Categorification of Verma modules in low-dimensional topology

Pedro Vaz (Université catholique de Louvain)

 $JWW \subset \{Abel Lacabanne, Grégoire Naisse, Ruslan Maksimau, Elia Rizzo\}$

IST Lisboa - January 2021

$Topology \cap RT \cap Verma \ modules$

Verma modules are fundamental objects in rep. theory of Lie algebras (e.g. every f.d. irreducible of a Lie algebra is a quotient of a Verma).

Beyond its interest in RT, there were recently found to have applications to topology :

• braid grp reps: Burau, Lawrence–Krammer–Bigelow (Jackson–Kerler '11),

- HOMFLYPT invariants (Naisse-V. '17),
- annular Jones invariants (lohara-Lehrer-Zhang 18'),

Keywords/minitoc :

→ Links in H_g • Jones poly. of type B • blob algebra • Verma modules
 → Higher Rep.Theory • 2-Verma modules • 2-blob algebra.

This is the first mathematical slide

Suppose you have a link in a solid torus

This gives rise to three different kinds of link diagrams :

Extending invariants like Jones's \mathfrak{sl}_2 -link polynomial from S^3 to the solid torus results in the Jones poly. of type B (Geck–Lambropoulou '97).

This (and similar invs) generalizes to higher genus handlebodies : just think of link diagrams on a disk with g-punctures, or wiggling around g poles (the cylinder is a particular case that only seems to work for g = 1).

C This is where things get different ! If you want to do braids/tangles you need to use poles (how do you compose tangles in disk with g > 1 punctures ?) If you plan to think of more general 3-manifolds it is perhaps useful to use tangles...

 \mathfrak{L} \exists interesting categorification for the cylinder by Ehrig and Tubbenhauer '17. \mathfrak{L} For $WRT(g = 1, \mathfrak{g} = \mathfrak{gl}_k, \mathfrak{p} \subseteq \mathfrak{g})$: Lacabanne–V. '20.

Goal of this talk

C explain a categorification of the Jones polynomial for links in the solid torus in the pole picture via a categorification of the blob algebra.

ILZ's blob algebra and the pole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 0+1 TQFT. Consider (quantum) \mathfrak{sl}_2 and its 2-dim irrep $V = \mathbb{C}^2(q)$. Since \mathfrak{sl}_2 is a Hopf algebra its category of f.d. reps is monoidal. It is even braided...

COperator-invariant of tangles

ILZ's blob algebra and the pole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 0+1 TQFT. Consider (quantum) \mathfrak{sl}_2 and its 2-dim irrep $V = \mathbb{C}^2(q)$. Since \mathfrak{sl}_2 is a Hopf algebra its category of f.d. reps is monoidal. It is even braided...

COperator-invariant of tangles

ILZ's blob algebra and the pole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 1+1 TQFT. Consider (quantum) \mathfrak{sl}_2 and its 2-dim irrep $V = \mathbb{C}^2(q)$. Since \mathfrak{sl}_2 is a Hopf algebra its category of f.d. reps is monoidal. It is even braided...

C Operator-invariant of tangles !

$The \ Temperlery-Lieb \ algebra$

Pick your favorite natural number d. Then

 $\operatorname{End}_{\mathfrak{sl}_2}(V^{\otimes d}) = \operatorname{TL}_d$

is generated by (d strands)

 \cdots and $\cdots \Join \cdots$ (d-1 of them)

modulo planar isotopies and the local relation $\bigcirc = -(q + q^{-1})$.

If one wants to extend WRT to links in a solid torus, one has do deal with the pole. Note that we had pushed the diagram to the right...

The Temperlery-Lieb algebra

Pick your favorite natural number d. Then

 $\operatorname{End}_{\mathfrak{sl}_2}(V^{\otimes d}) = \operatorname{TL}_d$

is generated by (d strands)

 \cdots and \cdots \sim \cdots (d-1 of them)

modulo planar isotopies and the local relation $\bigcirc = -(q + q^{-1})$.

If one wants to extend WRT to links in a solid torus, one has do deal with the pole. Note that we had pushed the diagram to the right...

