{4} & & & \\
0 & 0 & -\frac{1}{4} & \frac{1}{2} & & & \\
0 & 0 & & & 0 & & \\
0 & 0 & & & & \frac{1}{5} & \\
0 & 0 & & & & & -4
\end{array}\right) .
$$

Consider the following tree with $n=7$ vertices.

$$
A=\left(\begin{array}{ccccccc}
-1 & 0 & 5 & 0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 & 0 \\
5 & -1 & 3 & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{4} & \frac{1}{2} & & & \\
0 & 0 & 0 & & 0 & & \\
0 & 0 & 0 & & & \frac{1}{5} & \\
0 & 0 & 0 & & & & -4
\end{array}\right) .
$$

Consider the following tree with $n=7$ vertices.

$$
A=\left(\begin{array}{ccccccc}
-1 & 0 & 5 & 0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 & 0 \\
5 & -1 & 3 & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{4} & \frac{1}{2} & 7 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 & & \\
0 & 0 & 0 & 0 & 0 & \frac{1}{5} & \\
0 & 0 & 0 & 0 & & & -4
\end{array}\right) .
$$

Consider the following tree with $n=7$ vertices.

Consider the following tree with $n=7$ vertices.

- Let $\alpha \subseteq\{1,2, \ldots, n\}$ be an index set.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from deletion of rows and columns α by $A(\alpha)$.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from retention of rows and columns α by $A[\alpha]$.
- Let $\alpha \subseteq\{1,2, \ldots, n\}$ be an index set.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from deletion of rows and columns α by $A(\alpha)$.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from retention of rows and columns α by $A[\alpha]$.
- Let $\alpha \subseteq\{1,2, \ldots, n\}$ be an index set.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from deletion of rows and columns α by $A(\alpha)$.
- We denote the principal matrix of $A \in \mathcal{S}(T)$ resulting from retention of rows and columns α by $A[\alpha]$.

Notation

- When α consists of a single index i, instead of $A(\{i\})$ we simply write $A(i)$.
- $A(i)$ is a direct sum whose summands we call blocks and correspond to components of $T-i$ (which we call branches of T at i or of $T-i$).
- We denote the multiplicity of $\lambda \in \mathbb{R}$ as an eigenvalue of $A \in \mathcal{S}(T)$ by

Notation

- When α consists of a single index i, instead of $A(\{i\})$ we simply write $A(i)$.
- $A(i)$ is a direct sum whose summands we call blocks and correspond to components of $T-i$ (which we call branches of T at i or of $T-i$).
- We denote the multiplicity of $\lambda \in \mathbb{R}$ as an eigenvalue of $A \in \mathcal{S}(T)$ by

Notation

- When α consists of a single index i, instead of $A(\{i\})$ we simply write $A(i)$.
- $A(i)$ is a direct sum whose summands we call blocks and correspond to components of $T-i$ (which we call branches of T at i or of $T-i$).
- We denote the multiplicity of $\lambda \in \mathbb{R}$ as an eigenvalue of $A \in \mathcal{S}(T)$ by $m_{A}(\lambda)$.

There is a simple relationship between $m_{A(i)}(\lambda)$ and $m_{A}(\lambda)$ when A is Hermitian:

$$
\begin{gathered}
m_{A(i)}(\lambda)=m_{A}(\lambda)-1 \quad \text { or } \quad m_{A(i)}(\lambda)=m_{A}(\lambda) \text { or } \\
m_{A(i)}(\lambda)=m_{A}(\lambda)+1
\end{gathered}
$$

PW-theorem

Theorem

Let T be a tree on n vertices, let $A \in \mathcal{S}(T)$ and $\lambda \in \mathbb{R}$ is such that $m_{A}(\lambda) \geq 2$. Then, there is a vertex i of T such that $m_{A(i)}(\lambda)=m_{A}(\lambda)+1$ and λ occurs as an eigenvalue in direct summands of A that corresponds to at least three branches of T at i.

In 2003, PW-theorem was generalized to the case $m_{A}(\lambda)=1$.

