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Generalities of 2d gravity

GOAL: Find interesting models of gravity in (1+1)d

Einstein-Hilbert action is topological (Euler characteristic) ⇒ every
metric (in same topological class) has the same value of the action
(no extremizing the action)

Adding matter in 2d:
S =

∫
d2x
√
−gR + Smatter leads to Tµν = 0, so no energy can be

consistently added in this way
→ not useful as classical toy model

We need different coupling to matter: dilaton gravity

S = 1
16πG

∫
d2x
√
−g (ΦR + V (Φ)) + Sbdy + Smatter

Φ is dilaton field
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Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where V (Φ) = −ΛΦ:
Λ = −2 < 0 for aAdS version Teitelboim ’83, Jackiw ’85

S = 1
16πG

∫
d2x
√
−gΦ(R + 2) + 1

8πG

∫
dτ
√
−γΦbdyK

Motivation:

I Dimensional reduction (s-wave) of 3d pure Λ < 0 gravity

I Appears as near-horizon theory of near-extremal
higher-dimensional black holes

I Describes low-energy sector of all (known) SYK-like models

I aAdS ⇒ toy model of holography

Classical equation of motion: δΦ ⇒ R = −2:
In 2d: only 1 curvature function, conveniently parametrized as
local Ricci scalar R(x)
Knowing R(x) ⇒ we know everything about the (local) geometry

Geometry fixed as AdS2: ds2 = −dF 2+dZ2

Z2 , Z ≥ 0
Poincaré patch (frame) of AdS2, boundary at Z = 0
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Poincaré patch (frame) of AdS2, boundary at Z = 0

JT gravity - a review Thomas Mertens 4 28



Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where V (Φ) = −ΛΦ:
Λ = −2 < 0 for aAdS version Teitelboim ’83, Jackiw ’85

S = 1
16πG

∫
d2x
√
−gΦ(R + 2) + 1

8πG

∫
dτ
√
−γΦbdyK

Motivation:

I Dimensional reduction (s-wave) of 3d pure Λ < 0 gravity

I Appears as near-horizon theory of near-extremal
higher-dimensional black holes

I Describes low-energy sector of all (known) SYK-like models

I aAdS ⇒ toy model of holography

Classical equation of motion: δΦ ⇒ R = −2:

In 2d: only 1 curvature function, conveniently parametrized as
local Ricci scalar R(x)
Knowing R(x) ⇒ we know everything about the (local) geometry

Geometry fixed as AdS2: ds2 = −dF 2+dZ2

Z2 , Z ≥ 0
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Poincaré patch (frame) of AdS2, boundary at Z = 0

JT gravity - a review Thomas Mertens 4 28



Important frames in AdS2 (1)

Lightcone coordinates U = F + Z and V = F − Z
Important classical frames:

I Poincaré patch:
ds2 = − 4dUdV

(U−V )2

Found in near-horizon regime of extremal black hole

I BH frame: U(u) = tanh
(
π
βu
)
, V (v) = tanh

(
π
β v
)

ds2 = −π2

β2
4

sinh2(π
β

(u−v))
dudv

Found in near-horizon regime of near-extremal black hole
Using radial coordinate r ∼ coth 2π

β (u − v):

ds2 = −(r2 − r2
h )dt2 + dr2

r2−r2
h

is black hole solution with ADM mass E ∼ r2
h , and Hawking

temperature T ∼ rh −→ first law T ∼
√
E
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Important frames in AdS2 (2)

Penrose diagram

zy

ty

Global

Black hole

Poincaré
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Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ:
⇒ Only boundary term survives: S = 1

8πG

∫
dt
√
−γΦbdyK

Consider boundary curve (F (t),Z (t)) as UV cutoff, carving out a
shape from AdS2

Conditions:
I asymptotic Poincaré: Z (t) = εF ′(t), ε = UV regulator

Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d
conformal group parametrized by F (t) preserving FG gauge

I boundary along constant large value of dilaton Φbdy = a/(2ε)
Φ blows up at boundary → needs fixing just like the metric
Cannot compare spacetimes with different asymptotics

Using
√
−γ = 1/ε, K = 1 + ε2 {F , t}+ . . .