The solution is ... Verma modules !

Verma modules are certain infinite-dimensional representations that have several remarkable properties. For example, every f.d. irrep is a quotient of a Verma module.

This is the universal Verma module for \mathfrak{sl}_2 , irred. over the field $\Bbbk(\lambda, q)$.

P. VA

2-VERMAS IN TOPOLOGY

The blob algebra (Martin-Saleur '94)

lohara–Lehrer–Zhang '18 : $\operatorname{End}_{\mathfrak{sl}_2}(M(\lambda)\otimes V^d)=\mathcal{B}_d(\lambda,q)$

♪ Note that the Verma appears at the left (we have pushed our link diagram to the right).

 \bigwedge The double braiding $\overleftarrow{}$ is not a composite of two crossings.

The blob algebra

The blob algebra

is defined by generators (one blue and d red strands)

together with the identity, modulo planar isotopies and the local relations ${\color{black} {\rm O}}=-(q+q^{-1}),$ and

It sounds like a plan!

Recall that we want to see ...

... a categorification of the Jones polynomial for links in the solid torus in the pole picture via a categorification of the blob algebra.

• The main tool is a categorification of a \otimes of a Verma module and several irreps of dim = 2, which is realized as derived category of a certain DGA.

 \bullet The commuting 2-actions of \mathfrak{sl}_2 and of the blob algebra are then realized via DG-functors.

 $\label{eq:login} $$ begin{Advertising Higher Representation Theory} \\$

Actions on categories ? HRT!

Actions of groups, algebras ..., on **categories** rather than vector spaces.

• Categorical actions of Lie algebras : first developed by Chuang and Rouquier (2004) to solve a conjecture on modular rep. theory of the symmetric group called the Broué conjecture (parallel ideas by Frenkel, Khovanov and Stroppel based on earlier work of Khovanov and cols).

• This was boosted by the categorification of quantum groups by Lauda, Khovanov–Lauda and Rouquier. Converged to what is called nowadays Higher Representation Theory.

• Usual basic structures of rep. theory (v. spaces and linear maps) get replaced by category theory analogs (categories and functors) \Rightarrow richer (higher) structure invisible to traditional rep.theory.

Higher Representation Theory

\end{Advertising Higher Representation Theory}

cyclotomic KLRW algebras

Khovanov-Lauda-Rouquier-Webster '08-'10

Categorifications of tensor products of f.d. irreps are given through cyclotomic KLRW algebras.

These are **algebraic categorifications** : We work with (certain) categories of modules over certain \Bbbk -algebras where \mathfrak{g} acts via (certain) endofunctors.

replacing weight spaces by categories,

and

- defining functors E and F that
 - move between the weight spaces and
 - satisfy the sl₂-relations.

Khovanov-Lauda, Rouquier & Webster's catq's

Fix a field k.

 \mathfrak{C} The following exists equally for \mathfrak{g} of symmetrizable type and with the red strands labelled by dominant integral g-weights.

Definition

The KLRW algebra T_{d+1} is the graded, associative, unital k-algebra generated by isotopy classes of braid-like diagrams

- Strands can either be black or red
 - there are d+1 red strands, which cannot intersect each other.
 - black strands can cross red strands and each other and they can carry dots
- Multiplication is concatenation.

Generators are required to satisfy local relations. For example :

 \mathcal{C} The cyclotomic condition makes T_{d+1} f.d. Without it we have an affine algebra : call it T_{d+1}^{aff} .

Write $T_{d+1}(\nu)$ for the subalgebra of all diagrams having ν black strands. We have $\bigoplus_{\nu\geq 0}T_{d+1}(\nu)=T_{d+1}.$

Categorical \mathfrak{sl}_2 -action

Define

$$\mathbf{F}^{d+1}(\nu) \colon T_{d+1}(\nu) \operatorname{-mod}_{g} \to T_{d+1}(\nu+1) \operatorname{-mod}_{g}$$

as the functor of *induction* for the map that adds a black strand at the right of a diagram from $T_{d+1}(\nu)$, and let $\mathbf{E}^{d+1}(\nu)$ be its *right adjoint* (/shift).

