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Generalities of 2d gravity

GOAL: Find interesting models of gravity in (1+1)d
Einstein-Hilbert action is topological (Euler characteristic) = every

metric (in same topological class) has the same value of the action
(no extremizing the action)

Adding matter in 2d:

S = [ d?x\/—gR + Smatter leads to T, = 0, so no energy can be
consistently added in this way

— not useful as classical toy model

We need different coupling to matter: dilaton gravity

S= 16}rG f d2XV —& (d)R + V(¢)) + dey + Smatter
® is dilaton field

JT gravity - a review Thomas Mertens
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Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where V(®) = —A®:

N = —2 < 0 for aAdS version Teitelboim '83, Jackiw '85
S = toc [ ®xy=8P(R+2) + gtz [ dTy/—7Ppa, K
Motivation:

» Dimensional reduction (s-wave) of 3d pure A < 0 gravity
» Appears as near-horizon theory of near-extremal
higher-dimensional black holes
» Describes low-energy sector of all (known) SYK-like models
» aAdS = toy model of holography
Classical equation of motion: /¢ = R = —2:
In 2d: only 1 curvature function, conveniently parametrized as
local Ricci scalar R(x)
Knowing R(x) = we know everything about the (local) geometry
Geometry fixed as AdS;: ds? = #, Z>0
Poincaré patch (frame) of AdS,, boundary at Z =0

JT gravity - a review Thomas Mertens
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Important frames in AdS, (1)

Lightcone coordinates U=F +Zand V=F - Z
Important classical frames:

» Poincaré patch:

2 _ _ 4dUdv

ds® = U-VY
Found in near-horizon regime of extremal black hole

» BH frame: U(u) = tanh(ﬂu), V(v) = tanh(%v)

2

d52 —zmdudv

Found in near—horlzon regime of near-extremal black hole
Using radial coordinate r ~ coth 2Fﬂ(u —v):

ds? = —(r? — r2)de® + £,

2_
r ry

is black hole solution with ADM mass E ~ r,f, and Hawking
temperature T ~ r, — first law T ~ VE
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Important frames in AdS, (2)

Penrose diagram

Global

Poincaré

% Black hole

A
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Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out :
= Only boundary term survives: S = gl [ dt\/=7Ppqy K
Consider boundary curve (F(t), Z(t)) as UV cutoff, carving out a
shape from AdS,
Conditions:
> asymptotic Poincaré: Z(t) = eF'(t), e = UV regulator
Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d
conformal group parametrized by F(t) preserving FG gauge
» boundary along constant large value of dilaton .4, = a/(2¢)
® blows up at boundary — needs fixing just like the metric
Cannot compare spacetimes with different asymptotics

Using /-y =1/e, K=1+e{F t}+...
1" //2
:>5:—C/dt{F,t}, C:ﬁ,{/;t}:i_,_%(%)

Almbheiri-Polchinski '15, Jensen '16, Maldacena-Stanford-Yang '16, Engelsdy-TM-Verlinde '16

F(t) = time reparametrization in terms of proper time t
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Schwarzian equation of motion and coupling to matter

S=-C[dt{F,t}

Properties:

Semi-classical regime: C = 1z - 00 = G,h =0

Note: C has dimension length — quantum effects important in IR

Total energy (Noether charge) equals E(t) = —C {F,t}

Schwarzian equation of motion:
OF=0= —C% {F,t} = 0 is energy conservation

Generalization to include coupling to matter
(CFT for simplicity):

—CL{F, t} =% =T, (t) — Tuu(t)

in terms of boundary values of matter energy
Total energy is changed by injection and extrac-
tion from holographic boundary

Wiggly boundary curve (F(t), Z(t) = eF'(t))

JT gravity - a review Thomas Mertens
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Consider an infalling matter pulse in Poincaré frame
T (t) = Eoo(t), matter (= 2d CFT) quantum effects included
Engelsdy-TM-Verlinde '16
‘2—52505“) + 7—vv(t) - Tuu(t)7 E(t) = _C{F7 t}
F A
X+

S

AN

Thomas Mertens



Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame
T (t) = Eoo(t), matter (= 2d CFT) quantum effects included