⇒ S = −C
∫

dt {F , t} , C = a
16πG ,

{
F , t

}
= F ′′′

F ′ −
3
2

(
F ′′

F ′

)2

Almheiri-Polchinski ’15, Jensen ’16, Maldacena-Stanford-Yang ’16, Engelsöy-TM-Verlinde ’16

F (t) = time reparametrization in terms of proper time t

JT gravity - a review Thomas Mertens 7 28
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F (t) = time reparametrization in terms of proper time t

JT gravity - a review Thomas Mertens 7 28



Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ:
⇒ Only boundary term survives: S = 1

8πG

∫
dt
√
−γΦbdyK

Consider boundary curve (F (t),Z (t)) as UV cutoff, carving out a
shape from AdS2

Conditions:
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Schwarzian equation of motion and coupling to matter

S = −C
∫
dt {F , t}

Properties:

Semi-classical regime: C = a
16πG →∞ ≡ G , ~→ 0

Note: C has dimension length → quantum effects important in IR

Total energy (Noether charge) equals E (t) = −C {F , t}

Schwarzian equation of motion:
δF = 0⇒ −C d

dt {F , t} = 0 is energy conservation

Generalization to include coupling to matter
(CFT for simplicity):
−C d

dt {F , t} = dE
dt = Tvv (t)− Tuu(t)

in terms of boundary values of matter energy
Total energy is changed by injection and extrac-
tion from holographic boundary
Wiggly boundary curve (F (t),Z (t) = εF ′(t))

z=0
z=e

Tuu

Tvv

JT gravity - a review Thomas Mertens 8 28
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Schwarzian equation of motion:
δF = 0⇒ −C d

dt {F , t} = 0 is energy conservation

Generalization to include coupling to matter
(CFT for simplicity):
−C d

dt {F , t} = dE
dt = Tvv (t)− Tuu(t)

in terms of boundary values of matter energy

Total energy is changed by injection and extrac-
tion from holographic boundary
Wiggly boundary curve (F (t),Z (t) = εF ′(t))

z=0
z=e

Tuu
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Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame
Tvv (t) = E0δ(t), matter (= 2d CFT) quantum effects included
Engelsöy-TM-Verlinde ’16

dE
dt =E0δ(t) + Tvv (t)− Tuu(t), E (t) = −C {F , t}

Z

F
X+

Boundary conditions on matter:
No outgoing matter in initial state:
Tuu(t) =− c

24π {F , t}
→ conformal anomaly of the 2d CFT
Perfect absorption: Choose the observer
on the boundary line to remove all Hawk-
ing radiation he detects in his local frame
Tvv (t) = 0 (to allow evaporation)

⇒ E (t) = E0e
− c

24πC
t ⇒ F (t) = 2

αA
I0(α)K0(αe−At/2)−K0(α)I0(αe−At/2)

I1(α)K0(αe−At/2)+K1(α)I0(αe−At/2)

where A = c
24πC , α = 24π

c

√
2CE0
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Page curve?

With knowledge of the frame F (t), we can calculate early-late
matter entanglement entropy Sren(t)

Keeps increasing ⇒ Information loss in Hawking’s computation

0.1

50000

100000

t

Sren(t) 

10 3020

SBH(t) 
Compare to black hole en-
tropy:
SBH(t) = 2π

√
2CE (t)

Observation: Minimum of both curves gives a Page-like curve

We need to take this seriously Almheiri-Engelhardt-Marolf-Maxfield ’19, Penington ’19

→ Jump in minimal quantum extremal (RT) surface
(Requires non-perturbative (in GN) knowledge)
⇒ Island rule (see Lárus Thorlacius talk on Friday!)
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⇒ Island rule (see Lárus Thorlacius talk on Friday!)

JT gravity - a review Thomas Mertens 10 28



JT Quantum Gravity

Next: Transfer to Euclidean thermal theory and obtain boundary
correlation functions of JT gravity / Schwarzian QM:

〈Oh1Oh2 . . .〉β =
1

Z

∫
M

[D f ]Oh1Oh2 . . . e
C
∫ β

0 dτ {F , τ }

with F ≡ tan
(
πf (τ)
β

)
,

{
F , τ

}
=
{
f , τ

}
+ 2π2

β2 f
′2

f (τ) is reparametrization of S1:
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Disk partition function

How to compute with this action? S = −C
∫
dτ
{

tan π
β f (τ), τ

}

Perturbation theory: expand f (τ) = τ + ε(τ), ε(τ) = ε(τ + β)

Application to partition function: Kitaev ’15, Maldacena-Stanford-Yang ’16, . . .