These functors have very nice properties...

Theorem (Webster '10) :

 \triangleright The functors \mathbf{E}^{d+1} and \mathbf{F}^{d+1} are *biadjoint* and

▷ the composites $\mathbf{E}^{d+1}\mathbf{F}^{d+1}(\nu)$ and $\mathbf{F}^{d+1}\mathbf{E}^{d+1}(\nu)$ satisfy a *direct sum decomposition* lifting the commutator relation.

$$\mathbf{E}^{d+1}\mathbf{F}^{d+1}(\nu) \simeq \mathbf{F}^{d+1}\mathbf{E}^{d+1}(\nu) \oplus_{[d+1-2\nu]} \mathrm{Id}(\nu) \qquad \text{if } d+1 \ge \nu,$$

 $\mathbf{F}^{d+1}\mathbf{E}^{d+1}(\nu) \simeq \mathbf{E}^{d+1}\mathbf{F}^{d+1}(\nu) \oplus_{[2\nu-d-1]} \mathrm{Id}(\nu) \qquad \text{ if } d+1 \leq \nu.$

 \triangleright Moreover, $K_0(T_{d+1}) \cong V^{\otimes (d+1)}$ (as \mathfrak{sl}_2)-modules)

Categorification of tensor products with a Verma \blacksquare

? The idea is to see T_{d+1} as a dg-algebra with zero differential and "integrate" the cyclotomic condition

$$\cdots = 0$$

into a *dg-algebra* $(\mathcal{T}_{(1,d)},\partial)$, together with a quasi-isomorphism

 $(\mathcal{T}_{(1,d)},\partial)\simeq(T_{d+1},0).$

• To construct such an algebra we note that T_{d+1}^{aff} acts on T_{d+1} (the first is ∞ -dim while the second is f.d.).

• Writing a free resolution of T_{d+1} as a module over T_{d+1}^{aff} one gets a DGA $(\mathcal{T}_{(1,d)},\partial)$ whose homology is T_{d+1} (this is nontrivial).

Will it work?

Basically, we intend to categorify the rational fraction $\frac{\lambda q^{-k} - \lambda^{-1} q^k}{q - q^{-1}}$.

• We know that a categorification of multiplication by [n] is $\mathbb{Q}[X]/X^n$ (secretly this is $H(G_1(n))$ via grading shifts of some id. functor $\bigoplus_{[n]} \mathrm{Id}$

• But $\mathbb{Q}[X]/X^n$ is a module over $\mathbb{Q}[X]$ (secretly this is $H(G_1(\infty))$) for which

$$\mathbb{Q}[X]/X^n \longleftarrow \mathbb{Q}[X] \xleftarrow{X^n} \mathbb{Q}[X]$$

gives as a free resolution (grading shifts involved !).

• We can write this as a DGA $(\mathbb{Q}[X, \omega]/\omega^2, \partial)$ with $\partial X = 0$, $\partial \omega = X^n$, which has homology $\mathbb{Q}[X]/X^n$.

• Tensoring M with $\mathbb{Q}[X,\omega]/\omega^2$ gives ...

Will it work?

Basically, we intend to categorify the rational fraction $\frac{\lambda q^{-k} - \lambda^{-1} q^k}{q - q^{-1}}$.

• We know that a categorification of multiplication by [n] is $\mathbb{Q}[X]/X^n$ (secretly this is $H(G_1(n))$ via grading shifts of some id. functor $\bigoplus_{[n]} \mathrm{Id}$

• But $\mathbb{Q}[X]/X^n$ is a module over $\mathbb{Q}[X]$ (secretly this is $H(G_1(\infty))$) for which

$$\mathbb{Q}[X]/X^n \longleftarrow \mathbb{Q}[X] \xleftarrow{X^n} \mathbb{Q}[X]$$

gives as a free resolution (grading shifts involved !).

• We can write this as a DGA $(\mathbb{Q}[X, \omega]/\omega^2, \partial)$ with $\partial X = 0$, $\partial \omega = X^n$, which has homology $\mathbb{Q}[X]/X^n$.

