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We go beyond the state of the art:

1 — New holographic solution
2 — Evolutions of hydrodynamics

3 — Evolutions in BDNK

4 — Fluid/gravity: new examples?
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Hydrodynamics

Why hydrodynamics? —— It describes interesting phenomena:

Quark-Gluon Plasma

Neutron star mergers

B u

— Relevant for groundbreaking research!
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Effective theory
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KCompIicated molecular dynamics Collective description: hvdrodvnar@os
* Two scales well separated: [,,, < L
Universality
* Theories satisfying VﬂT"‘“ — (0 have ahydro regime.
a Complicated partonic dynamics Hydrodynamics— 3\
Quark-gluon - ' y
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Causal hydrodynamics

Constitutive relations

[ T, =Tieal + 9 + 92 +...  Gradientexpansion [, /L J
A LN
71N
Oth order 1st order 2nd order
[ vV, TH =0 Dynamical equations (non linear) J

Causal evolutions are required!

Ideal hydro — Well posed

Viscous hydro —— [l posed

< Usual fix

MIS (BRSSS) —— Well posed
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Holography

— Excellent framework to study hydrodynamics.

— Strongly coupled field theories far from equilibrium from first principles.
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Quark-Gluon Plasma

Hadrons

>
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Holography

Strongly coupled QFT
Out of equilibrium physics
Dual of QCD not known...

Not precision holography

— Qualitative aspects




Holography

What have we learned from holography so far?

Chesler, Yaffe, Casalderrey, Mateos, Heller, van der Schee, ...

* Early hydrodynamization times

* Applicability with large gradients

" * Applicability for small systems

Quark-Gluon Plasma ..
s * Transport coefficients

* MIS fails in the presence of a phase transition
Attems, Bea, Mateos, Casalderrey, Triana, Zilhao 19, ‘20

Hadrons
- -
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Holography: Our model

* Einstein-Hilbert with cosmological constant in 3+1 dimensions.

S ~ j d3t1x /=g (R — 2A)
* Dual to the decoupled sector of the stress tensor of a CFT in 2+1 dim.

* CFT on Minkowski space and we focus on the Poincare patch of AdS.

We obtain solutions:

* Far from equilibrium physics
* No symmetry assumptions

* Numerical relativity to obtain the real-time evolution

e Dynamics in 3+1 dimensions (2+1 in the CFT)
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Holographic solutions

Studied in the literature Our new solution

Deformed plasma

ﬁlasma vacuum

black hole

Poincare horizon

* t — oo homogeneous black brane * t — oo pure AdS

* Captures some physical aspects of QGP

* Cauchy formulation
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Local energy density, t=0
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What are the differences between expanding in
a plasma and in vacuum?
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Hydrodynamics: constitutive relations

Local energy density, t=0

Time

— \We find that it is described by hydro at the center,
at all times.

Local energy density, t=0.5

* Symmetry argument? — Yes!
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Rotational symmetry (Ideal) hydro describes e
Conformal symmetry the center at all times




Hydrodynamics: constitutive relations

' ocal energy density, t=0

Hydro applies Hydro does not apply

e \ /

1010
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y density, t=0.5
°* Symr
' black hole 006
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ROtatIOna| h energy density, t=1
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Interesting questions:

* \Where and when hydro stops applying?
* Why specifically it stops applying?

Time




2 — Dynamical evolutions of
hydrodynamics



Causal hydrodynamics

Microscopic evolution
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Causal hydrodynamics

Ideal hydro evolution Microscopic evolution

Ideal hydro, t=0 Local energy density, t=0
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Causal hydrodynamics

Ideal hydro evolution

Ideal hydro, t=0

BRSSS (viscous) evolution

BRSSS t=0
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Microscopic evolution
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Causal hydrodynamics

Ideal hydro, t=0

Ideal hydro evolution BRSSS (viscous) evolution Microscopic evolution
BRSSS t=0 < . Local energy density, =0
A 10.y z 0
Questions that we want to address: { ‘
‘().()45
Compare hydro evolution with microscopic evolution. —
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Ideal hydro, t=
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Hydro is non-linear: time evolution may differ from pratty, =0t
constitutive relations.

Initialize the data at different timesteps.

‘0.04()
10,035 Eroc
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singular. A
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—— Interesting for heavy-ions!
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3 — Evolutions in BDNK



BDNK

* Recently, a new causal formulation of viscous hydrodynamics was proposed.

Bemfica, Disconzi, Noronha °19
Kovtun ’19

* The idea is to change from the usual Landau frame.

— This allows to obtain hyperbolicity without adding extra
equations or extra variables.

* This formulation only includes first order terms, contrary to MIS.



BDNK

* Recently, a new causal formulation of viscous hydrodynamics was proposed.

Bemfica, Disconzi, Noronha °19
Kovtun ’19

* The idea is to change from the usual Landau frame.

— This allows to obtain hyperbolicity without adding extra
equations or extra variables.

* This formulation only includes first order terms, contrary to MIS.

We perform, for the first time, real-time evolutions using this formulation.
(except for highly symmetric cases as Bjorken flow).

This is a first step towards its implementation in heavy-ions or other relevant scenarios.



BDNK

Ideal hydro evolution

Ideal hydro, t=0
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Microscopic evolution
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Ideal hydro evolution

BDNK

BRSSS (viscous)
evolution
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BDNK

Ideal hydro evolution ~ BRSSS (viscous) BDNK (viscous) . . .
evolution evolution Microscopic evolution

Ideal hydro, t=0 BRSSS t=0 BDNK, t=0 -
15 15 Local energy density, t=0
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Interesting question:
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* Causal theories of viscous hydro differ at
UV: compare BRSSS with BDNK.
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Fluid/gravity

[ Relativistic hydrodynamic

Non-linear map
equations (D dim) }

ﬁ Specific regime of Einstein equations
with AdS asymptotics (D+1 dim)

Classical theory FLUID/GRAVITY Classical theory

* Found in the context of AdS/CFT, but independent statement.

* Natural question: Does the dual of a hydrodynamics solution has a regular horizon?

— Under some assumptions, yes!

* Usual asumption: homogeneous black brane at asymptotically late times.

— Qur solution does not assume that final state.

Does it correspond to a new example of fluid/gravity?
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Fluid/gravity

Another new solution

. Cpmpact black hole - Cloud of scalar field

| |

~Poincare horizon ~Poincare horizon

* No event horizon!

* Hydro applies at the center (same argument)

— New examples of Fluid/Gravity?
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Future directions

Causal Hydrodynamics:

—— Magnetohydrodynamics (beyond weak coupling)

Holography

— Holographic collisions: mimic heavy-ion

collisions surrounded by vaccum
black holes

Poincare horizon
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Hydrodynamics: constitutive relations

— We find that it is described by hydro at the center,
at all times.

* A bit counterintuitive: one may expect a significant
deviation from hydro

* Symmetry argument? —> Yes!

Rotational symmetry (Ideal) hydro describes
Conformal symmetry » the center at all times

s 0 0

VvV
T;;OZ:O: 0 P 0
0 0 P

All higher order terms vanish!

Local energy density, t=0

Time

Local energy density, t=0.5
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Local energy density, t=1
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