Ztree+1-loop = (detO)−1/2e−Son-shell ∼
(

2π2C
β

)3/2
e

2π2C
β

Stanford and Witten demonstrated that Schwarzian partition
function is one-loop exact Stanford-Witten ’17

Z (β) =
(

2πC
β

)3/2
exp

(
2π2C
β

)
∼
∫ +∞

0 dE sinh
(

2π
√

2CE
)
e−βE

Density of states ρ(E ) = sinh
(

2π
√

2CE
)

Thermodynamic limit (saddle): found by ∂S
∂E = β at large E

=⇒ T ∼
√
E

→ matches semi-classical JT black hole first law, saddle
approximation invalid at small E
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Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion
(AdS2/CFT1):

φ(Z ,F ) → Z 1−hφ̃b(F ) = ε1−hF ′1−hφ̃b(F (τ)) = ε1−hφb(τ)

Generating functional:

I ∼
∫

dF1

∫
dF2

1

(F1 − F2)2h
φ̃b(F1)φ̃b(F2)

=

∫
dτ1

∫
dτ2

F ′(τ1)hF ′(τ2)h

(F (τ1)− F (τ2))2h
φb(τ1)φb(τ2)

Bilocal operator:

Oh(τ1, τ2) ≡
(

F ′(τ1)F ′(τ2)

(F (τ1)− F (τ2))2

)h

≡

(
f ′(τ1)f ′(τ2)

β
π sin2 π

β [f (τ1)− f (τ2)]

)h

Other origins of this operator:
I Boundary-anchored Wilson line in 1st order SL(2,R) gauge

formulation of JT gravity Blommaert-TM-Verschelde ’18, Iliesiu-Pufu-Verlinde-Wang ’19
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Approaches to JT disk boundary correlators: an overview

Several approaches to obtain JT disk amplitudes exist:

I 1d Liouville Bagrets-Altland-Kamenev ’16, ’17

I 2d Liouville CFT between ZZ-branes TM-Turiaci-Verlinde ’17, TM ’18

I 2d BF bulk Blommaert-TM-Verschelde ’18, Iliesiu-Pufu-Verlinde-Wang ’19

Using first-order formulation of JT gravity in terms of an
SL(2,R) BF gauge theory

I Particle in infinite B-field in AdS2 Yang ’18, Kitaev-Suh ’18, Suh ’20

I Liouville gravity / minimal string TM-Turiaci ’19, ’20, TM ’20
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Real-time two-point function

Real-time two-point function Gh(t) = 〈Oh(t, 0)〉

= 1
Z(β)

∫
dµ(E1)dµ(E2)e it(E1−E2)−βE2

Γ
(
h± i
√

2CE1± i
√

2CE2

)
Γ(2h)

with dµ(E ) = dE sinh 2π
√

2CE

Large C semi-classical limit:

G cl
h (t) ≈

(
π

β sinh π
β
t

)2h

is classical boundary two-point function in thermal AdS/CFT

Behavior full quantum expression:
Always decaying, where late-time behavior of correlator gets strong
QG fluctuations (power-law decay ∼ 1/t3 instead of exponential
decay)
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Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t Susskind ’14 . . .

TFD:
tt → Classical gravity: C(t) ∼ 2π

β t
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao ’18 for the JT case

Apply to JT quantum gravity: Yang ’18

tt
Geometry fixed to AdS2: (renormalized) geodesic

length of wormhole = ln (F (t1)−F (t2)2

F ′(t1)F ′(t2)

where t2 = iβ/2− t1, t1 = t

Insert in Schwarzian path integral using trick
∂
∂hGh(t12)

∣∣
h=0

= ln (F1−F2)2

F ′1F
′
2

→ C(t) ∼ 2π
β t even after classical gravity fails

Q: Complexity plateau? Higher topology / random matrices?