• Tensoring M with $\mathbb{Q}[X,\omega]/\omega^2$ gives ... $\frac{\lambda q^{-k}-\lambda^{-1}q^k}{q-q^{-1}}[M]$ (O hooray!) in (an appropr. defined) K_0 .

One can give a presentation of $(\mathcal{T}_{(1,d)}, \partial)$

dg-enhancement of cyclotomic KLRW algebras

• Replace the first red strand in the diagrams from T_{d+1} by a blue strand (secretelly labeled λ).

For example,

Black strands can be pinned to the blue strand, which we depict as

New generator ! (homological degree 1)

$$\partial\left(\mathbf{k}\right) = \mathbf{k}$$

 ∂ (all other generators) = 0

+ gr.Leibniz rule w.r.t. the hom. grading.

 $rightharpoonup When no diff. : new <math>\lambda$ -grading.

Categorification of tensor products with a Verma

• The generators are required to satisfy the local relations of T_{d+1} and = 0 = -

The (super)algebra $\mathcal{T}_{(1,d)}$ is free, acts faithfully on a supercommutative ring. For $\mathfrak{g} = \mathfrak{sl}_r$ it is isomorphic to a (higher level) Hecke algebra of type A (Rizzo : this generalizes Maksimau–Stroppel '18 and Maksimau–V. '19).

Theorem (Lacabanne-Naisse-V. '20)

The dg-algebra $(\mathcal{T}_{(1,d)},\partial)$ is formal with

$$H(\mathcal{T}_{(1,d)},\partial) \cong T_{d+1}.$$

V Now just forget there is a differential on $\mathcal{T}_{(1,d)}$.

To define an \mathfrak{sl}_2 -categorical action we use the map that adds a vertical black strand at the right of a diagram from $\mathcal{T}_{(1,d)}$:

Writing $\mathcal{T}_{(1,d)}=\bigoplus_{\nu\geq 0}\mathcal{T}_{(1,d)}(
u)$, this gives rise to a functor of *induction*

$$\mathbf{F}^{(1,d)}(\nu) \colon \mathcal{T}_{(1,d)}(\nu) \operatorname{-mod}_{g} \to \mathcal{T}_{(1,d)}(\nu+1) \operatorname{-mod}_{g}$$

between (suitable!) categories of modules. We also set $E^{(1,d)}(\nu)$ as its *right adjoint* (/shift). They are not biadjoint. Theorem (Lacabanne-Naisse-V. '20) These functors fit in a SES

$$0 \to \mathbf{E}^{(1,d)}\mathbf{F}^{(1,d)}(\nu) \longrightarrow \mathbf{F}^{(1,d)}\mathbf{E}^{(1,d)}(\nu) \longrightarrow \oplus_{[\lambda,2\nu]} \mathrm{Id}(\nu) \to 0,$$

Here, for
$$N \in \mathbb{Z}$$
, $[\lambda_i, N] = \frac{\lambda_i q^{-N} - \lambda_i^{-1} q^N}{q - q^{-1}}$.

In the sequel it is better to work in the derived category.

Let $\mathcal{D}_{dg}(\mathcal{T}_{(1,d)}, 0)$ be the derived dg-category of dg-modules over $(\mathcal{T}_{(1,d)}, 0)$. $rac{1}{2}$ The previous theorem can be restated as a quasi-isomorphism

$$\operatorname{Cone}\left(\mathrm{E}^{(\mathbf{1},\mathbf{d})}\mathrm{F}^{(\mathbf{1},\mathbf{d})}(\nu)\longrightarrow\mathrm{F}^{(\mathbf{1},\mathbf{d})}\mathrm{E}^{(\mathbf{1},\mathbf{d})}(\nu)\right)\xrightarrow{\cong}\oplus_{[\lambda,2\nu]}\mathrm{Id}(\nu),$$

of dg-functors.

Bringing the differential ∂ into the picture we can define analogous of the functors $F^{(1,d)}$ and $E^{(1,d)}$ on $\mathcal{D}_{dg}(\mathcal{T}_{(1,d)},\partial)$.