Engelsoy-TM-Verlinde '16
dE
S=Eod(t) + T (t) - Tuu(t), E(t)=—C{F,t}
F T Boundary conditions on matter:
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Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame
T (t) = Eoo(t), matter (= 2d CFT) quantum effects included

Engelsdy-TM-Verlinde '16

‘2—52505(1“) + Tvv(t) - Tuu(t)7 E(t) = _C{F7 t}

Ft Boundary conditions on matter:

X* 4 No outgoing matter in initial state:

| Tuu(t) :_ﬁ {F.t}

/' — conformal anomaly of the 2d CFT

J Perfect absorption: Choose the observer
on the boundary line to remove all Hawk-

ing radiation he detects in his local frame

Tw(t) = 0 (to allow evaporation)

AN
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Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame
T (t) = Eoo(t), matter (= 2d CFT) quantum effects included

Engelsdy-TM-Verlinde '16

‘2—52505(1“) + Tvv(t) - Tuu(t)7 E(t) = _C{F7 t}

Ft Boundary conditions on matter:

X* 4 No outgoing matter in initial state:

| Tuu(t) :_ﬁ {F.t}

/' — conformal anomaly of the 2d CFT

J Perfect absorption: Choose the observer
on the boundary line to remove all Hawk-

ing radiation he detects in his local frame

Tw(t) = 0 (to allow evaporation)

AN

= E(t) = Epe™ #nc?
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Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame
T (t) = Eoo(t), matter (= 2d CFT) quantum effects included

Engelsoy-TM-Verlinde '16

‘2—52505(1“) + Tvv(t) - Tuu(t)7 E(t) = _C{F7 t}

Ft Boundary conditions on matter:

X* 4 No outgoing matter in initial state:

Tuu(t) ==z {F, t}

/' — conformal anomaly of the 2d CFT
J Perfect absorption: Choose the observer

on the boundary line to remove all Hawk-

ing radiation he detects in his local frame

Tw(t) = 0 (to allow evaporation)

. _ — St _ 2 h(a)Ko(ae="/?)—Ky(a)lo(ce=At/2)
= E(t) = Bpe mict = F(t) = 2 bledfoloe 2P slaoloe 1)

where A= 55~ a = 247”\/2CE0

Z
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With knowledge of the frame F(t), we can calculate early-late
matter entanglement entropy Sren(t)
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With knowledge of the frame F(t), we can calculate early-late
matter entanglement entropy Sren(t)
Keeps increasing = Information loss in Hawking's computation

100000

Sren(®
Compare to black hole en-
SBH(t) . tropy:
Sgr(t) = 2m\/2CE(t)
0.1 t

10 20 30
Observation: Minimum of both curves gives a Page-like curve
We need to take this seriously Almheiri-Engelhardt-Marolf-Maxfield '19, Penington '19
— Jump in minimal quantum extremal (RT) surface
(Requires non-perturbative (in Gy) knowledge)
= Island rule (see Larus Thorlacius talk on Friday!)
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JT Quantum Gravity

Next: Transfer to Euclidean thermal theory and obtain boundary
correlation functions of JT gravity / Schwarzian QM:

Z

1 B
<oh10h2 .. '>ﬁ == /M [Df]0h10h2 ... ecfo dr{F,7}

with F = tan (T2}, (Fory={f.r}+2¢?
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JT Quantum Gravity

Next: Transfer to Euclidean thermal theory and obtain boundary
correlation functions of JT gravity / Schwarzian QM:

Z

1 B
<Oh10h2 .. '>ﬁ == /M [Df]0h10h2 ... ecfo dr{F,7}

with F = tan (T2}, (Fory={f.r}+2¢?

f(7) is reparametrization of Si:

Thomas Mertens
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Disk partition function
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Disk partition function

How to compute with this action? S = —C [ dr {tan %f(’?’),’?‘}
Perturbation theory: expand f(7) =7 +¢€(7), €(7)=€(7+ f)
App||cat|on tO partltlon fu nCtioni Kitaev '15, Maldacena-Stanford-Yang '16, . . .