JT gravity - a review Thomas Mertens 16 28
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OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:
〈V1W3V2W4〉 = 〈Oh(t1, t2)Oh(t3, t4)〉OTO

=
∏

i=1,4,s,t

∫
dk2

i sinh 2πkie
− i

2C
(k2

1 t31+k2
t t23+k2

4 t42+k2
s (−iβ−t41))

× Γ(`1+ik1±s)Γ(`1−ik4±t)Γ(`2−ik1±t)Γ(`2+ik4±s)
Γ(2`1)Γ(2`2)

×
∫ i∞
−i∞

du
2πi

Γ(u)Γ(u−2iks)Γ(u+ik1+4−s+t)Γ(u−iks+t−1−4)Γ(`1+iks−1−u)Γ(`2+iks−4−u)
Γ(u+̀ 1−iks−1)Γ(u+̀ 2−iks−4)

Gravitational semi-classical interpretation: OTOC
〈V1W3V2W4〉 in boundary theory captures gravitational
shockwave behavior Shenker-Stanford ’15

V1
V2

W4W3

Large C limit of complete OTOC with light h, gives full Dray-’t
Hooft eikonal shockwave expressions Lam-TM-Turiaci-Verlinde ’18
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Multiboundary amplitudes (1)

Path integral (in Euclidean signature):∫ [Dgµν ]
Vol(Diff) [DΦ] e−SJT−Sbdy =

∫ [Dgµν ]
Vol(Diff)δ(R − Λ)e−Sbdy

I Manifold with holographic boundary: non-trivial boundary
dynamics, described by Schwarzian action

I Manifold with only geodesic boundaries (K = 0, Sbdy = 0) :
remaining path integral

∫
R=Λ

1
Vol(Diff) [Dgµν ]× 1 is computing

volume integral of all inequivalent metrics one can put on a
2d manifold with given R = Λ and geodesic boundaries
→ Mathematicians call this the volume of moduli space of
Riemann surfaces = Weil-Petersson volume
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Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the
Einstein-Hilbert action:
S = − S0

2π

[
1
2

∫
R +

∮
K
]

+ SJT
= −χS0 + SJT with χ the Euler characteristic: χ = 2− 2g − n for

n boundaries at genus g

→ weighing of amplitudes with topology, suppression of higher
topology for given number of boundaries

Motivation:
Comes from zero’th order term in near-extremal near-horizon
expansion of higher dim. black holes where S0 is the extremal
entropy
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Multiboundary amplitudes (3)

Multiboundary amplitudes Saad-Shenker-Stanford ’19:

...b1

b2

bn

b1
b2

bn

= eχS0
∫∞

0

∏n
i=1 dbibiZJT(βi , bi )Vg ,n(b)

Ingredients:
I Single-trumpet ZJT(β, b) ∼ β−1/2e−

1
4β

b2

I measure dµ(b) = dbb

Gluing tubes with twist: 0 . . . b
b

I Weil-Petersson (WP) volume Vg ,n(b) ≡ Vg ,n(b1 . . . bn)
volume of moduli space of Riemann surfaces of genus g with
n geodesic boundaries of length bi
multivariate polynomials in b2

i
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JT gravity as a matrix integral

Mirzakhani ’07:
Weil-Petersson volumes satisfy recursion relations

Eynard-Orantin ’07:
→ match with topological recursion relations of a double-scaled
matrix model with leading (large L) spectral density
〈ρ(E )〉0 = ρ0(E ) = L sinh 2π

√
E

Saad-Shenker-Stanford ’19 : JT gravity is a matrix integral!
Macroscopic loop operator: Z (β) = Tre−βH =

∑
n e
−βEn

Multi-loop correlator 〈Z (β1) . . .Z (βn)〉 in matrix integral with
above ρ0(E ), identifiable as multi-boundary amplitude in gravity,
〈. . .〉 =

∫
dH . . . exp(−TrV (H))

Double-scaled expansion parameter L matches with eS0

Holographic interpretation:
→ Boundary Hamiltonian ≡ random matrix H
→ Ensemble-averaged holography (cfr. SYK has some averaging)
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Application: Maldacena’s version of the information
paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 1+1d: 〈O(t)O(0)〉β = 1(
sinh π

β
t
)2h ∼ e−

2π
β
ht

After Schwarzian integral, decays as power law

Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ’01:
〈O(t)O(0)〉β =

∑
n,m e−βEn |〈n| O |m〉|2 e it(Em−En)

