JT gravity - a review

Thomas Mertens

Ghent University

Iberian Strings 2021, January 19-22

Outline

Introduction: 2d dilaton gravity models
JT classical gravity
Classical solution
Schwarzian quantum mechanics
JT quantum gravity: disk amplitudes
Partition function
Boundary correlators and its gravitational physics
JT quantum gravity: higher topology
Gravitational amplitudes
JT gravity as a matrix integral
Some recent developments

Generalities of 2d gravity

GOAL: Find interesting models of gravity in $(1+1) \mathrm{d}$

Generalities of 2d gravity

GOAL: Find interesting models of gravity in (1+1)d
Einstein-Hilbert action is topological (Euler characteristic) \Rightarrow every metric (in same topological class) has the same value of the action (no extremizing the action)

Generalities of 2d gravity

GOAL: Find interesting models of gravity in $(1+1)$ d
Einstein-Hilbert action is topological (Euler characteristic) \Rightarrow every metric (in same topological class) has the same value of the action (no extremizing the action)

Adding matter in 2d:
$S=\int d^{2} x \sqrt{-g} R+S_{\text {matter }}$ leads to $T_{\mu \nu}=0$, so no energy can be consistently added in this way
\rightarrow not useful as classical toy model

Generalities of 2d gravity

GOAL: Find interesting models of gravity in $(1+1)$ d
Einstein-Hilbert action is topological (Euler characteristic) \Rightarrow every metric (in same topological class) has the same value of the action (no extremizing the action)

Adding matter in 2d:
$S=\int d^{2} x \sqrt{-g} R+S_{\text {matter }}$ leads to $T_{\mu \nu}=0$, so no energy can be consistently added in this way
\rightarrow not useful as classical toy model
We need different coupling to matter: dilaton gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{b d y}+S_{\text {matter }}$
Φ is dilaton field

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$: $\Lambda=-2<0$ for aAdS version Teitelboim ' 83 , Jackiw ' 85

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$: $\Lambda=-2<0$ for aAdS version Teitelboim ' 83 , Jackiw ' 85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$: $\Lambda=-2<0$ for aAdS version Teitelboim ' 83 , Jackiw ' 85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$ Motivation:

- Dimensional reduction (s-wave) of 3d pure $\Lambda<0$ gravity
- Appears as near-horizon theory of near-extremal higher-dimensional black holes
- Describes low-energy sector of all (known) SYK-like models
- aAdS \Rightarrow toy model of holography

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$:
$\Lambda=-2<0$ for aAdS version Teitelboim '83, Jackiw '85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$
Motivation:

- Dimensional reduction (s-wave) of 3d pure $\Lambda<0$ gravity
- Appears as near-horizon theory of near-extremal higher-dimensional black holes
- Describes low-energy sector of all (known) SYK-like models
- aAdS \Rightarrow toy model of holography

Classical equation of motion: $\delta \Phi \Rightarrow R=-2$:

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$:
$\Lambda=-2<0$ for aAdS version Teitelboim '83, Jackiw ' 85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$
Motivation:

- Dimensional reduction (s-wave) of 3d pure $\Lambda<0$ gravity
- Appears as near-horizon theory of near-extremal higher-dimensional black holes
- Describes low-energy sector of all (known) SYK-like models
- aAdS \Rightarrow toy model of holography

Classical equation of motion: $\delta \Phi \Rightarrow R=-2$:
In 2d: only 1 curvature function, conveniently parametrized as local Ricci scalar $R(x)$

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$:
$\Lambda=-2<0$ for aAdS version Teitelboim ' 83 , Jackiw ' 85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$
Motivation:

- Dimensional reduction (s-wave) of 3d pure $\Lambda<0$ gravity
- Appears as near-horizon theory of near-extremal higher-dimensional black holes
- Describes low-energy sector of all (known) SYK-like models
- aAdS \Rightarrow toy model of holography

Classical equation of motion: $\delta \Phi \Rightarrow R=-2$:
In 2d: only 1 curvature function, conveniently parametrized as
local Ricci scalar $R(x)$
Knowing $R(x) \Rightarrow$ we know everything about the (local) geometry

Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity where $V(\Phi)=-\Lambda \Phi$:
$\Lambda=-2<0$ for aAdS version Teitelboim '83, Jackiw ' 85
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g} \Phi(R+2)+\frac{1}{8 \pi G} \int d \tau \sqrt{-\gamma} \Phi_{b d y} K$
Motivation:

- Dimensional reduction (s-wave) of 3d pure $\Lambda<0$ gravity
- Appears as near-horizon theory of near-extremal higher-dimensional black holes
- Describes low-energy sector of all (known) SYK-like models
- aAdS \Rightarrow toy model of holography

Classical equation of motion: $\delta \Phi \Rightarrow R=-2$:
In 2d: only 1 curvature function, conveniently parametrized as
local Ricci scalar $R(x)$
Knowing $R(x) \Rightarrow$ we know everything about the (local) geometry
Geometry fixed as $A d S_{2}: d s^{2}=\frac{-d F^{2}+d Z^{2}}{Z^{2}}, \quad Z \geq 0$
Poincaré patch (frame) of AdS_{2}, boundary at $Z=0$

Important frames in AdS_{2} (1)

Lightcone coordinates $U=F+Z$ and $V=F-Z$ Important classical frames:

Important frames in $\mathrm{AdS}_{2}(1)$

Lightcone coordinates $U=F+Z$ and $V=F-Z$
Important classical frames:

- Poincaré patch:

$$
d s^{2}=-\frac{4 d U d V}{(U-V)^{2}}
$$

Important frames in $\mathrm{AdS}_{2}(1)$

Lightcone coordinates $U=F+Z$ and $V=F-Z$ Important classical frames:

- Poincaré patch:
$d s^{2}=-\frac{4 d U d V}{(U-V)^{2}}$
Found in near-horizon regime of extremal black hole

Important frames in AdS_{2} (1)

Lightcone coordinates $U=F+Z$ and $V=F-Z$ Important classical frames:

- Poincaré patch:
$d s^{2}=-\frac{4 d U d V}{(U-V)^{2}}$
Found in near-horizon regime of extremal black hole
- BH frame: $U(u)=\tanh \left(\frac{\pi}{\beta} u\right), V(v)=\tanh \left(\frac{\pi}{\beta} v\right)$

$$
d s^{2}=-\frac{\pi^{2}}{\beta^{2}} \frac{4}{\sinh ^{2}\left(\frac{\pi}{\beta}(u-v)\right)} d u d v
$$

Important frames in AdS_{2} (1)

Lightcone coordinates $U=F+Z$ and $V=F-Z$ Important classical frames:

- Poincaré patch:
$d s^{2}=-\frac{4 d U d V}{(U-V)^{2}}$
Found in near-horizon regime of extremal black hole
- BH frame: $U(u)=\tanh \left(\frac{\pi}{\beta} u\right), V(v)=\tanh \left(\frac{\pi}{\beta} v\right)$
$d s^{2}=-\frac{\pi^{2}}{\beta^{2}} \frac{4}{\sinh ^{2}\left(\frac{\pi}{\beta}(u-v)\right)} d u d v$
Found in near-horizon regime of near-extremal black hole

Important frames in $\mathrm{AdS}_{2}(1)$

Lightcone coordinates $U=F+Z$ and $V=F-Z$ Important classical frames:

- Poincaré patch: $d s^{2}=-\frac{4 d U d V}{(U-V)^{2}}$
Found in near-horizon regime of extremal black hole
- BH frame: $U(u)=\tanh \left(\frac{\pi}{\beta} u\right), V(v)=\tanh \left(\frac{\pi}{\beta} v\right)$
$d s^{2}=-\frac{\pi^{2}}{\beta^{2}} \frac{4}{\sinh ^{2}\left(\frac{\pi}{\beta}(u-v)\right)} d u d v$
Found in near-horizon regime of near-extremal black hole Using radial coordinate $r \sim \operatorname{coth} \frac{2 \pi}{\beta}(u-v)$: $d s^{2}=-\left(r^{2}-r_{h}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{h}^{2}}$
is black hole solution with ADM mass $E \sim r_{h}^{2}$, and Hawking temperature $T \sim r_{h} \longrightarrow$ first law $T \sim \sqrt{E}$

Important frames in AdS_{2} (2)