3/2 2r’c
Ztree+1—I00p = (det O)_1/26_5°"‘5he” ~ (%) e B

Stanford and Witten demonstrated that Schwarzian partition
function is one-loop exact stanford-witten '17
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Density of states p(E) = sinh<27n/2CE>

Thomas Mertens



Disk partition function

How to compute with this action? S = —C [ dr {tan %f(’?’),’?‘}
Perturbation theory: expand f(7) =7 +¢€(7), €(7)=€(7+ f)
App||cat|on tO partltlon funCtioni Kitaev '15, Maldacena-Stanford-Yang '16, . . .

3/2 2r’c
Ztree+1—I00p = (det O)_1/26_5°"‘5he” ~ (%) e s

Stanford and Witten demonstrated that Schwarzian partition
function is one-loop exact stanford-witten '17

Z(8) = (%)yzexp (%;C) ~ [ dEsinh(zm/ﬁ) e OE

Density of states p(E) = sinh<27n/2CE>

Thermodynamic limit (saddle): found by g—g = [ at large E
— T ~VE

— matches semi-classical JT black hole first law, saddle
approximation invalid at small E

JT gravity - a review Thomas Mertens



Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion
(AdS2/CFTy):
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Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion
(AdS2/CFTy):

(Z,F) — Z¥hgy(F) = E=hF1=hg (F(r)) = el "gy(7)

Generating functional:

I ~ /dF1/sz 2h¢b(F1)¢b(F2)

Fiin) hF'(Tz)
/dn/de(,__ ) F(7_2))2h¢b(7'1)¢b(7'2)

( F0)F () )”
sin? [f(7‘1) f(m2)]

Bilocal operator:

_(_F)F ()
s = (7 7
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Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion
(AdS2/CFTy):

HZ,F) — ZYhgu(F) = E"FA=hu(F(1)) = € hp(r)
Generating functional:

I ~ /dF1/sz 2h¢b(F1)¢b(F2)

Fiin) hF'(Tz)
/dn/de(,__ (1) — F(m))? 57 Ob(T1)Pb(72)

Bilocal operator:

(FoF) N fefm)
Onlr.72) = ((F(n) - F(Tz))2> N (gsinzg[f(ﬁ) - f(@])

Other origins of this operator:
» Boundary-anchored Wilson line in 15t order SL(2,R) gauge
formulation of JT gravity siommaert-TM-Verschelde '18, lliesiu-Pufu-Verlinde-Wang '19

ity - a review Thomas Mertens



Approaches to JT disk boundary correlators: an overview

Several approaches to obtain JT disk amplitudes exist:
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Approaches to JT disk boundary correlators: an overview

Several approaches to obtain JT disk amplitudes exist:
> 1d L|OUV|”e Bagrets-Altland-Kamenev '16, '17
» 2d Liouville CFT between ZZ-branes tw-Turiaci-Verlinde ‘17, T™ '18

» 2d BF bulk Blommaert-TM-Verschelde '18, lliesiu-Pufu-Verlinde-Wang '19
Using first-order formulation of JT gravity in terms of an
SL(2,R) BF gauge theory

» Particle in infinite B-field in AdS5 Vang '18, Kitaev-Suh '18, Suh "20

» Liouville gravity / minimal string T-Turiaci ‘19, 20, T™ 20

Thomas Mertens



Real-time two-point function

Real-time two-point function Gu(t) = (Op(t,0))

it(E1—E»)—BE, T (h+iV2CE £ iV2CE,
- ﬁfd'u’(El)dM(EQ)e t(E1—E2)—BE2 ( ! r(21h)l 2)

with du(E) = dE sinh 2rv/2CE
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Real-time two-point function

Real-time two-point function Gu(t) = (Op(t,0))
i r(h+iv2CE £ iv/2CE
= b [ dp(E)du( ) E~E) - LI V2CEE 1V2CE)

T(2h)
with du(E) = dE sinh 2rv/2CE

Large C semi-classical limit:
2h
1(+)
6'(6) ~ (i)
is classical boundary two-point function in thermal AdS/CFT
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Real-time two-point function

Real-time two-point function Gu(t) = (Op(t,0))

it(E1—E»)—BE, T (h+iV2CE £ iV2CE,
- ﬁfd“(El)dM(Ez)e t(E1—E2)—BE: ( ! r(21h)l 2)

with du(E) = dE sinh 2rv/2CE

Large C semi-classical limit:

cl s 2h
6'(6) ~ (i)
is classical boundary two-point function in thermal AdS/CFT

Behavior full quantum expression:

Always decaying, where late-time behavior of correlator gets strong
QG fluctuations (power-law decay ~ 1/t3 instead of exponential
decay)

JT gravity - a review Thomas Mertens



Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t susskind '14 ...
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Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t susskind '14 ...

