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We write x ∼ y if x and y are neighbours in Zd .

Simple random walk (SRW):

Pxy =




(2d)−1, if x ∼ y ,

0, otherwise.
(1)
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A fundamental result about SRWs on integer lattices is Pólya’s
classical theorem:

Theorem
Simple random walk in dimension d is recurrent for d = 1,2
and transient for d ≥ 3.

A well-known interpretation of this fact, attributed to Shizuo
Kakutani, is: “a drunken man always returns home, but a
drunken bird will eventually be lost”. This observation may
explain why birds do not drink vodka.
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Still, recurrence in d = 2 is critical : the return time to the origin
is very heavy-tailed.
Examples: 1m step size. What are the probabilities of
I going out of Paris
I going out of our galaxy (walking on the galactic plane)

before returning to the origin?
See www.fc.up.pt/pessoas/serguei.popov/2srw.pdf
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From now on, let (Sn,n ≥ 0) be two-dimensional simple
random walk, transition probabilities given by

Pxy =





1
4
, if x ∼ y ,

0, otherwise.
(2)
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Let

τ0(A) = inf{k ≥ 0 : Sk ∈ A}, (3)
τ1(A) = inf{k ≥ 1 : Sk ∈ A} (4)

be the entrance and the hitting time of the set A by simple
random walk S (we use the convention inf ∅ = +∞). For a
singleton A = {x}, we will write τi(A) = τi(x), i = 0,1, for short.
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Potential kernel a of the SRW is defined by

a(x) =
∞∑

k=0

(
P0[Sk =0]− Px [Sk =0]

)
. (5)

We have a(0) = 0, a(x) > 0 for x 6= 0.

Also, 1
4
∑

x∼0 a(x) = 1, which implies by symmetry that

a(x) = 1 for all x ∼ 0. (6)
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The function a is harmonic outside the origin, i.e.,

1
4

∑

y :y∼x

a(y) = a(x) for all x 6= 0, (7)

it implies that a(Sk∧τ0(0)) is a martingale.

Further, as x →∞,

a(x) =
2
π
ln ‖x‖+ 2γ + 3 ln2

π
+ O(‖x‖−2) (8)

with γ = 0.5772156 . . . the Euler-Mascheroni constant.
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Define another random walk (Ŝn,n ≥ 0) on Z2 \ {0}:

P̂xy =





a(y)
4a(x)

, if x ∼ y , x 6= 0,

0, otherwise
(9)

(these are transition probabilities due to (7)).

Let

τ̂0(A) = inf{k ≥ 0 : Ŝk ∈ A}
τ̂1(A) = inf{k ≥ 1 : Ŝk ∈ A}.
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The walk Ŝ is the Doob h-transform of the simple random walk,
under the condition of not hitting the origin.

0

R

x0

γ

Pγ ≈ (1/4)|γ| a(R)
a(x0)

P[escape 0] = q

a(x0) ≈ qa(R) by O.S.T.
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Properties of the walk Ŝ:

(i) Ŝ is reversible, with the reversible measure µx := a2(x). on
the two-dimensional lattice with conductances(
a(x)a(y), x , y ∈ Z2, x ∼ y

)
. neighbours of the origin.

Then the process 1/a(Ŝk∧τ̂0(N )) is a martingale. Ŝ is
transient. Moreover, for all x 6= 0, x 6= y , x , y 6= 0

Px
[
τ̂1(x) <∞

]
= 1− 1

2a(x)
, and

Px
[
τ̂0(y) <∞

]
= Px

[
τ̂1(y) <∞

]
=

a(x) + a(y)− a(x − y)
2a(x)

.
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It is curious to observe that

Px
[
τ̂1(y) <∞

]
=

a(x) + a(y)− a(x − y)
2a(x)

implies that, for any x , Px [τ̂1(y) <∞] converges to 1
2 as

y →∞. (Since Ŝ is transient and there are “many ways to
escape” on the plane, one could naturally think that the above
limit would be 0.)
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Notations: define the (discrete) ball

B(x , r) = {y ∈ Z2 : ‖y − x‖ ≤ r}

and we abbreviate B(r) := B(0, r).
The (internal) boundary of A ⊂ Z2 is defined by

∂A = {x ∈ A : there exists y ∈ Z2 \ A such that x ∼ y}.