Penrose diagram

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{b d y} K$

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{b d y} K$ Consider boundary curve $(F(t), Z(t))$ as UV cutoff, carving out a shape from AdS_{2}

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{\text {bdy }} K$ Consider boundary curve $(F(t), Z(t))$ as UV cutoff, carving out a shape from AdS_{2}

Conditions:

- asymptotic Poincaré: $Z(t)=\epsilon F^{\prime}(t), \epsilon=\mathrm{UV}$ regulator Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d conformal group parametrized by $F(t)$ preserving FG gauge

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{b d y} K$
Consider boundary curve $(F(t), Z(t))$ as UV cutoff, carving out a shape from AdS_{2}

Conditions:

- asymptotic Poincaré: $Z(t)=\epsilon F^{\prime}(t), \epsilon=\mathrm{UV}$ regulator Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d conformal group parametrized by $F(t)$ preserving FG gauge
- boundary along constant large value of dilaton $\Phi_{b d y}=a /(2 \epsilon)$ Φ blows up at boundary \rightarrow needs fixing just like the metric Cannot compare spacetimes with different asymptotics

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{b d y} K$
Consider boundary curve $(F(t), Z(t))$ as UV cutoff, carving out a shape from AdS_{2}

Conditions:

- asymptotic Poincaré: $Z(t)=\epsilon F^{\prime}(t), \epsilon=\mathrm{UV}$ regulator Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d conformal group parametrized by $F(t)$ preserving FG gauge
- boundary along constant large value of dilaton $\Phi_{b d y}=a /(2 \epsilon)$ Φ blows up at boundary \rightarrow needs fixing just like the metric Cannot compare spacetimes with different asymptotics
Using $\quad \sqrt{-\gamma}=1 / \epsilon, \quad K=1+\epsilon^{2}\{F, t\}+\ldots$

Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ :
\Rightarrow Only boundary term survives: $S=\frac{1}{8 \pi G} \int d t \sqrt{-\gamma} \Phi_{b d y} K$
Consider boundary curve $(F(t), Z(t))$ as UV cutoff, carving out a shape from AdS_{2}

Conditions:

- asymptotic Poincaré: $Z(t)=\epsilon F^{\prime}(t), \epsilon=\mathrm{UV}$ regulator Fefferman-Graham gauge as usual in AdS/CFT, leads to 1d conformal group parametrized by $F(t)$ preserving FG gauge
- boundary along constant large value of dilaton $\Phi_{b d y}=a /(2 \epsilon)$ Φ blows up at boundary \rightarrow needs fixing just like the metric Cannot compare spacetimes with different asymptotics
Using $\quad \sqrt{-\gamma}=1 / \epsilon, \quad K=1+\epsilon^{2}\{F, t\}+\ldots$
$\Rightarrow S=-C \int d t\{F, t\}, \quad C=\frac{a}{16 \pi G}, \quad\{F, t\}=\frac{F^{\prime \prime \prime}}{F^{\prime}}-\frac{3}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2}$
Almheiri-Polchinski '15, Jensen '16, Maldacena-Stanford-Yang '16, Engelsöy-TM-Verlinde '16
$F(t)=$ time reparametrization in terms of proper time t

Schwarzian equation of motion and coupling to matter

$$
S=-C \int d t\{F, t\}
$$

Properties:

Schwarzian equation of motion and coupling to matter

$S=-C \int d t\{F, t\}$
Properties:
Semi-classical regime: $C=\frac{a}{16 \pi G} \rightarrow \infty \equiv G, \hbar \rightarrow 0$
Note: C has dimension length \rightarrow quantum effects important in IR

Schwarzian equation of motion and coupling to matter

$S=-C \int d t\{F, t\}$
Properties:
Semi-classical regime: $C=\frac{a}{16 \pi G} \rightarrow \infty \equiv G, \hbar \rightarrow 0$
Note: C has dimension length \rightarrow quantum effects important in IR
Total energy (Noether charge) equals $E(t)=-C\{F, t\}$

Schwarzian equation of motion and coupling to matter

$S=-C \int d t\{F, t\}$
Properties:
Semi-classical regime: $C=\frac{a}{16 \pi G} \rightarrow \infty \equiv G, \hbar \rightarrow 0$
Note: C has dimension length \rightarrow quantum effects important in IR Total energy (Noether charge) equals $E(t)=-C\{F, t\}$
Schwarzian equation of motion: $\delta F=0 \Rightarrow-C \frac{d}{d t}\{F, t\}=0$ is energy conservation

Schwarzian equation of motion and coupling to matter

$S=-C \int d t\{F, t\}$
Properties:
Semi-classical regime: $C=\frac{a}{16 \pi G} \rightarrow \infty \equiv G, \hbar \rightarrow 0$
Note: C has dimension length \rightarrow quantum effects important in IR
Total energy (Noether charge) equals $E(t)=-C\{F, t\}$
Schwarzian equation of motion:
$\delta F=0 \Rightarrow-C \frac{d}{d t}\{F, t\}=0$ is energy conservation
Generalization to include coupling to matter (CFT for simplicity):
$-C \frac{d}{d t}\{F, t\}=\frac{d E}{d t}=T_{v v}(t)-T_{u u}(t)$
in terms of boundary values of matter energy

Schwarzian equation of motion and coupling to matter

$S=-C \int d t\{F, t\}$
Properties:
Semi-classical regime: $C=\frac{a}{16 \pi G} \rightarrow \infty \equiv G, \hbar \rightarrow 0$
Note: C has dimension length \rightarrow quantum effects important in IR
Total energy (Noether charge) equals $E(t)=-C\{F, t\}$
Schwarzian equation of motion:
$\delta F=0 \Rightarrow-C \frac{d}{d t}\{F, t\}=0$ is energy conservation
Generalization to include coupling to matter (CFT for simplicity):
$-C \frac{d}{d t}\{F, t\}=\frac{d E}{d t}=T_{v v}(t)-T_{u u}(t)$
in terms of boundary values of matter energy
Total energy is changed by injection and extraction from holographic boundary
Wiggly boundary curve $\left(F(t), Z(t)=\epsilon F^{\prime}(t)\right)$

Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame $T_{v v}(t)=E_{0} \delta(t)$, matter ($=2 \mathrm{~d}$ CFT) quantum effects included Engelsöy-TM-Verlinde '16

$$
\frac{d E}{d t}=E_{0} \delta(t)+T_{v v}(t)-T_{u u}(t), \quad E(t)=-C\{F, t\}
$$

Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame $T_{v v}(t)=E_{0} \delta(t)$, matter ($=2 \mathrm{~d}$ CFT) quantum effects included
Engelsöy-TM-Verlinde '16

$$
\frac{d E}{d t}=E_{0} \delta(t)+T_{v v}(t)-T_{u u}(t), \quad E(t)=-C\{F, t\}
$$

F^{\wedge} Boundary conditions on matter:
Cont

Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame $T_{v v}(t)=E_{0} \delta(t)$, matter ($=2 \mathrm{~d}$ CFT) quantum effects included

Engelsöy-TM-Verlinde '16

$$
\frac{d E}{d t}=E_{0} \delta(t)+T_{v v}(t)-T_{u u}(t), \quad E(t)=-C\{F, t\}
$$

F^{\wedge} Boundary conditions on matter:
No outgoing matter in initial state:
$T_{u u}(t)=-\frac{c}{24 \pi}\{F, t\}$
\rightarrow conformal anomaly of the 2d CFT
Perfect absorption: Choose the observer on the boundary line to remove all Hawking radiation he detects in his local frame $T_{v v}(t)=0$ (to allow evaporation)

Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame $T_{v v}(t)=E_{0} \delta(t)$, matter ($=2 \mathrm{~d}$ CFT) quantum effects included

Engelsöy-TM-Verlinde '16

$$
\frac{d E}{d t}=E_{0} \delta(t)+T_{v v}(t)-T_{u u}(t), \quad E(t)=-C\{F, t\}
$$

Boundary conditions on matter:
No outgoing matter in initial state:
$T_{u u}(t)=-\frac{c}{24 \pi}\{F, t\}$
\rightarrow conformal anomaly of the 2d CFT
Perfect absorption: Choose the observer on the boundary line to remove all Hawking radiation he detects in his local frame $T_{v v}(t)=0$ (to allow evaporation)
$\Rightarrow E(t)=E_{0} e^{-\frac{c}{24 \pi c} t}$