~ 2

t\_//t — Classical gravity: C(t) ~ 5t

see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case
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Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t susskind '14 ...

ti 4t — Classical gravity: C(t) ~ %” t
TFD />< see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

-’ N

Apply to JT quantum gravity: vang 1

7 Geometry fixed to AdSy: (renormalized) geodesic
" s I
i " t length of wormhole = In %
where thy = i3/2 —t;, t =t
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Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t susskind '14 ...

ti 4t — Classical gravity: C(t) ~ %” t
TFD \>/ see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Apply to JT quantum gravity: vang 1

7 Geometry fixed to AdSy: (renormalized) geodesic
Tt ye _ 2
~7 ‘ length of wormhole = In %
//' \\ where t, = i/2 —t;, t1 =t
Insert in Schwarzian path integral using trick
(FL=F)?
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at points at time t susskind '14 ...

N\

ti 4t — Classical gravity: C(t) ~ %” t
TFD \>/ see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Y. .
/ N

Apply to JT quantum gravity: vang 1

7 Geometry fixed to AdSy: (renormalized) geodesic
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length of wormhole = In PP (6)
N where t, = i/2 —t;, t1 =t
Insert in Schwarzian path integral using trick
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— C(t) ~ %’Tt even after classical gravity fails
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Application: Complexity = volume conjecture

Complexity C of boundary theory at time t
= volume of extremal (maximal) surface anchored at the boundary
at points at time t susskind '14 ...

N\

ti 4t — Classical gravity: C(t) ~ %” t
TFD \>/ see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Y. .
/ N

Apply to JT quantum gravity: vang 1

7 Geometry fixed to AdSy: (renormalized) geodesic
PN _ 1 (F(t1)—F(t2)?

length of wormhole = In PP (6)
N where t, = i/2 —t;, t1 =t
Insert in Schwarzian path integral using trick
d _n (Fi=F2)?
77 Ch(t12)] o = In e~

— C(t) ~ %’Tt even after classical gravity fails

Q: Complexity plateau? Higher topology / random matrices?

Thomas Mertens



OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:
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Schwarzian out-of-time ordered (OTOC) 4-point function:
(ViW3VoWa) = (Op(t1, £2)On(t3, ta)) 010
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OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:

(ViW3VoWa) = (Op(t1, £2)On(t3, ta)) 010

— Hi L4 st f dk? sinh 27Tkl.e—i(kft31+kt2t23+k§t42+ks2(—"5—t41))
[ (Lrtikits) T (Crikas )T (Lo—ikite )T (Lotikats)

r(261)r(242)
v floo du T(u)l (u2iks )T (wrhikyra—ste)T (u—ikste—1— ) (brtiks—1—u)T (Lotiks—a—u)
joo27i T (uH1—iks—1)T (tHlo—iks—4)
W, Wa
Gravitational semi-classical interpretation: OTOC
(Vi W3 VL Wy) in boundary theory captures gravitational
shockwave behavior shenker-stanford '15 v,

Vi
Large C limit of complete OTOC with light h, gives full Dray-'t
Hooft eikonal shockwave expressions Lam TM-Turiaci-Verlinde 18
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Multiboundary amplitudes (1)

Path integral (in Euclidean signature):

[ 5k (D] eSS0y = [ JREL5(R — N)e S

» Manifold with holographic boundary: non-trivial boundary
dynamics, described by Schwarzian action

» Manifold with only geodesic boundaries (K=0,54, =0):
remaining path integral [,_, Vol(lef) [Dg,.] x 1 is computing
volume integral of all inequivalent metrics one can put on a
2d manifold with given R = A and geodesic boundaries
— Mathematicians call this the volume of moduli space of
Riemann surfaces = Weil-Petersson volume