For a set T ⊂ Z+ (thought of as a set of time moments), let

ŜT =
⋃

m∈T

{Ŝm}

be the range of the walk Ŝ with respect to that set.
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For a nonempty and finite set A ⊂ Z2, let us consider random
variables

R(A) =
∣∣A ∩ Ŝ[0,∞)

∣∣
|A| ,

V(A) =
∣∣A \ Ŝ[0,∞)

∣∣
|A| = 1−R(A);

that is, R(A) (respectively, V(A)) is the proportion of visited
(respectively, unvisited) sites of A by the walk Ŝ (assume it
starts at the origin).
Abbreviate, for M0 > 0,

`A = |A|−1 max
y∈A

∣∣A ∩ B(y , n
lnM0 n

)
∣∣. (10)
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Theorem
Let M0 > 0 be a fixed constant, and assume that
A ⊂ B(n) \ B(n ln−M0 n). Then, for all s ∈ [0,1], we have, with
positive constants c1,2 depending only on M0,

∣∣P[V(A) ≤ s]− s
∣∣ ≤ c1

( ln lnn
lnn

)1/3
+ c2`A

( ln lnn
lnn

)−2/3
, (11)

and the same result holds with R on the place of V.
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The above result means that if A ⊂ B(n) \ B(ε0n) is “big enough
and well distributed”, then the proportion of visited sites has
approximately Uniform[0,1] distribution.
In particular, on can obtain the following

Corollary

Assume that D ⊂ R2 is a bounded open set. Then both
sequences (R(nD ∩ Z2),n ≥ 1) and (V(nD ∩ Z2),n ≥ 1)
converge in distribution to the Uniform[0,1] random variable.

Indeed, it is straightforward to obtain it from the theorem since
(note that D contains a disk) |nD ∩ Z2| is of order n2 as n→∞,
and so `nD∩Z2 will be of order ln−2M0 n, with an arbitrarily
large M0.
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Also, we prove that the range of Ŝ contains many “big holes”.
To formulate this result, we need the following

Definition
We say that a set G ⊂ R2 does not surround the origin, if
I there exists c1 > 0 such that G ⊂ B(c1), i.e., G is bounded;
I there exist c2,3 > 0 and a function f = (f1, f2) : [0,1] 7→ R2

such that f (0) = 0, ‖f (1)‖ = c1, |f ′j (s)| ≤ c2 for all s ∈ [0,1],
and

inf
s∈[0,1],y∈G

‖(f1(s), f2(s))− y‖ ≥ c3,

i.e., one can escape from the origin to infinity along a path
which is uniformly away from G.
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0

G

Theorem
Let G ⊂ R2 be a set that does not surround the origin. Then,

P
[
nG ∩ Ŝ[0,∞) = ∅ for infinitely many n

]
= 1. (12)
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Recall that a set is called recurrent with respect to the Markov
chain, if it is visited infinitely many times almost surely; a set is
called transient, if it is visited only finitely many times almost
surely.

Note that, in general, a set can be neither recurrent nor
transient — think e.g. of the simple random walk on a binary
tree, fix a neighbor of the root and consider the set of vertices
of the tree connected to the root through this fixed neighbor.

It is clear that any nonempty set is recurrent with respect to a
recurrent Markov chain, and every finite set is transient with
respect to a transient Markov chain.
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In many situations it is possible to characterize completely the
recurrent and transient sets, as well as to answer the question if
any set must be either recurrent or transient.

For example, for the simple random walk in Zd , d ≥ 3, each set
is either recurrent or transient and the characterization is
provided by Wiener’s test, formulated in terms of capacities of
intersections of the set with exponentially growing annuli.
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Now, for the conditioned two-dimensional walk Ŝ the
characterization of recurrent and transient sets is particularly
simple:

Theorem
A set A ⊂ Z2 is recurrent with respect to Ŝ if and only if A is
infinite.
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Let us define the “future minimum”

Mn := min
m≥n
‖Ŝm‖;

by transience, Mn →∞ a.s.

Theorem
For every 0 < δ < 1

2 we have, almost surely,

Mn ≤ nδ i.o. but Mn ≥
√

n
lnδ n

i.o.

and, on the other hand,

eln1−δ n ≤ Mn ≤
√

n ×
√

(e + δ)(ln lnn) eventually.
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Encounters: consider two independent Ŝ-walks, denoted Ŝ1

and Ŝ2, and also an independent SRW S.

Theorem
Let x1, x2 ∈ Z2 \ {0} have the same parity. Then, we have

Px1,x2

[
Ŝ1

n = Ŝ2
n i.o.