Application: Semi-classical evaporation

Consider an infalling matter pulse in Poincaré frame $T_{v v}(t)=E_{0} \delta(t)$, matter ($=2 \mathrm{~d}$ CFT) quantum effects included

Engelsöy-TM-Verlinde '16

$$
\frac{d E}{d t}=E_{0} \delta(t)+T_{v v}(t)-T_{u u}(t), \quad E(t)=-C\{F, t\}
$$

No outgoing matter in initial state:
$T_{u u}(t)=-\frac{c}{24 \pi}\{F, t\}$
\rightarrow conformal anomaly of the 2d CFT
Perfect absorption: Choose the observer on the boundary line to remove all Hawking radiation he detects in his local frame $T_{v v}(t)=0$ (to allow evaporation)
$\Rightarrow E(t)=E_{0} e^{-\frac{c}{24 \pi C} t} \Rightarrow F(t)=\frac{2}{\alpha A} \frac{I_{0}(\alpha) K_{0}\left(\alpha e^{-A t / 2}\right)-K_{0}(\alpha) I_{0}\left(\alpha e^{-A t / 2}\right)}{I_{0}\left(\alpha e^{-A t / 2}\right)+K_{1}(\alpha) I_{0}\left(\alpha e^{-A t / 2}\right)}$
where $A=\frac{c}{24 \pi C}, \alpha=\frac{24 \pi}{c} \sqrt{2 C E_{0}}$

Page curve?

With knowledge of the frame $F(t)$, we can calculate early-late matter entanglement entropy $S_{\text {ren }}(t)$

Page curve?

With knowledge of the frame $F(t)$, we can calculate early-late matter entanglement entropy $S_{\text {ren }}(t)$
Keeps increasing \Rightarrow Information loss in Hawking's computation

Page curve?

With knowledge of the frame $F(t)$, we can calculate early-late matter entanglement entropy $S_{\text {ren }}(t)$
Keeps increasing \Rightarrow Information loss in Hawking's computation

Observation: Minimum of both curves gives a Page-like curve

Page curve?

With knowledge of the frame $F(t)$, we can calculate early-late matter entanglement entropy $S_{\text {ren }}(t)$
Keeps increasing \Rightarrow Information loss in Hawking's computation

Observation: Minimum of both curves gives a Page-like curve
We need to take this seriously Almheiri-Engelhardt-Marol-Maxfield ${ }^{\prime} 19$, Penington ${ }^{\prime} 19$
\rightarrow Jump in minimal quantum extremal (RT) surface
(Requires non-perturbative (in G_{N}) knowledge)
\Rightarrow Island rule (see Lárus Thorlacius talk on Friday!)

JT Quantum Gravity

Next: Transfer to Euclidean thermal theory and obtain boundary correlation functions of JT gravity / Schwarzian QM:

$$
\left\langle\mathcal{O}_{h_{1}} \mathcal{O}_{h_{2}} \ldots\right\rangle_{\beta}=\frac{1}{Z} \int_{\mathcal{M}}[\mathcal{D} f] \mathcal{O}_{h_{1}} \mathcal{O}_{h_{2}} \ldots e^{C \int_{0}^{\beta} d \tau\{F, \tau\}}
$$

with $F \equiv \tan \left(\frac{\pi f(\tau)}{\beta}\right), \quad\{F, \tau\}=\{f, \tau\}+\frac{2 \pi^{2}}{\beta^{2}} f^{\prime 2}$

JT Quantum Gravity

Next: Transfer to Euclidean thermal theory and obtain boundary correlation functions of JT gravity / Schwarzian QM:

$$
\left\langle\mathcal{O}_{h_{1}} \mathcal{O}_{h_{2}} \ldots\right\rangle_{\beta}=\frac{1}{Z} \int_{\mathcal{M}}[\mathcal{D} f] \mathcal{O}_{h_{1}} \mathcal{O}_{h_{2}} \ldots e^{C \int_{0}^{\beta} d \tau\{F, \tau\}}
$$

with $F \equiv \tan \left(\frac{\pi f(\tau)}{\beta}\right), \quad\{F, \tau\}=\{f, \tau\}+\frac{2 \pi^{2}}{\beta^{2}} f^{\prime 2}$
$f(\tau)$ is reparametrization of S^{1} :

Disk partition function

How to compute with this action? $S=-C \int d \tau\left\{\tan \frac{\pi}{\beta} f(\tau), \tau\right\}$

Disk partition function

How to compute with this action? $S=-C \int d \tau\left\{\tan \frac{\pi}{\beta} f(\tau), \tau\right\}$
Perturbation theory: expand $f(\tau)=\tau+\epsilon(\tau), \quad \epsilon(\tau)=\epsilon(\tau+\beta)$

Disk partition function

How to compute with this action? $S=-C \int d \tau\left\{\tan \frac{\pi}{\beta} f(\tau), \tau\right\}$
Perturbation theory: expand $f(\tau)=\tau+\epsilon(\tau), \quad \epsilon(\tau)=\epsilon(\tau+\beta)$
Application to partition function: Kitaev ' 15 , Maldacena-Stanford-Yang ' $16, \ldots$

$$
Z_{\text {tree }+1 \text {-loop }}=(\operatorname{det} \mathcal{O})^{-1 / 2} e^{-S_{\text {on-shell }}} \sim\left(\frac{2 \pi^{2} C}{\beta}\right)^{3 / 2} e^{\frac{2 \pi^{2} c}{\beta}}
$$

Disk partition function

How to compute with this action? $S=-C \int d \tau\left\{\tan \frac{\pi}{\beta} f(\tau), \tau\right\}$
Perturbation theory: expand $f(\tau)=\tau+\epsilon(\tau), \quad \epsilon(\tau)=\epsilon(\tau+\beta)$
Application to partition function: Kitaev ' 15 , Maldacena-Stanford-Yang ' $16, \ldots$
$Z_{\text {tree }+1 \text {-loop }}=(\operatorname{det} \mathcal{O})^{-1 / 2} e^{-S_{\text {on-shell }}} \sim\left(\frac{2 \pi^{2} C}{\beta}\right)^{3 / 2} e^{\frac{2 \pi^{2} C}{\beta}}$
Stanford and Witten demonstrated that Schwarzian partition function is one-loop exact stanford-Witten '17
$Z(\beta)=\left(\frac{2 \pi C}{\beta}\right)^{3 / 2} \exp \left(\frac{2 \pi^{2} C}{\beta}\right) \sim \int_{0}^{+\infty} d E \sinh (2 \pi \sqrt{2 C E}) e^{-\beta E}$
Density of states $\rho(E)=\sinh (2 \pi \sqrt{2 C E})$

Disk partition function

How to compute with this action? $S=-C \int d \tau\left\{\tan \frac{\pi}{\beta} f(\tau), \tau\right\}$
Perturbation theory: expand $f(\tau)=\tau+\epsilon(\tau), \quad \epsilon(\tau)=\epsilon(\tau+\beta)$
Application to partition function: Kitaev '15, Maldacena-Stanford-Yang ' $16, \ldots$
$Z_{\text {tree }+1 \text {-loop }}=(\operatorname{det} \mathcal{O})^{-1 / 2} e^{-S_{\text {on-shell }}} \sim\left(\frac{2 \pi^{2} C}{\beta}\right)^{3 / 2} e^{\frac{2 \pi^{2} C}{\beta}}$
Stanford and Witten demonstrated that Schwarzian partition function is one-loop exact Stanford-Witten '17
$Z(\beta)=\left(\frac{2 \pi C}{\beta}\right)^{3 / 2} \exp \left(\frac{2 \pi^{2} C}{\beta}\right) \sim \int_{0}^{+\infty} d E \sinh (2 \pi \sqrt{2 C E}) e^{-\beta E}$
Density of states $\rho(E)=\sinh (2 \pi \sqrt{2 C E})$
Thermodynamic limit (saddle): found by $\frac{\partial S}{\partial E}=\beta$ at large E
$\Longrightarrow T \sim \sqrt{E}$
\rightarrow matches semi-classical JT black hole first law, saddle approximation invalid at small E

Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion $\left(\mathrm{AdS}_{2} / \mathrm{CFT}_{1}\right)$:

$$
\phi(Z, F) \rightarrow Z^{1-h} \tilde{\phi}_{b}(F)=\epsilon^{1-h} F^{1-h} \tilde{\phi}_{b}(F(\tau))=\epsilon^{1-h} \phi_{b}(\tau)
$$

Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion $\left(\mathrm{AdS}_{2} / \mathrm{CFT}_{1}\right)$:

$$
\phi(Z, F) \rightarrow Z^{1-h} \tilde{\phi}_{b}(F)=\epsilon^{1-h} F^{\prime-h} \tilde{\phi}_{b}(F(\tau))=\epsilon^{1-h} \phi_{b}(\tau)
$$

Generating functional:

$$
\begin{aligned}
I & \sim \int d F_{1} \int d F_{2} \frac{1}{\left(F_{1}-F_{2}\right)^{2 h}} \tilde{\phi}_{b}\left(F_{1}\right) \tilde{\phi}_{b}\left(F_{2}\right) \\
& =\int d \tau_{1} \int d \tau_{2} \frac{F^{\prime}\left(\tau_{1}\right)^{h} F^{\prime}\left(\tau_{2}\right)^{h}}{\left(F\left(\tau_{1}\right)-F\left(\tau_{2}\right)\right)^{2 h}} \phi_{b}\left(\tau_{1}\right) \phi_{b}\left(\tau_{2}\right)
\end{aligned}
$$

Bilocal operator:

$$
\mathcal{O}_{h}\left(\tau_{1}, \tau_{2}\right) \equiv\left(\frac{F^{\prime}\left(\tau_{1}\right) F^{\prime}\left(\tau_{2}\right)}{\left(F\left(\tau_{1}\right)-F\left(\tau_{2}\right)\right)^{2}}\right)^{h} \equiv\left(\frac{f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{2}\right)}{\frac{\beta}{\pi} \sin ^{2} \frac{\pi}{\beta}\left[f\left(\tau_{1}\right)-f\left(\tau_{2}\right)\right]}\right)^{h}
$$

Boundary bilocal operator

Take massive scalar field in bulk, asymptotic expansion $\left(\mathrm{AdS}_{2} / \mathrm{CFT}_{1}\right)$:

$$
\phi(Z, F) \rightarrow Z^{1-h} \tilde{\phi}_{b}(F)=\epsilon^{1-h} F^{1-h} \tilde{\phi}_{b}(F(\tau))=\epsilon^{1-h} \phi_{b}(\tau)
$$

Generating functional:

$$
\begin{aligned}
I & \sim \int d F_{1} \int d F_{2} \frac{1}{\left(F_{1}-F_{2}\right)^{2 h}} \tilde{\phi}_{b}\left(F_{1}\right) \tilde{\phi}_{b}\left(F_{2}\right) \\
& =\int d \tau_{1} \int d \tau_{2} \frac{F^{\prime}\left(\tau_{1}\right)^{h} F^{\prime}\left(\tau_{2}\right)^{h}}{\left(F\left(\tau_{1}\right)-F\left(\tau_{2}\right)\right)^{2 h}} \phi_{b}\left(\tau_{1}\right) \phi_{b}\left(\tau_{2}\right)
\end{aligned}
$$

Bilocal operator:

$$
\mathcal{O}_{h}\left(\tau_{1}, \tau_{2}\right) \equiv\left(\frac{F^{\prime}\left(\tau_{1}\right) F^{\prime}\left(\tau_{2}\right)}{\left(F\left(\tau_{1}\right)-F\left(\tau_{2}\right)\right)^{2}}\right)^{h} \equiv\left(\frac{f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{2}\right)}{\frac{\beta}{\pi} \sin ^{2} \frac{\pi}{\beta}\left[f\left(\tau_{1}\right)-f\left(\tau_{2}\right)\right]}\right)^{h}
$$

Other origins of this operator:

- Boundary-anchored Wilson line in $1^{\text {st }}$ order $\operatorname{SL}(2, \mathbb{R})$ gauge formulation of JT gravity Blommaert-TM-Verschelde '18, Iliesiu-Pufu-Verlinde-Wang '19

Approaches to JT disk boundary correlators: an overview

Several approaches to obtain JT disk amplitudes exist:

Approaches to JT disk boundary correlators: an overview

Several approaches to obtain JT disk amplitudes exist:

- 1d Liouville Bagrets-Atland-Kamenev '16, '17
- 2d Liouville CFT between ZZ-branes тм-Turiaci-Verinde ' 17 , TM ' 18
- 2d BF bulk Blommaert-TM-Verschelde '18, llesiu-Pufu-Verinde-Wang '19 Using first-order formulation of JT gravity in terms of an $\mathrm{SL}(2, \mathbb{R})$ BF gauge theory
- Particle in infinite B-field in AdS_{2} Yang '18, Kitaev-Suh '18, Sun '20
- Liouville gravity / minimal string тм-Turiaci '19, '20, тм '20

Real-time two-point function

Real-time two-point function $G_{h}(t)=\left\langle\mathcal{O}_{h}(t, 0)\right\rangle$
$=\frac{1}{Z(\beta)} \int d \mu\left(E_{1}\right) d \mu\left(E_{2}\right) e^{i t\left(E_{1}-E_{2}\right)-\beta E_{2}} \frac{\Gamma\left(h \pm i \sqrt{2 C E_{1}} \pm i \sqrt{2 C E_{2}}\right)}{\Gamma(2 h)}$ with $d \mu(E)=d E \sinh 2 \pi \sqrt{2 C E}$

Real-time two-point function

Real-time two-point function $G_{h}(t)=\left\langle\mathcal{O}_{h}(t, 0)\right\rangle$
$=\frac{1}{Z(\beta)} \int d \mu\left(E_{1}\right) d \mu\left(E_{2}\right) e^{i t\left(E_{1}-E_{2}\right)-\beta E_{2}} \frac{\Gamma\left(h \pm i \sqrt{2 C E_{1}} \pm i \sqrt{2 C E_{2}}\right)}{\Gamma(2 h)}$
with $d \mu(E)=d E \sinh 2 \pi \sqrt{2 C E}$
Large C semi-classical limit:
$G_{h}^{c l}(t) \approx\left(\frac{\pi}{\beta \sinh \frac{\pi}{\beta} t}\right)^{2 h}$
is classical boundary two-point function in thermal AdS/CFT

Real-time two-point function

Real-time two-point function $G_{h}(t)=\left\langle\mathcal{O}_{h}(t, 0)\right\rangle$
$=\frac{1}{Z(\beta)} \int d \mu\left(E_{1}\right) d \mu\left(E_{2}\right) e^{i t\left(E_{1}-E_{2}\right)-\beta E_{2}} \frac{\Gamma\left(h \pm i \sqrt{2 C E_{1}} \pm i \sqrt{2 C E_{2}}\right)}{\Gamma(2 h)}$
with $d \mu(E)=d E \sinh 2 \pi \sqrt{2 C E}$

Large C semi-classical limit:
$G_{h}^{c l}(t) \approx\left(\frac{\pi}{\beta \sinh \frac{\pi}{\beta} t}\right)^{2 h}$
is classical boundary two-point function in thermal AdS/CFT

Behavior full quantum expression:
Always decaying, where late-time behavior of correlator gets strong QG fluctuations (power-law decay $\sim 1 / t^{3}$ instead of exponential decay)

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Suskind ' $14 \ldots$

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t susskind ${ }^{\prime} 14 \ldots$

TFD:

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Suskind ' $14 \ldots$

TFD:

\rightarrow Classical gravity: $\mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Susskind $14 \ldots$

TFD:

\rightarrow Classical gravity: $\mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Apply to JT quantum gravity: Yang '18

Geometry fixed to AdS_{2} : (renormalized) geodesic length of wormhole $=\ln \frac{\left(F\left(t_{1}\right)-F\left(t_{2}\right)^{2}\right.}{F^{\prime}\left(t_{1}\right) F^{\prime}\left(t_{2}\right)}$ where $t_{2}=i \beta / 2-t_{1}, \quad t_{1}=t$

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Susskind $14 \ldots$

TFD:

\rightarrow Classical gravity: $\mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Apply to JT quantum gravity: Yang '18