Thomas Mertens



Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the
Einstein-Hilbert action:

S=-2[3/R+FK|+S

= —xSg + S 7 with x the Euler characteristic: y =2 — 2g — n for

n boundaries at genus g

Thomas Mertens 19128
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Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the
Einstein-Hilbert action:

S=-2[/R+§K]+Sr

= —xSg + S 7 with x the Euler characteristic: y =2 — 2g — n for
n boundaries at genus g

— weighing of amplitudes with topology, suppression of higher
topology for given number of boundaries

Motivation:

Comes from zero'th order term in near-extremal near-horizon
expansion of higher dim. black holes where S is the extremal
entropy

Thomas Mertens 19128
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Multiboundary amplitudes (3)

Multiboundary amplitudes saad-shenker-Stanford '19:
B>

— eXSO fooo H7:1 dbibiZJT(ﬁl'a bl) ngn(b)

Ingredients:
. ~1/2 ,—35b°
» Single-trumpet Zy7t(8, b) ~ 8 e

» measure du(b) = dbb X
Gluing tubes with twist: 0... b H

> Weil-Petersson (WP) volume Vg n(b) = Vg n(b1 ... bp)
volume of moduli space of Riemann surfaces of genus g with

n geodesic boundaries of length b;
multivariate polynomials in b,?
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Mirzakhani o7
Weil-Petersson volumes satisfy recursion relations

Eynard-Orantin o7

— match with topological recursion relations of a double-scaled
matrix model with leading (large L) spectral density

(p(E))o = po(E) = Lsinh2mvE

Saad-Shenker-Stanford 10 : JT gravity is a matrix integral!
Macroscopic loop operator: Z(B) = Tre PH =3 e=PEn
Multi-loop correlator (Z(51)...Z(5n)) in matrix integral with
above po(E), identifiable as multi-boundary amplitude in gravity,
(...)=[dH ...exp(—TrV(H))
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JT gravity as a matrix integral

Mirzakhani o7
Weil-Petersson volumes satisfy recursion relations

Eynard-Orantin o7

— match with topological recursion relations of a double-scaled
matrix model with leading (large L) spectral density

(p(E))o = polE) = Lsinh 27V/E

Saad-Shenker-Stanford 10 : JT gravity is a matrix integral!
Macroscopic loop operator: Z(B) = Tre PH =3 e=PEn
Multi-loop correlator (Z(51)...Z(5n)) in matrix integral with
above po(E), identifiable as multi-boundary amplitude in gravity,
(...)=[dH ...exp(—TrV(H))

Double-scaled expansion parameter L matches with e
Holographic interpretation:

— Boundary Hamiltonian = random matrix H

— Ensemble-averaged holography (cfr. SYK has some averaging)

JT gravity - a review Thomas Mertens



Application: Maldacena’s version of the information

paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

: ) _ 1 —2mpt
E.g. in 14+1d: <(’)(t)(’)(0)>5 =—— 5 ~e P

(sinh %t)
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(O(1)0(0)) 5 = 3, €75 |(n] O |m)|? e’ (En=En)

— oscillates erratically at late times, with non-zero mean

Thomas Mertens



Application: Maldacena’s version of the information

paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
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E.g. in 14+1d: <O(t)0(0)>5 — ﬁ _2mpy
sin Et
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Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ‘01
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— oscillates erratically at late times, with non-zero mean
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for simple operators as a function of energy (ETH)

— we drop these factors here
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Application: Maldacena’s version of the information

paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays
exponentially at late times due to bulk quasinormal modes:

E.g. in 14+1d: (O(1)0(0))5 = — 2 ~ e 7 1"
(sinh %t)
After Schwarzian integral, decays as power law
Not compatible with a finite entropy boundary system with a
discrete spectrum Maldacena ‘01
(O()0(0))5 = &5 (0] O | m)|? eltEn=ED
— oscillates erratically at late times, with non-zero mean
Simplification: We expect the (n| O |m) to behave rather smoothly
for simple operators as a function of energy (ETH)
— we drop these factors here
Spectral form factor: cotier et al. 16, Saad-Shenker-Stanford '18
Z(B +it)? = 22, e Bt En) it (En—En)
Late-time low mean ~ Z(2p) # 0

Thomas Mertens



Spectral form factor in RMT - late time behavior (1)

Typical form of spectral form factor in (averaged) chaotic systems

Cotler—Gur—Ari-Hanada-Polch‘inski-Saad-Shenker-Stanford-Streicher-Tezuka '16.
4

log |Z(B +it)|?