Theorem

Let A be a real symmetric matrix whose graph is a tree T, and suppose that there exists a vertex v of T and a real number λ such that λ is eigenvalue of A and of $A(v)$. Then
(a) there is a vertex u of T such that $m_{A(u)}(\lambda)=m_{A}(\lambda)+1$.
(b) if $m_{A}(\lambda) \geq 2$, then u may be chosen so that deg $u \geq 3$ and so that there are at least three branches T_{1}, T_{2}, T_{3} of T at u such that $m_{A\left[T_{i}\right]}(\lambda) \geq 1, i=1,2,3$.
(c) if $m_{A}(\lambda)=1$, then u may be chosen so that deg $u \geq 2$ and so that there are two branches T_{1}, T_{2} of T at u such that $m_{A\left[T_{i}\right]}(\lambda)=1$, $i=1,2$.

- We say that i is a Parter vertex of T, for λ relative to A, if i satisfies (a) and ((b) or (c)) of the previous Theorem.
- We say that i is a weak Parter vertex of T, for λ relative to A, if i satisfies (a) of the previous Theorem.
- We say that i is a Parter vertex of T, for λ relative to A, if i satisfies (a) and ((b) or (c)) of the previous Theorem.
- We say that i is a weak Parter vertex of T, for λ relative to A, if i satisfies (a) of the previous Theorem.
- We say that i is a neutral vertex of T, for λ relative to A, if i satisfies

$$
m_{A(i)}(\lambda)=m_{A}(\lambda)
$$

- We say that i is a downer vertex of T, for λ relative to A, if i satisfies

$$
m_{A(i)}(\lambda)=m_{A}(\lambda)-1 .
$$

- We say that i is a neutral vertex of T, for λ relative to A, if i satisfies

$$
m_{A(i)}(\lambda)=m_{A}(\lambda)
$$

- We say that i is a downer vertex of T, for λ relative to A, if i satisfies

$$
m_{A(i)}(\lambda)=m_{A}(\lambda)-1
$$

Parter set

Definition

Let T be a tree on n vertices, $A \in \mathcal{S}(T), i_{1}, i_{2}, \ldots, i_{k}$ be vertices of T and λ be an eigenvalue of A.
We say that $R=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a Parter set of T for λ relative to A if for each $j=1, \ldots, k, i_{j}$ is a Parter vertex of T for λ relative to A and $m_{A(R)}(\lambda)=m_{A}(\lambda)+k$.

Auxiliary results

Proposition: (Jonhson and Sutton, 2004)

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda) \geq 1$. Let x and y be distinct Parter vertices of T, for λ relative to A, then

$$
m_{A}(\lambda)-m_{A(x, y)}(\lambda) \in\{-2,0\}
$$

Proposition

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda) \geq 2$. Let v and t be distinct Parter vertices of T, for λ relative to A. Let S be the branch of $T-v$ that contains t. Then, $m_{A[S]}(\lambda) \geq 1$.

Proof: Since t is a Parter vertex and $m_{A}(\lambda) \geq 2$, then λ is eigenvalue of, at least, 2 blocks of $A[S](t)$. Using the interlacing theorem, $m_{A[S]}(\lambda) \geq m_{A[S](t)}(\lambda)-1 \geq 2-1=1$.

Remark

If x is a Parter vertex of T, for λ relative to A, when $m_{A}(\lambda)=1$, then, by definition, there are two branches T_{1} and T_{2} of $T-x$ such that $m_{A\left[T_{1}\right]}(\lambda)=m_{A\left[T_{2}\right]}(\lambda)=1$, and, for all other branches S of $T-x$, $m_{A[S]}(\lambda)=0$.

Proposition

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda)=1$. Let x and y be distinct Parter vertices of T, for λ relative to A. Then $\{x, y\}$ is a Parter set of T, for λ relative to A.

Proof: Let R_{1} and R_{2} be the branches of $T-x$ such that $m_{A\left[R_{1}\right]}(\lambda)=m_{A\left[R_{2}\right]}(\lambda)=1$ and let T_{1} and T_{2} be the branches of $T-y$ such that $m_{A\left[T_{1}\right]}(\lambda)=m_{A\left[T_{2}\right]}(\lambda)=1$. Suppose, w.l.g., that $y \notin R_{2}$ and $x \notin T_{2}$. Thus,

$$
m_{A(x, y)}(\lambda) \geq m_{A\left[R_{2}\right]}(\lambda)+m_{A\left[T_{2}\right]}(\lambda)=2=m_{A}(\lambda)+1
$$

Then, by proposition 2.1, $m_{A(x, y)}(\lambda)=m_{A}(\lambda)+2$ and $\{x, y\}$ is a Parter set of T, for λ relative to A.