Geometry fixed to AdS_{2} : (renormalized) geodesic length of wormhole $=\ln \frac{\left(F\left(t_{1}\right)-F\left(t_{2}\right)^{2}\right.}{F^{\prime}\left(t_{1}\right) F^{\prime}\left(t_{2}\right)}$ where $t_{2}=i \beta / 2-t_{1}, \quad t_{1}=t$

Insert in Schwarzian path integral using trick
$\left.\frac{\partial}{\partial h} G_{h}\left(t_{12}\right)\right|_{h=0}=\ln \frac{\left(F_{1}-F_{2}\right)^{2}}{F_{1}^{\prime} F_{2}^{\prime}}$

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Susskind $14 \ldots$

TFD:

\rightarrow Classical gravity: $\mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Apply to JT quantum gravity: Yang '18

Geometry fixed to AdS_{2} : (renormalized) geodesic length of wormhole $=\ln \frac{\left(F\left(t_{1}\right)-F\left(t_{2}\right)^{2}\right.}{F^{\prime}\left(t_{1}\right) F^{\prime}\left(t_{2}\right)}$
where $t_{2}=i \beta / 2-t_{1}, \quad t_{1}=t$
Insert in Schwarzian path integral using trick
$\left.\frac{\partial}{\partial h} G_{h}\left(t_{12}\right)\right|_{h=0}=\ln \frac{\left(F_{1}-F_{2}\right)^{2}}{F_{1}^{\prime} F_{2}^{\prime}}$
$\rightarrow \mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$ even after classical gravity fails

Application: Complexity = volume conjecture

Complexity \mathcal{C} of boundary theory at time t
$=$ volume of extremal (maximal) surface anchored at the boundary at points at time t Susskind $14 \ldots$

TFD:

\rightarrow Classical gravity: $\mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$
see e.g. Brown-Gharibyan-Lin-Susskind-Thorlacius-Zhao '18 for the JT case

Apply to JT quantum gravity: Yang '18

Geometry fixed to AdS_{2} : (renormalized) geodesic length of wormhole $=\ln \frac{\left(F\left(t_{1}\right)-F\left(t_{2}\right)^{2}\right.}{F^{\prime}\left(t_{1}\right) F^{\prime}\left(t_{2}\right)}$
where $t_{2}=i \beta / 2-t_{1}, \quad t_{1}=t$
Insert in Schwarzian path integral using trick
$\left.\frac{\partial}{\partial h} G_{h}\left(t_{12}\right)\right|_{h=0}=\ln \frac{\left(F_{1}-F_{2}\right)^{2}}{F_{1}^{\prime} F_{2}^{\prime}}$
$\rightarrow \mathcal{C}(t) \sim \frac{2 \pi}{\beta} t$ even after classical gravity fails
Q: Complexity plateau? Higher topology / random matrices?

OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function: $\left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\left\langle\mathcal{O}_{h}\left(t_{1}, t_{2}\right) \mathcal{O}_{h}\left(t_{3}, t_{4}\right)\right\rangle_{\text {ото }}$

OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:

$$
\begin{aligned}
& \left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\left\langle\mathcal{O}_{h}\left(t_{1}, t_{2}\right) \mathcal{O}_{h}\left(t_{3}, t_{4}\right)\right\rangle_{\text {OTO }} \\
& =\prod_{i=1,4, s, t} \int d k_{i}^{2} \sinh 2 \pi k_{i} e^{-\frac{i}{2 C}\left(k_{1}^{2} t_{31}+k_{t}^{2} t_{23}+k_{4}^{2} t_{42}+k_{s}^{2}\left(-i \beta-t_{41}\right)\right)} \\
& \times \frac{\Gamma\left(\ell_{1}+i k_{1 \pm s}\right) \Gamma\left(\ell_{1}-i k_{4+t}\right) \Gamma\left(\ell_{2}-i k_{1 \pm t}\right) \Gamma\left(\ell_{2}+i k_{4 \pm s}\right)}{\Gamma\left(2 \ell_{1}\right) \Gamma\left(2 \ell_{2}\right)} \\
& \times \int_{-i \infty}^{i \infty} \frac{d u}{2 \pi i} \frac{\Gamma(u) \Gamma\left(u-2 i k_{s}\right) \Gamma\left(u+i k_{1+4-s+t}\right) \Gamma\left(u-i k_{s+t-1-4}\right) \Gamma\left(\ell_{1}+i k_{s-1}-u\right) \Gamma\left(\ell_{2}+i k_{s-4}-u\right)}{\Gamma\left(u+\ell_{1}-i k_{s-1}\right) \Gamma\left(u+\ell_{2}-i k_{s-4}\right)}
\end{aligned}
$$

OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:

$$
\begin{aligned}
& \left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\left\langle\mathcal{O}_{h}\left(t_{1}, t_{2}\right) \mathcal{O}_{h}\left(t_{3}, t_{4}\right)\right\rangle_{\text {OTO }} \\
& =\prod_{i=1,4, s, t} \int d k_{i}^{2} \sinh 2 \pi k_{i} e^{-\frac{i}{2 C}\left(k_{1}^{2} t_{31}+k_{t}^{2} t_{23}+k_{4}^{2} t_{42}+k_{s}^{2}\left(-i \beta-t_{41}\right)\right)} \\
& \times \frac{\Gamma\left(\ell_{1}+i k_{1 \pm s}\right) \Gamma\left(\ell_{1}-i k_{4+t}\right) \Gamma\left(\ell_{2}-i k_{1 \pm t}\right) \Gamma\left(\ell_{2}+i k_{4 \pm s}\right)}{\Gamma\left(2 \ell_{1}\right) \Gamma\left(2 \ell_{2}\right)} \\
& \times \int_{-i \infty}^{i \infty} \frac{d u}{2 \pi i} \frac{\Gamma(u) \Gamma\left(u-2 i k_{s}\right) \Gamma\left(u+i k_{1+4-s+t}\right) \Gamma\left(u-i k_{s+t-1-4}\right) \Gamma\left(\ell_{1}+i k_{s-1}-u\right) \Gamma\left(\ell_{2}+i k_{s-4}-u\right)}{\Gamma\left(u+\ell_{1}-i k_{s-1}\right) \Gamma\left(u+\ell_{2}-i k_{s-4}\right)}
\end{aligned}
$$

Gravitational semi-classical interpretation: $\left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle$ in boundary theory captures gravitational shockwave behavior Shenker-Stanford '15

OTOC four-point correlator

Schwarzian out-of-time ordered (OTOC) 4-point function:

$$
\begin{aligned}
& \left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\left\langle\mathcal{O}_{h}\left(t_{1}, t_{2}\right) \mathcal{O}_{h}\left(t_{3}, t_{4}\right)\right\rangle_{\text {OTO }} \\
& =\prod_{i=1,4, s, t} \int d k_{i}^{2} \sinh 2 \pi k_{i} e^{-\frac{i}{2 C}\left(k_{1}^{2} t_{31}+k_{t}^{2} t_{23}+k_{4}^{2} t_{42}+k_{s}^{2}\left(-i \beta-t_{41}\right)\right)} \\
& \times \frac{\Gamma\left(\ell_{1}+i k_{1 \pm s}\right) \Gamma\left(\ell_{1}-i k_{4 \pm t}\right) \Gamma\left(\ell_{2}-i k_{1 \pm t}\right) \Gamma\left(\ell_{2}+i k_{4 \pm s}\right)}{\Gamma\left(2 \ell_{1}\right) \Gamma\left(2 \ell_{2}\right)} \\
& \times \int_{-i \infty}^{i \infty} \frac{d u}{2 \pi i} \frac{\Gamma(u) \Gamma\left(u-2 i k_{s}\right) \Gamma\left(u+i k_{1+4-s+t}\right) \Gamma\left(u-i k_{s+t-1-4}\right) \Gamma\left(\ell_{1}+i k_{s-1}-u\right) \Gamma\left(\ell_{2}+i k_{s-4}-u\right)}{\Gamma\left(u+\ell_{1}-i k_{s-1}\right) \Gamma\left(u+\ell_{2}-i k_{s-4}\right)}
\end{aligned}
$$

Gravitational semi-classical interpretation:
OTOC $\left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle$ in boundary theory captures gravitational shockwave behavior Shenker-Stanford '15