N

slope

plateau
ramp

dip

v

t~C t~ce®  |og
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Spectral form factor in RMT - late time behavior (1)

Typical form of spectral form factor in (averaged) chaotic systems

Cotler—Gur—Ari-Hanada-Polch‘inski-Saad-Shenker-Stanford-Streicher-Tezuka '16.
4

log |Z(B +it)|?

N

slope

plateau
ramp

dip

t~ € t~Ce® Iogi
JT gravity has such late-time behavior for its spectral form factor

— easily proved using matrix description
— has gravitational interpretation in terms of higher topology

Thomas Mertens
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In matrix integral, the spectral form factor is (Z(3 + it)Z(3 — it))
(two analytically continued macroscopic loop operators inserted in
matrix integral)
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Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is (Z(3 + it)Z(3 — it))
(two analytically continued macroscopic loop operators inserted in
matrix integral)

Related to the pair density correlator, where p(E) = Tré(E — H):
(Z(B+ it)Z(3  it) = [ dEE’ (p(E)p(E')) e A(ErtEneit(EnEn

Pair denSIty Corre|at0r in GUE (eSO >> 1) see textbooks e.g. Mehta
(HE)(E) ~ o
po(E)po(E") = 5=y + COS(ng?SE—)SEI)_z D+ po(E)S(E — E')

Interpretation: disconnected piece, sine kernel, and contact term
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Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is (Z(3 + it)Z(3 — it))
(two analytically continued macroscopic loop operators inserted in
matrix integral)

Related to the pair density correlator, where p(E) = Tré(E — H):
(Z(B + it)Z(8— it)) = | dEAE' (p(E)p(E')) e A(ErtEn)itEn=Ex)
Pair density correlator in GUE (€0 >> 1): e textbooks e.g. Mehta
(p(E)P(E")) ~ |

po(EVpo(E") = seadry + G2 + po(E)(E — E')
Interpretation: disconnected piece, sine kernel, and contact term
Universal for (hermitian) random matrix systems away from the
spectral edge, and when |E — E'| <« 1

— will hold for JT gravity as well
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Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is (Z(3 + it)Z(3 — it))
(two analytically continued macroscopic loop operators inserted in
matrix integral)

Related to the pair density correlator, where p(E) = Tré(E — H):
(Z(B+it)Z(B — it)) = [ dEDE’ (p(E)p(E")) e~ O (EntEm)eit(Em=En)

Pair density correlator in GUE (€0 >> 1): e textbooks e.g. Mehta
(p(E)P(E")) ~ |

po(E)po(E") = ser—py + G e E D + po(E)S(E — E')
Interpretation: disconnected piece, sine kernel, and contact term
Universal for (hermitian) random matrix systems away from the
spectral edge, and when |E — E'| < 1

— will hold for JT gravity as well

Factorized term dominates as ~ €2 (po(E) ~ e> sinh 2/E)
However, at very late times t ~ €%, one has E — E/ ~ e~ and
this can compensate the suppression and give important effects!

JT gravity - a review Thomas Mertens



Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form
faCtOF in JT graVIty Saad-Shenker-Stanford '19

» Slope: Factorized contribution po(E)po(E’):
&250

3/2 .
Z(p+it)=e® (5) O o |28+ i) ~ 5
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Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form
faCtOF in JT graVIty Saad-Shenker-Stanford '19
» Slope: Factorized contribution po(E)po(E’):

250

3/2 .
Z(8 + it) = &% (/ﬁ) ™ /BHI) 5 | Z(B+ it)|? ~ £
Geometry: Matches with disconnected disk geometries

B, B,
. ' Late-time decay of Schwarzian regime

» Ramp: due to —m piece
— Fourier transform [ dx L e™ ~ t(t)
- . . X
— Linear growth in time
Geometry: Matches with double trumpet

B C b2 _Lb2
i b 2 +OO dbb ( 1/26 2ﬁ1 ) (ﬁe 20y
2

~ YEZ where By = 8 + it and B = 3 — it

Thomas Mertens



Spectral form factor in JT - late time behavior (2)

. 25 .
> Dip: slope (~ €3%) and ramp (~ t) intersect at t ~ Ce>/?