Proposition

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda)=1$. Let x and y be distinct Parter vertices of T, for λ relative to A. If U_{1} is the branch of $T-x$ where y belongs and V_{1} is the branch of $T-y$ where x belongs, then x is a Parter vertex of V_{1}, for λ relative to $A\left[V_{1}\right]$, and y is a Parter vertex of U_{1}, for λ relative to $A\left[U_{1}\right]$.

Theorem

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda)=1$. Let x_{1}, \ldots, x_{p}, with $p \geq 2$, be distinct Parter vertices of T, for λ relative to A. Then $\left\{x_{1}, \ldots, x_{p}\right\}$ is a Parter set of T, for λ relative to A.

$m_{A}(\lambda)=2$

Remark

If x is a Parter vertex of T, for λ relative to A, when $m_{A}(\lambda)=2$, then, by Definition there are three branches T_{1}, T_{2}, and T_{3} of $T-x$ such that $m_{A\left[T_{1}\right]}(\lambda)=m_{A\left[T_{2}\right]}(\lambda)=m_{A\left[T_{3}\right]}(\lambda)=1$, and, for all other branches S of $T-x, m_{A[S]}(\lambda)=0$.

Theorem

Let T be a tree, $\lambda \in \mathbb{R}$, and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda)=2$. Let v_{1}, \ldots, v_{p}, with $p \geq 2$, be distinct Parter vertices of T, for λ relative to A. Then

1) $\left\{v_{1}, \ldots, v_{p}\right\}$ is a Parter set of T, for λ relative to A.
2) there is a path of T where v_{1}, \ldots, v_{p} belong.

Let

$$
A=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

The eigenvalues of A are $-1.5616,-0.6180,-0.6180,1.0000,1.6180$, 1.6180, 2.5616.

The vertex x_{i} of T corresponds to row i of $A, i=1, \ldots, 7$.

Remark

If x is a Parter vertex of T, for λ relative to A, when $m_{A}(\lambda)=3$, then,
(1) there are four branches T_{1}, T_{2}, T_{3} and T_{4} of $T-x$ such that $m_{A\left[T_{1}\right]}(\lambda)=m_{A\left[T_{2}\right]}(\lambda)=m_{A\left[T_{3}\right]}(\lambda)=m_{A\left[T_{4}\right]}(\lambda)=1$, and, for all other branches S of $T-x, m_{A[S]}(\lambda)=0$.
(2) there are three branches T_{1}, T_{2}, and T_{3} of $T-x$ such that $m_{A\left[T_{1}\right]}(\lambda)=m_{A\left[T_{2}\right]}(\lambda)=1$ and $m_{A\left[T_{3}\right]}(\lambda)=2$, and, for all other branches S of $T-x, m_{A[S]}(\lambda)=0$.

Proposition

Let T be a tree and $A \in \mathcal{S}(T)$ with $m_{A}(\lambda)=3$. Let $v_{1}, v_{2}, \ldots, v_{p}$ be Parter vertices of T for λ relative to A. Then $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a Parter set of T for λ relative to A.
$M(T)$ denotes the maximum possible multiplicity for an eigenvalue among the matrices $A \in \mathcal{S}(T)$.

In 1999, Johnson and Leal Duarte associated to a tree T a positive integer $P(T)$ defined as the minimum number of vertex disjoint paths, occurring as induced subgraphs of T, that cover all vertices of T. They also proved the following important theorem:

Theorem(Jonhson, Leal Duarte, 1999)

If T is a tree then

$$
M(T)=P(T)
$$

$M(T)$ denotes the maximum possible multiplicity for an eigenvalue among the matrices $A \in \mathcal{S}(T)$.