→ oscillates erratically at late times, with non-zero mean
Simplification: We expect the 〈n| O |m〉 to behave rather smoothly
for simple operators as a function of energy (ETH)
→ we drop these factors here
Spectral form factor: Cotler et al. ’16, Saad-Shenker-Stanford ’18

|Z (β + it)|2 =
∑

n,m e−β(En+Em)e it(Em−En)

Late-time low mean ∼ Z (2β) 6= 0

JT gravity - a review Thomas Mertens 22 28



Application: Maldacena’s version of the information
paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 1+1d: 〈O(t)O(0)〉β = 1(
sinh π

β
t
)2h ∼ e−

2π
β
ht

After Schwarzian integral, decays as power law

Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ’01:
〈O(t)O(0)〉β =

∑
n,m e−βEn |〈n| O |m〉|2 e it(Em−En)

→ oscillates erratically at late times, with non-zero mean
Simplification: We expect the 〈n| O |m〉 to behave rather smoothly
for simple operators as a function of energy (ETH)
→ we drop these factors here
Spectral form factor: Cotler et al. ’16, Saad-Shenker-Stanford ’18

|Z (β + it)|2 =
∑

n,m e−β(En+Em)e it(Em−En)

Late-time low mean ∼ Z (2β) 6= 0

JT gravity - a review Thomas Mertens 22 28



Application: Maldacena’s version of the information
paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 1+1d: 〈O(t)O(0)〉β = 1(
sinh π

β
t
)2h ∼ e−

2π
β
ht

After Schwarzian integral, decays as power law

Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ’01:
〈O(t)O(0)〉β =

∑
n,m e−βEn |〈n| O |m〉|2 e it(Em−En)

→ oscillates erratically at late times, with non-zero mean

Simplification: We expect the 〈n| O |m〉 to behave rather smoothly
for simple operators as a function of energy (ETH)
→ we drop these factors here
Spectral form factor: Cotler et al. ’16, Saad-Shenker-Stanford ’18

|Z (β + it)|2 =
∑

n,m e−β(En+Em)e it(Em−En)

Late-time low mean ∼ Z (2β) 6= 0

JT gravity - a review Thomas Mertens 22 28



Application: Maldacena’s version of the information
paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 1+1d: 〈O(t)O(0)〉β = 1(
sinh π

β
t
)2h ∼ e−

2π
β
ht

After Schwarzian integral, decays as power law

Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ’01:
〈O(t)O(0)〉β =

∑
n,m e−βEn |〈n| O |m〉|2 e it(Em−En)

→ oscillates erratically at late times, with non-zero mean
Simplification: We expect the 〈n| O |m〉 to behave rather smoothly
for simple operators as a function of energy (ETH)
→ we drop these factors here

Spectral form factor: Cotler et al. ’16, Saad-Shenker-Stanford ’18

|Z (β + it)|2 =
∑

n,m e−β(En+Em)e it(Em−En)

Late-time low mean ∼ Z (2β) 6= 0

JT gravity - a review Thomas Mertens 22 28



Application: Maldacena’s version of the information
paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 1+1d: 〈O(t)O(0)〉β = 1(
sinh π

β
t
)2h ∼ e−

2π
β
ht

After Schwarzian integral, decays as power law

Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ’01:
〈O(t)O(0)〉β =

∑
n,m e−βEn |〈n| O |m〉|2 e it(Em−En)

→ oscillates erratically at late times, with non-zero mean
Simplification: We expect the 〈n| O |m〉 to behave rather smoothly
for simple operators as a function of energy (ETH)
→ we drop these factors here
Spectral form factor: Cotler et al. ’16, Saad-Shenker-Stanford ’18

|Z (β + it)|2 =
∑

n,m e−β(En+Em)e it(Em−En)

Late-time low mean ∼ Z (2β) 6= 0
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Spectral form factor in RMT - late time behavior (1)