(dip time)
Depends on details of the dynamics of the model
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Spectral form factor in JT - late time behavior (2)

» Dip: slope (~ %) and ramp (~ t) intersect at t ~ Ce%0/2
(dip time)

Depends on details of the dynamics of the model
cos(2mp(E)(E—E"))
272 (E—E')?

(due to exp(ie*)) , doubly non-pt. in Gy ~ 1/Sg

Fourier transform yields also a linear downward piece, starting
at the plateau time t ~ Ce>

— Geometry: D-brane effects with additional boundaries, no
full understanding

Height of plateau is determined by contact term

p(E)d(E — E') leading to the final value Z(25)

> Plateau: term So

is non-perturbative in e~
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Spectral form factor in JT - late time behavior (2)

. 25 .
> Dip: slope (~ €3%) and ramp (~ t) intersect at t ~ Ce>/?

(dip time)

Depends on details of the dynamics of the model
cos(2mp(E)(E—E"))
2r2(E—E')?

(due to exp(ie*)) , doubly non-pt. in Gy ~ 1/Sg
Fourier transform yields also a linear downward piece, starting
at the plateau time t ~ Ce>
— Geometry: D-brane effects with additional boundaries, no
full understanding
Height of plateau is determined by contact term
p(E)d(E — E') leading to the final value Z(25)
Comments:
Full non-perturbative answer for amplitudes using numerical matrix
model techniques sohnson '19-20

> Plateau: term So

is non-perturbative in e~
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Spectral form factor in JT - late time behavior (2)

8250

So/2
t3 o/

» Dip: slope (~
(dip time)
Depends on details of the dynamics of the model

cos(2mp(E)(E—E"))
2r2(E—E')?

(due to exp(ie*)) , doubly non-pt. in Gy ~ 1/Sg

Fourier transform yields also a linear downward piece, starting
at the plateau time t ~ Ce>

— Geometry: D-brane effects with additional boundaries, no
full understanding

Height of plateau is determined by contact term

p(E)d(E — E') leading to the final value Z(25)

Comments:

Full non-perturbative answer for amplitudes using numerical matrix

model techniques sohnson '19-20

) and ramp (~ t) intersect at t ~ Ce

> Plateau: term So

is non-perturbative in e~

Reinstating (n| O |m) = study boundary two-point function
Leads to Similar piCtU € Blommaert-TM-Verschelde '19, Saad '19

JT gravity - a review Thomas Mertens
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Generalizations

Deformation of JT gravity Maxfield-Turiaci ‘20, itten 20
V(P) =20+ e % m<a; <21

M|n|ma| String as dl|at0n graV|ty Seiberg-Stanford (unpublished), TM-Turiaci '20
V(®) = sinh bo

Both described in terms of matrix integrals
= same late time behavior of holographic correlators

Higher dimensions?

» 3d pure (A < 0) gravity
— construction of double trumpet amplitude (— ramp)
Cotler-Jensen 20, but no understanding of topological expansion

> textbook holography has fixed Hamiltonian:
N =4 SYM dual to AdSs x S° type IIB — fixed Hamiltonian
(no ensemble averaging) — no connected topologies ?

Thomas Mertens
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Jackiw-Teitelboim gravity is toy model of quantum gravity, which
is both relevant and solvable

Allows us to address open questions in quantum gravity:
» Information paradox (late-time decay and Page curve)
» Remnants of discreteness in the bulk

JT gravity is ideal test case to study conceptual questions about
quantum gravity

Thomas Mertens



	Introduction: 2d dilaton gravity models
	JT classical gravity
	Classical solution
	Schwarzian quantum mechanics

	JT quantum gravity: disk amplitudes
	Partition function
	Boundary correlators and its gravitational physics

	JT quantum gravity: higher topology
	Gravitational amplitudes
	JT gravity as a matrix integral

	Some recent developments