Large C limit of complete OTOC with light h, gives full Dray-'t Hooft eikonal shockwave expressions Lam-TM-Turiaci-Verinde ' 18

Multiboundary amplitudes (1)

$$
\begin{aligned}
& \text { Path integral (in Euclidean signature): } \\
& \int \frac{\left[\mathcal{D} g_{\mu \nu}\right]}{\operatorname{Vol}(\mathrm{Diff})}[\mathcal{D} \Phi] e^{-S_{\mathrm{JT}}-S_{b d y}}=\int \frac{\left[\mathcal{D} g_{\mu \nu}\right]}{\operatorname{Vol}(\mathrm{Diff})} \delta(R-\Lambda) e^{-S_{b d y}}
\end{aligned}
$$

Multiboundary amplitudes (1)

Path integral (in Euclidean signature):
$\int \frac{\left[\mathcal{D}_{\mu \nu}\right]}{\operatorname{Vol}(\mathrm{Diff})}[\mathcal{D} \Phi] e^{-S_{J T}-S_{b d y}}=\int \frac{\left[\mathcal{D} g_{\mu \nu}\right]}{\operatorname{Vol}(\mathrm{Diff})} \delta(R-\Lambda) e^{-S_{b d y}}$

- Manifold with holographic boundary: non-trivial boundary dynamics, described by Schwarzian action

Multiboundary amplitudes (1)

Path integral (in Euclidean signature):
$\int \frac{\left[\mathcal{D} g_{\mu \nu}\right]}{\operatorname{Vol}(\text { Diff })}[\mathcal{D} \Phi] e^{-S_{J T}-S_{b d y}}=\int \frac{\left[\mathcal{D} g_{\mu \nu}\right]}{\operatorname{Vol}(\text { Diff })} \delta(R-\Lambda) e^{-S_{b d y}}$

- Manifold with holographic boundary: non-trivial boundary dynamics, described by Schwarzian action
- Manifold with only geodesic boundaries $\left(K=0, S_{b d y}=0\right)$: remaining path integral $\int_{R=\Lambda} \frac{1}{\operatorname{Vol}(\mathrm{Diff})}\left[\mathcal{D} g_{\mu \nu}\right] \times 1$ is computing volume integral of all inequivalent metrics one can put on a 2d manifold with given $R=\Lambda$ and geodesic boundaries \rightarrow Mathematicians call this the volume of moduli space of Riemann surfaces $=$ Weil-Petersson volume

Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the Einstein-Hilbert action:
$S=-\frac{S_{0}}{2 \pi}\left[\frac{1}{2} \int R+\oint K\right]+S_{J T}$
$=-\chi S_{0}+S_{J T}$ with χ the Euler characteristic: $\chi=2-2 g-n$ for
n boundaries at genus g

Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the Einstein-Hilbert action:
$S=-\frac{S_{0}}{2 \pi}\left[\frac{1}{2} \int R+\oint K\right]+S_{J T}$
$=-\chi S_{0}+S_{J T}$ with χ the Euler characteristic: $\chi=2-2 g-n$ for
n boundaries at genus g
\rightarrow weighing of amplitudes with topology, suppression of higher topology for given number of boundaries

Multiboundary amplitudes (2)

In order to analyze higher topology, we augment the action by the Einstein-Hilbert action:
$S=-\frac{S_{0}}{2 \pi}\left[\frac{1}{2} \int R+\oint K\right]+S_{J T}$
$=-\chi S_{0}+S_{J T}$ with χ the Euler characteristic: $\chi=2-2 g-n$ for
n boundaries at genus g
\rightarrow weighing of amplitudes with topology, suppression of higher topology for given number of boundaries
Motivation:
Comes from zero'th order term in near-extremal near-horizon expansion of higher dim. black holes where S_{0} is the extremal entropy

Multiboundary amplitudes (3)

Multiboundary amplitudes Saad-Shenker-Stanford ' 19 :

Multiboundary amplitudes (3)

Multiboundary amplitudes Saad-Shenker-Stanford ' 19 :

Ingredients:

- Single-trumpet $Z_{\mathrm{JT}}(\beta, b) \sim \beta^{-1 / 2} e^{-\frac{1}{4 \beta} b^{2}}$
- measure $d \mu(b)=d b b$

Gluing tubes with twist: $0 \ldots b$

Multiboundary amplitudes (3)

Multiboundary amplitudes Saad-Shenker-Stanford ' 19 :
$\underbrace{\beta_{1}}_{\beta_{n}}=e^{\chi s_{0}} \int_{0}^{\infty} \prod_{i=1}^{n} d b_{i} b_{i} Z_{\mathrm{JT}}\left(\beta_{i}, b_{i}\right) V_{g, n}(\mathbf{b})$
Ingredients:

- Single-trumpet $Z_{\mathrm{JT}}(\beta, b) \sim \beta^{-1 / 2} e^{-\frac{1}{4 \beta} b^{2}}$
- measure $d \mu(b)=d b b$

Gluing tubes with twist: $0 \ldots b$

- Weil-Petersson (WP) volume $V_{g, n}(\mathbf{b}) \equiv V_{g, n}\left(b_{1} \ldots b_{n}\right)$ volume of moduli space of Riemann surfaces of genus g with n geodesic boundaries of length b_{i} multivariate polynomials in b_{i}^{2}

JT gravity as a matrix integral

Mirzakhani ${ }^{\text {or: }}$
Weil-Petersson volumes satisfy recursion relations

JT gravity as a matrix integral

Mirzakhani ${ }^{\circ}$ or:
Weil-Petersson volumes satisfy recursion relations
Eynard-Orantin ${ }_{07}$:
\rightarrow match with topological recursion relations of a double-scaled matrix model with leading (large L) spectral density $\langle\rho(E)\rangle_{0}=\rho_{0}(E)=L \sinh 2 \pi \sqrt{E}$

JT gravity as a matrix integral

Mirzakhani ${ }^{\text {or: }}$
Weil-Petersson volumes satisfy recursion relations
Eynard-Orantin ${ }_{07}$:
\rightarrow match with topological recursion relations of a double-scaled matrix model with leading (large L) spectral density $\langle\rho(E)\rangle_{0}=\rho_{0}(E)=L \sinh 2 \pi \sqrt{E}$
Saad-Shenker-Stanford '19: JT gravity is a matrix integral! Macroscopic loop operator: $Z(\beta)=\operatorname{Tr} e^{-\beta H}=\sum_{n} e^{-\beta E_{n}}$ Multi-loop correlator $\left\langle Z\left(\beta_{1}\right) \ldots Z\left(\beta_{n}\right)\right\rangle$ in matrix integral with above $\rho_{0}(E)$, identifiable as multi-boundary amplitude in gravity, $\langle\ldots\rangle=\int d H \ldots \exp (-\operatorname{Tr} V(H))$

JT gravity as a matrix integral

Mirzakhani ${ }^{\circ}$ or:
Weil-Petersson volumes satisfy recursion relations
Eynard-Orantin ${ }_{07}$:
\rightarrow match with topological recursion relations of a double-scaled matrix model with leading (large L) spectral density $\langle\rho(E)\rangle_{0}=\rho_{0}(E)=L \sinh 2 \pi \sqrt{E}$
Saad-Shenker-Stanford '19: JT gravity is a matrix integral! Macroscopic loop operator: $Z(\beta)=\operatorname{Tr} e^{-\beta H}=\sum_{n} e^{-\beta E_{n}}$ Multi-loop correlator $\left\langle Z\left(\beta_{1}\right) \ldots Z\left(\beta_{n}\right)\right\rangle$ in matrix integral with above $\rho_{0}(E)$, identifiable as multi-boundary amplitude in gravity, $\langle\ldots\rangle=\int d H \ldots \exp (-\operatorname{Tr} V(H))$
Double-scaled expansion parameter L matches with $e^{S_{0}}$