Typical form of spectral form factor in (averaged) chaotic systems
Cotler-Gur-Ari-Hanada-Polchinski-Saad-Shenker-Stanford-Streicher-Tezuka ’16:

t ~ C t ~ C eS log t

log |Z(b + i t)|2

slope

ramp
plateau

dip

0

JT gravity has such late-time behavior for its spectral form factor
→ easily proved using matrix description
→ has gravitational interpretation in terms of higher topology
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Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is 〈Z (β + it)Z (β − it)〉
(two analytically continued macroscopic loop operators inserted in
matrix integral)

Related to the pair density correlator, where ρ(E ) = Trδ(E − H):
〈Z (β + it)Z (β − it)〉 =

∫
dEdE ′ 〈ρ(E )ρ(E ′)〉 e−β(En+Em)e it(Em−En)

Pair density correlator in GUE (eS0 � 1): see textbooks e.g. Mehta

〈ρ(E )ρ(E ′)〉 ∼
ρ0(E )ρ0(E ′)− 1

2π2(E−E ′)2 + cos(2πρ0(E)(E−E ′))
2π2(E−E ′)2 + ρ0(E )δ(E − E ′)

Interpretation: disconnected piece, sine kernel, and contact term
Universal for (hermitian) random matrix systems away from the
spectral edge, and when |E − E ′| � 1
→ will hold for JT gravity as well

Factorized term dominates as ∼ e2S0 (ρ0(E ) ∼ eS0 sinh 2π
√
E )

However, at very late times t ∼ eS0 , one has E − E ′ ∼ e−S0 and
this can compensate the suppression and give important effects!
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Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form
factor in JT gravity Saad-Shenker-Stanford ’19

I Slope: Factorized contribution ρ0(E )ρ0(E ′):

Z (β + it) = eS0

(
π

β+it

)3/2
eπ

2/(β+it) → |Z (β + it)|2 ∼ e2S0

t3

Geometry: Matches with disconnected disk geometries
b1 b2

Late-time decay of Schwarzian regime

I Ramp: due to − 1
2π2(E−E ′)2 piece

→ Fourier transform
∫
dx 1

x2 e
itx ∼ tθ(t)

→ Linear growth in time
Geometry: Matches with double trumpet

b
b1 b2 ∫ +∞

0 dbb

(
1

β
1/2
1

e
− C

2β1
b2
)(

1

β
1/2
2

e
− C

2β2
b2
)

∼
√
β1β2

β1+β2
where β1 = β + it and β2 = β − it
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Spectral form factor in JT - late time behavior (2)

I Dip: slope (∼ e2S0

t3 ) and ramp (∼ t) intersect at t ∼ CeS0/2

(dip time)
Depends on details of the dynamics of the model

I Plateau: term cos(2πρ(E)(E−E ′))
2π2(E−E ′)2 is non-perturbative in e−S0

(due to exp(ieS0)) , doubly non-pt. in GN ∼ 1/S0

Fourier transform yields also a linear downward piece, starting
at the plateau time t ∼ CeS0

→ Geometry: D-brane effects with additional boundaries, no
full understanding
Height of plateau is determined by contact term
ρ(E )δ(E − E ′) leading to the final value Z (2β)

Comments:
Full non-perturbative answer for amplitudes using numerical matrix
model techniques Johnson ’19-’20

Reinstating 〈n| O |m〉 = study boundary two-point function
Leads to similar picture Blommaert-TM-Verschelde ’19, Saad ’19
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Generalizations

Deformation of JT gravity Maxfield-Turiaci ’20, Witten ’20

V (Φ) = 2Φ +
∑

i εie
−αiΦ, π < αi < 2π

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci ’20

V (Φ) = sinh bΦ

Both described in terms of matrix integrals
⇒ same late time behavior of holographic correlators

Higher dimensions?

I 3d pure (Λ < 0) gravity
→ construction of double trumpet amplitude (→ ramp)
Cotler-Jensen ’20, but no understanding of topological expansion

I textbook holography has fixed Hamiltonian:
N = 4 SYM dual to AdS5 × S5 type IIB → fixed Hamiltonian
(no ensemble averaging) → no connected topologies ?
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Summary

Jackiw-Teitelboim gravity is toy model of quantum gravity, which
is both relevant and solvable

Allows us to address open questions in quantum gravity:

I Information paradox (late-time decay and Page curve)

I Remnants of discreteness in the bulk

JT gravity is ideal test case to study conceptual questions about
quantum gravity
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