]
= 1,

and
Px1,x2

[
Ŝ1

n = Sn i.o.
]
= 1.
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We abbreviate τ1(R) = τ1(∂B(R)). We will consider, with a
slight abuse of notation, the function

a(r) =
2
π
ln r +

2γ + 3 ln2
π

of a real argument r ≥ 1. Then, we get

∑

y∈∂B(x ,r)

ν(y)a(y) = a(r) + O
(‖x‖ ∨ 1

r

)
(13)

for any probability measure ν on ∂B(x , r).
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Using optional stopping theorem applied to the
martingale a(Sn∧τ0(0)), we obtain for all x ∈ Z2 and R ≥ 1 such
that x , y ∈ B(R), x 6= y

Px [τ1(R) < τ1(y)] =
a(x − y)

a(R) + O
(
R−1(‖y‖ ∨ 1)

) , (14)

as R →∞.
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Also, using martingale 1/a(Ŝk∧τ̂0(N )) yields

Px [τ̂1(R) < τ̂1(r)] =
(a(r))−1 − (a(x))−1 + O(R−1)

(a(r))−1 − (a(R))−1 + O(r−1)
, (15)

for 1 < r < ‖x‖ < R <∞.
Sending R to infinity in (15) we see that for 1 ≤ r ≤ ‖x‖

Px [τ̂1(r) =∞] = 1− a(r) + O(r−1)

a(x)
. (16)

We also need (and have) the fact that the walks S and Ŝ are
almost indistinguishable on a “distant” (from the origin) set.
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Refined bounds on the hitting probabilities for excursions of the
conditioned walk:

B(n) \ B
(

n
lnM0 n

)

∂B(n lnn)
∂B(n ln2 n)

A

Ex0 Ex1

Ex2

Figure: Excursions and their visits to A
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Let us assume that ‖x‖ ≥ n ln−M0 n and y ∈ A, where the set A
is as in Theorem 3.1. Also, abbreviate R = n ln2 n.

Lemma
In the above situation, we have

Px [τ̂1(y) < τ̂1(R)] (17)
=

(
1 + O(ln−3 n)

)

×a(x)a(R) + a(y)a(R)− a(x − y)a(R)− a(x)a(y)
a(x)(2a(R)− a(y))

.
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Theorem
Let M0 > 0 be a fixed constant, and assume that
A ⊂ B(n) \ B(n ln−M0 n). Then, for all s ∈ [0,1], we have, with
positive constants c1,2 depending only on M0,

∣∣P[V(A) ≤ s]− s
∣∣ ≤ c1

( ln lnn
lnn

)1/3
+ c2`A

( ln lnn
lnn

)−2/3
, (18)

and the same result holds with R on the place of V.
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Idea:
We consider the visits to the set A during excursions of the walk
from ∂B(n lnn) to ∂B(n ln2 n), see Figure 1.

The crucial argument is the following: the randomness of V(A)
comes from the number of excursions and not from the
excursions themselves. If the number of excursions is around
c × ln n

ln ln n , then it is possible to show (using a standard
weak-LLN argument) that the proportion of uncovered sites in A
is concentrated around e−c . On the other hand, that number of
excursions can be modeled roughly as Y × ln n

ln ln n , where Y is an
Exponential(1) random variable.

Then, P[V(A) ≤ s] ≈ P[Y ≥ ln s−1] = s, as required.
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Theorem
A set A ⊂ Z2 is recurrent with respect to Ŝ if and only if A is
infinite.
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We only need to prove that every infinite subset of Zd is
recurrent for Ŝ. Basically, this is a consequence of the fact that,
due to

Px
[
τ̂0(y) <∞

]
= Px

[
τ̂1(y) <∞

]
=

a(x) + a(y)− a(x − y)
2a(x)

.

we have
lim

y→∞
Px0

[
τ̂1(y) <∞

]
=

1
2

(19)

for any x0 ∈ Z2.
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Indeed, let Ŝ0 = x0; since A is infinite, by (19) one can
find y0 ∈ A and R0 such that {x0, y0} ⊂ B(R0) and

Px0

[
τ̂1(y0) < τ̂1(R0)

]
≥ 1

3
.

Then, for any x1 ∈ ∂B(R0), we can find y1 ∈ A and R1 > R0
such that y1 ∈ B(R1) \ B(R0) and

Px1

[
τ̂1(y1) < τ̂1(R1)

]
≥ 1

3
.
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Continuing in this way, we can construct a sequence
R0 < R1 < R2 < . . . (depending on the set A) such that, for
each k ≥ 0, the walk Ŝ hits A on its way from ∂B(Rk )
to ∂B(Rk+1) with probability at least 1

3 , regardless of the past.
This clearly implies that A is a recurrent set.
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Questions?
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