JT gravity as a matrix integral

Mirzakhani ${ }^{\text {or: }}$
Weil-Petersson volumes satisfy recursion relations
Eynard-Orantin ${ }_{07}$:
\rightarrow match with topological recursion relations of a double-scaled matrix model with leading (large L) spectral density $\langle\rho(E)\rangle_{0}=\rho_{0}(E)=L \sinh 2 \pi \sqrt{E}$
Saad-Shenker-Stanford '19: JT gravity is a matrix integral! Macroscopic loop operator: $Z(\beta)=\operatorname{Tr} e^{-\beta H}=\sum_{n} e^{-\beta E_{n}}$
Multi-loop correlator $\left\langle Z\left(\beta_{1}\right) \ldots Z\left(\beta_{n}\right)\right\rangle$ in matrix integral with above $\rho_{0}(E)$, identifiable as multi-boundary amplitude in gravity, $\langle\ldots\rangle=\int d H \ldots \exp (-\operatorname{Tr} V(H))$
Double-scaled expansion parameter L matches with $e^{S_{0}}$ Holographic interpretation:
\rightarrow Boundary Hamiltonian \equiv random matrix H
\rightarrow Ensemble-averaged holography (cfr. SYK has some averaging)

Application: Maldacena's version of the information paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays exponentially at late times due to bulk quasinormal modes:
E.g. in $1+1 \mathrm{~d}$: $\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{\left(\sinh \frac{\pi}{\beta} t\right)^{2 h}} \sim e^{-\frac{2 \pi}{\beta} h t}$

Application: Maldacena's version of the information paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays exponentially at late times due to bulk quasinormal modes:
E.g. in $1+1 \mathrm{~d}:\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{\left(\sinh \frac{\pi}{\beta} t\right)^{2 h}} \sim e^{-\frac{2 \pi}{\beta} h t}$

After Schwarzian integral, decays as power law

Application: Maldacena's version of the information paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays exponentially at late times due to bulk quasinormal modes:
E.g. in $1+1 \mathrm{~d}:\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{\left(\sinh \frac{\pi}{\beta} t\right)^{2 h}} \sim e^{-\frac{2 \pi}{\beta} h t}$

After Schwarzian integral, decays as power law
Not compatible with a finite entropy boundary system with a discrete spectrum Maldacena ${ }^{\circ} 1$:
$\left.\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\sum_{n, m} e^{-\beta E_{n}}|\langle n| \mathcal{O}| m\right\rangle\left.\right|^{2} e^{i t\left(E_{m}-E_{n}\right)}$
\rightarrow oscillates erratically at late times, with non-zero mean

Application: Maldacena's version of the information paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays exponentially at late times due to bulk quasinormal modes:
E.g. in $1+1 \mathrm{~d}:\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{\left(\sinh \frac{\pi}{\beta} t\right)^{2 h}} \sim e^{-\frac{2 \pi}{\beta} h t}$

After Schwarzian integral, decays as power law
Not compatible with a finite entropy boundary system with a discrete spectrum Maldacena ${ }^{\circ} 1$:
$\left.\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\sum_{n, m} e^{-\beta E_{n}}|\langle n| \mathcal{O}| m\right\rangle\left.\right|^{2} e^{i t\left(E_{m}-E_{n}\right)}$
\rightarrow oscillates erratically at late times, with non-zero mean
Simplification: We expect the $\langle n| \mathcal{O}|m\rangle$ to behave rather smoothly for simple operators as a function of energy (ETH)
\rightarrow we drop these factors here

Application: Maldacena's version of the information paradox in AdS/CFT

Boundary two-point function in thermal AdS/CFT decays exponentially at late times due to bulk quasinormal modes:
E.g. in $1+1 \mathrm{~d}:\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{\left(\sinh \frac{\pi}{\beta} t\right)^{2 h}} \sim e^{-\frac{2 \pi}{\beta} h t}$

After Schwarzian integral, decays as power law
Not compatible with a finite entropy boundary system with a discrete spectrum Maldacena ${ }^{\circ} 1$:
$\left.\langle\mathcal{O}(t) \mathcal{O}(0)\rangle_{\beta}=\sum_{n, m} e^{-\beta E_{n}}|\langle n| \mathcal{O}| m\right\rangle\left.\right|^{2} e^{i t\left(E_{m}-E_{n}\right)}$
\rightarrow oscillates erratically at late times, with non-zero mean
Simplification: We expect the $\langle n| \mathcal{O}|m\rangle$ to behave rather smoothly for simple operators as a function of energy (ETH)
\rightarrow we drop these factors here
Spectral form factor: cotler et al. '16, Saad-Shenker-Stanford '18
$|Z(\beta+i t)|^{2}=\sum_{n, m} e^{-\beta\left(E_{n}+E_{m}\right)} e^{i t\left(E_{m}-E_{n}\right)}$
Late-time low mean $\sim Z(2 \beta) \neq 0$

Spectral form factor in RMT - late time behavior (1)

Typical form of spectral form factor in (averaged) chaotic systems
Cotler-Gur-Ari-Hanada-Polchinski-Saad-Shenker-Stanford-Streicher-Tezuka '16:

Spectral form factor in RMT - late time behavior (1)

Typical form of spectral form factor in (averaged) chaotic systems
Cotler-Gur-Ari-Hanada-Polchinski-Saad-Shenker-Stanford-Streicher-Tezuka '16:
$\log |Z(\beta+i t)|^{2} \uparrow$

JT gravity has such late-time behavior for its spectral form factor
\rightarrow easily proved using matrix description
\rightarrow has gravitational interpretation in terms of higher topology

Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ (two analytically continued macroscopic loop operators inserted in matrix integral)

Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ (two analytically continued macroscopic loop operators inserted in matrix integral)
Related to the pair density correlator, where $\rho(E)=\operatorname{Tr} \delta(E-H)$: $\langle Z(\beta+i t) Z(\beta-i t)\rangle=\int d E d E^{\prime}\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle e^{-\beta\left(E_{n}+E_{m}\right)} e^{i t\left(E_{m}-E_{n}\right)}$

Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ (two analytically continued macroscopic loop operators inserted in matrix integral)
Related to the pair density correlator, where $\rho(E)=\operatorname{Tr} \delta(E-H)$: $\langle Z(\beta+i t) Z(\beta-i t)\rangle=\int d E d E^{\prime}\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle e^{-\beta\left(E_{n}+E_{m}\right)} e^{i t\left(E_{m}-E_{n}\right)}$
Pair density correlator in GUE $\left(e^{S_{0}} \gg 1\right)$: see textbooks e.g. Mehta $\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle \sim$
$\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)-\frac{1}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\frac{\cos \left(2 \pi \rho_{0}(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\rho_{0}(E) \delta\left(E-E^{\prime}\right)$
Interpretation: disconnected piece, sine kernel, and contact term

Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ (two analytically continued macroscopic loop operators inserted in matrix integral)
Related to the pair density correlator, where $\rho(E)=\operatorname{Tr} \delta(E-H)$: $\langle Z(\beta+i t) Z(\beta-i t)\rangle=\int d E d E^{\prime}\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle e^{-\beta\left(E_{n}+E_{m}\right)} e^{i t\left(E_{m}-E_{n}\right)}$
Pair density correlator in GUE $\left(e^{S_{0}} \gg 1\right)$: see textbooks e.g. Mehta $\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle \sim$
$\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)-\frac{1}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\frac{\cos \left(2 \pi \rho_{0}(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\rho_{0}(E) \delta\left(E-E^{\prime}\right)$
Interpretation: disconnected piece, sine kernel, and contact term Universal for (hermitian) random matrix systems away from the spectral edge, and when $\left|E-E^{\prime}\right| \ll 1$
\rightarrow will hold for JT gravity as well

Spectral form factor in RMT - late time behavior (2)

In matrix integral, the spectral form factor is $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ (two analytically continued macroscopic loop operators inserted in matrix integral)
Related to the pair density correlator, where $\rho(E)=\operatorname{Tr} \delta(E-H)$:
$\langle Z(\beta+i t) Z(\beta-i t)\rangle=\int d E d E^{\prime}\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle e^{-\beta\left(E_{n}+E_{m}\right)} e^{i t\left(E_{m}-E_{n}\right)}$
Pair density correlator in GUE $\left(e^{S_{0}} \gg 1\right)$: see textbooks e.g. Mehta
$\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle \sim$
$\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)-\frac{1}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\frac{\cos \left(2 \pi \rho_{0}(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}+\rho_{0}(E) \delta\left(E-E^{\prime}\right)$
Interpretation: disconnected piece, sine kernel, and contact term Universal for (hermitian) random matrix systems away from the spectral edge, and when $\left|E-E^{\prime}\right| \ll 1$
\rightarrow will hold for JT gravity as well
Factorized term dominates as $\sim e^{2 S_{0}}\left(\rho_{0}(E) \sim e^{S_{0}} \sinh 2 \pi \sqrt{E}\right)$ However, at very late times $t \sim e^{S_{0}}$, one has $E-E^{\prime} \sim e^{-S_{0}}$ and this can compensate the suppression and give important effects!

Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form factor in JT gravity Saad-Shenker-Stanford '19

- Slope: Factorized contribution $\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)$:

$$
Z(\beta+i t)=e^{S_{0}}\left(\frac{\pi}{\beta+i t}\right)^{3 / 2} e^{\pi^{2} /(\beta+i t)} \rightarrow|Z(\beta+i t)|^{2} \sim \frac{e^{2 S_{0}}}{t^{3}}
$$

Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form factor in JT gravity Saad-Shenker-Stanford '19

- Slope: Factorized contribution $\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)$:

$$
Z(\beta+i t)=e^{S_{0}}\left(\frac{\pi}{\beta+i t}\right)^{3 / 2} e^{\pi^{2} /(\beta+i t)} \rightarrow|Z(\beta+i t)|^{2} \sim \frac{e^{2 S_{0}}}{t^{3}}
$$

Geometry: Matches with disconnected disk geometries

Late-time decay of Schwarzian regime

Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form factor in JT gravity Saad-Shenker-Stanford '19

- Slope: Factorized contribution $\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)$:

$$
Z(\beta+i t)=e^{S_{0}}\left(\frac{\pi}{\beta+i t}\right)^{3 / 2} e^{\pi^{2} /(\beta+i t)} \rightarrow|Z(\beta+i t)|^{2} \sim \frac{e^{2 S_{0}}}{t^{3}}
$$

Geometry: Matches with disconnected disk geometries

Late-time decay of Schwarzian regime

- Ramp: due to $-\frac{1}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ piece
\rightarrow Fourier transform $\int d x \frac{1}{x^{2}} e^{i t x} \sim t \theta(t)$
\rightarrow Linear growth in time

Spectral form factor in JT - late time behavior (1)

Now we can understand the late-time behavior of the spectral form factor in JT gravity Saad-Shenker-Stanford '19

- Slope: Factorized contribution $\rho_{0}(E) \rho_{0}\left(E^{\prime}\right)$:

$$
Z(\beta+i t)=e^{S_{0}}\left(\frac{\pi}{\beta+i t}\right)^{3 / 2} e^{\pi^{2} /(\beta+i t)} \rightarrow|Z(\beta+i t)|^{2} \sim \frac{e^{2 S_{0}}}{t^{3}}
$$

Geometry: Matches with disconnected disk geometries

Late-time decay of Schwarzian regime

- Ramp: due to $-\frac{1}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ piece
\rightarrow Fourier transform $\int d x \frac{1}{x^{2}} e^{i t x} \sim t \theta(t)$
\rightarrow Linear growth in time
Geometry: Matches with double trumpet

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$
Fourier transform yields also a linear downward piece, starting at the plateau time $t \sim C e^{S_{0}}$

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$
Fourier transform yields also a linear downward piece, starting at the plateau time $t \sim C e^{S_{0}}$
\rightarrow Geometry: D-brane effects with additional boundaries, no full understanding

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$
Fourier transform yields also a linear downward piece, starting at the plateau time $t \sim C e^{S_{0}}$
\rightarrow Geometry: D-brane effects with additional boundaries, no full understanding
Height of plateau is determined by contact term $\rho(E) \delta\left(E-E^{\prime}\right)$ leading to the final value $Z(2 \beta)$

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$
Fourier transform yields also a linear downward piece, starting at the plateau time $t \sim C e^{S_{0}}$
\rightarrow Geometry: D-brane effects with additional boundaries, no full understanding
Height of plateau is determined by contact term $\rho(E) \delta\left(E-E^{\prime}\right)$ leading to the final value $Z(2 \beta)$

Comments:

Full non-perturbative answer for amplitudes using numerical matrix model techniques Johnson '19-20

Spectral form factor in JT - late time behavior (2)

- Dip: slope $\left(\sim \frac{e^{2 S_{0}}}{t^{3}}\right)$ and ramp $(\sim t)$ intersect at $t \sim C e^{S_{0} / 2}$ (dip time)
Depends on details of the dynamics of the model
- Plateau: term $\frac{\cos \left(2 \pi \rho(E)\left(E-E^{\prime}\right)\right)}{2 \pi^{2}\left(E-E^{\prime}\right)^{2}}$ is non-perturbative in $e^{-S_{0}}$ (due to $\exp \left(i e^{S_{0}}\right)$), doubly non-pt. in $G_{N} \sim 1 / S_{0}$
Fourier transform yields also a linear downward piece, starting at the plateau time $t \sim C e^{S_{0}}$
\rightarrow Geometry: D-brane effects with additional boundaries, no full understanding
Height of plateau is determined by contact term $\rho(E) \delta\left(E-E^{\prime}\right)$ leading to the final value $Z(2 \beta)$

Comments:

Full non-perturbative answer for amplitudes using numerical matrix model techniques Johnson '19-20
Reinstating $\langle n| \mathcal{O}|m\rangle=$ study boundary two-point function
Leads to similar picture Blommaer-TM-Verschelde '19, Saad '19

Generalizations

Deformation of JT gravity Maxfied-Turiaci ' 20 , Witten '20 $V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi$

Generalizations

Deformation of JT gravity Maxfield-Turiaci ' 20 , Witten '20

$$
V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi
$$

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci '20 $V(\Phi)=\sinh b \Phi$

Generalizations

Deformation of JT gravity Maxfied-Turiaci ' 20 , Witten '20

$$
V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi
$$

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci '20 $V(\Phi)=\sinh b \Phi$

Both described in terms of matrix integrals \Rightarrow same late time behavior of holographic correlators

Generalizations

Deformation of JT gravity Maxfied-Turiaci ' 20 , Witten '20

$$
V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi
$$

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci '20 $V(\Phi)=\sinh b \Phi$

Both described in terms of matrix integrals \Rightarrow same late time behavior of holographic correlators

Higher dimensions?

Generalizations

Deformation of JT gravity Maxfied-Turiaci ' 20 , Witten '20

$$
V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi
$$

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci '20
$V(\Phi)=\sinh b \Phi$
Both described in terms of matrix integrals
\Rightarrow same late time behavior of holographic correlators
Higher dimensions?

- 3d pure $(\Lambda<0)$ gravity
\rightarrow construction of double trumpet amplitude (\rightarrow ramp)
Coter-Jensen '20, but no understanding of topological expansion

Generalizations

Deformation of JT gravity Maxfied-Turiaci ' 20 , Witten '20

$$
V(\Phi)=2 \Phi+\sum_{i} \epsilon_{i} e^{-\alpha_{i} \Phi}, \quad \pi<\alpha_{i}<2 \pi
$$

Minimal string as dilaton gravity Seiberg-Stanford (unpublished), TM-Turiaci '20
$V(\Phi)=\sinh b \Phi$
Both described in terms of matrix integrals
\Rightarrow same late time behavior of holographic correlators
Higher dimensions?

- 3d pure $(\Lambda<0)$ gravity
\rightarrow construction of double trumpet amplitude (\rightarrow ramp)
Cotter-Jensen '20, but no understanding of topological expansion
- textbook holography has fixed Hamiltonian:
$\mathcal{N}=4$ SYM dual to $A d S_{5} \times S^{5}$ type IIB \rightarrow fixed Hamiltonian (no ensemble averaging) \rightarrow no connected topologies ?

Summary

Jackiw-Teitelboim gravity is toy model of quantum gravity, which is both relevant and solvable

Summary

Jackiw-Teitelboim gravity is toy model of quantum gravity, which is both relevant and solvable

Allows us to address open questions in quantum gravity:

- Information paradox (late-time decay and Page curve)
- Remnants of discreteness in the bulk

Summary

Jackiw-Teitelboim gravity is toy model of quantum gravity, which is both relevant and solvable

Allows us to address open questions in quantum gravity:

- Information paradox (late-time decay and Page curve)
- Remnants of discreteness in the bulk

JT gravity is ideal test case to study conceptual questions about quantum gravity