In 1999, Johnson and Leal Duarte associated to a tree T a positive integer $P(T)$ defined as the minimum number of vertex disjoint paths, occurring as induced subgraphs of T, that cover all vertices of T. They also proved the following important theorem:

Theorem(Jonhson, Leal Duarte, 1999)

If T is a tree then

$$
M(T)=P(T)
$$

Consider the following tree T with $n=11$ vertices.

Consider the following tree T with $n=11$ vertices.

Theorem(Jonhson, Leal Duarte, Saiago, 2008)

Suppose that T is a tree with n vertices, $A \in \mathcal{S}(T)$ and λ is an eigenvalue of A such that $m_{A}(\lambda)=M(T)$. Then, no vertex of T is a neutral vertex of A for λ.

Theorem(Jonhson, Leal Duarte, Saiago, 2008)

Suppose that T is a tree with n vertices, $A \in \mathcal{S}(T)$ and λ is an eigenvalue of A such that $m_{A}(\lambda)=M(T)$. The removal of a P-vertex of A in T does not change the status of any other vertex.

Paths

If T is a path with vertices $1, \ldots, n$ whose terminal vertices are 1 and n, and $A \in \mathcal{S}(T)$, then A is an n-by- n irreducible tridiagonal symmetric matrix.

Corollary

Let T be a path, $A \in \mathcal{S}(T)$ and λ be an eigenvalue of A. Then $m_{A}(\lambda)=1$.

Proposition

If A is an n-by- n irreducible tridiagonal symmetric matrix, then the eigenvalues of $A(1)$ and $A(n)$ each strictly interlace those of A.

When T is a tree, as usual, we denote by $L(T)$ the Laplacian matrix, i.e., $L(T)=A(T)-D(T)$ where $A(T)$ is the adjacency matrix of T and $D(T)$ is a diagonal matrix with the degree of vertices of T. It is well known that zero is an eigenvalue of $L(T)$.

Theorem

Let T be a path with n vertices and terminal vertices 1 and n (1 and n may be the same vertex). Let $L(T)$ be the Laplacian matrix of T. Then

$$
m_{L(T)}(0)=1=P(T)
$$

and there are no P-vertices of $L(T)$.

Lemma

Let T be a path with n vertices and let $A \in \mathcal{S}(T)$ such that $m_{A}(0)=1$. If x and y are two P-vertices of A then x isn't adjacent to y.

The number of P-vertices of $A \in \mathcal{S}(T)$ is denoted by $P_{v}(A)$.

Proposition

Let T be a path with n vertices and let $A \in \mathcal{S}(T)$ such that $m_{A}(0)=1$. Then

$$
0 \leq P_{v}(A) \leq\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

Proof: Using Proposition 6.2 we know that a P-vertex isn't a terminal vertex of T. By Lemma 6.4 we know that there aren't adjacent P-vertices. So, $P_{v}(A) \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Trees

Definition

Let $T=(X, \mathcal{E})$ be a tree. Let
$\mathcal{A}=\{R: R \subseteq X, T-R$ is a union of paths, $P(T-R)=P(T)+|R|$, $T-(R-x)$ is not a union of paths, $\forall x \in R\}$.

Let r_{T} be the number

$$
r_{T}=\min \{|R|: \quad R \in \mathcal{A}\} .
$$

Consider the following tree T with $n=9$ vertices.

The set \mathcal{A} is the set \{\{3,7\}, \{5\}\}.

So, $r_{T}=1$

Proposition

Let T be a tree and let $A \in \mathcal{S}(T)$ with $m_{A}(0)=M(T)$. Then

$$
P_{v}(A) \geq r_{T} .
$$

For each $R \in \mathcal{A}$ let
$X_{R}=\max \left\{|Y|: Y \subseteq T-R, d_{T-R}(x)=2\right.$, for all $x \in Y$, and the subgraph spanned by the vertices of Y is the null graph\}.

We denote by c_{T} the integer

$$
c_{T}=\max \left\{|R|+X_{R}: R \in \mathcal{A}\right\}
$$

Proposition

Let T be a tree that is not a path and let $A \in \mathcal{S}(T)$ with $m_{A}(0)=M(T)$. Then

$$
P_{v}(A) \leq c_{T}
$$