The previous q.i. descends to a q.i. of mapping cones ($\alpha = d + 1 - 2\nu$)

$$\operatorname{Cone}\left(\operatorname{E}_{\partial}^{(1,d)}\operatorname{F}_{\partial}^{(d+1)}(\nu) \longrightarrow \operatorname{F}_{\partial}^{(1,d)}\operatorname{E}_{\partial}^{(1,d)}(\nu)\right) \xrightarrow{\cong} \operatorname{Cone}\left(\bigoplus_{p\geq 0} q^{1+2p+\alpha}\operatorname{Id}(\nu) \xrightarrow{2} \bigoplus_{p\geq 0} q^{1+2p-\alpha}\operatorname{Id}(\nu)\right) \cong \bigoplus_{[\alpha]} \operatorname{Id}(\nu)$$

Theorem (Lacabanne–Naisse–V. '20)

There are isomophisms of \mathfrak{sl}_2 -modules

$$\mathbf{K}_0^{\Delta}(\mathcal{T}^{(1,d)}, 0) \cong M(\lambda) \otimes V^{\otimes d}, \\ \mathbf{K}_0^{\Delta}(\mathcal{T}^{(1,d)}, \partial) \cong V \otimes V^{\otimes d} \cong V^{\otimes (d+1)}$$

$A \ categorical \ blob \ action$

Following Webster we define the cup bimodule B_i for $1 < i \le d-2$ as the $(\mathcal{T}^{(1,d-2)},\mathcal{T}^{1,d})$ -bimodule generated by the diagram

$$\left[\begin{array}{c} \dots \\ i-1 \end{array} \right] \quad \bigcup \quad \dots \quad \left[\begin{array}{c} \dots \\ n-1 \end{array} \right]$$

with additional black strands crossing the diagram.

The generator is placed in
$$\deg_{h,q,\lambda}\left(\bigcup\right) = (0,0,0).$$

The diagrams are taken up to regular isotopy, and subjected to the same local relations as $\mathcal{T}^{1,d}$ together with the extra local relations

$$= 0, \qquad = 0, \qquad = - , \quad \text{etc...}$$

The cap bimodule \overline{B}_i is defined similarly, by taking the mirror along the horizontal axis of B_i . However, $\deg_{h,q,\lambda}\left(\bigcap\right) = (-1, -1, 0)$.

Set $\mathcal{T} = \bigoplus_{d \ge 0} \mathcal{T}_{(1,d)}$. One define the coevaluation and evaluation dg-functors as

$$B_i := B_i \otimes_{\mathcal{T}}^{L} - : \mathcal{D}_{dg}(\mathcal{T}^{(1,d-2)}, 0) \to \mathcal{D}_{dg}(\mathcal{T}^{(1,d)}, 0),$$
$$\overline{B}_i := \overline{B}_i \otimes_{\mathcal{T}}^{L} - : \mathcal{D}_{dg}(\mathcal{T}^{(1,d)}, 0) \to \mathcal{D}_{dg}(\mathcal{T}^{(1,d-2)}, 0).$$

The double braiding bimodule X is the $(\mathcal{T}^{(1,d)},\mathcal{T}^{(1,d)})\text{-bimodule}$ generated by the diagram

$$\underbrace{ \left[\begin{array}{c} \cdots \\ d-1 \end{array} \right]}_{d-1} \quad \deg_{(h,q,\lambda)} \left(\begin{array}{c} \swarrow \\ \end{array} \right) = (0,0,-1)$$

with local relations

We define the double braiding functor as

$$\Xi := X \otimes_{\mathcal{T}}^{\mathbf{L}} - : \mathcal{D}_{dg}(\mathcal{T}^{(1,d)}, 0) \to \mathcal{D}_{dg}(\mathcal{T}^{(1,d)}, 0).$$

In order to prove the (categorical) relations of $\mathcal{B}_d(\lambda, q)$ one needs resolutions of the bimodules involved, and this takes us to the world of A_∞ -bimodules.

Proposition (Lacabanne-Naisse-V. '20)

- The functor $\Xi : \mathcal{D}_{dg}(T^{\lambda,r}, 0) \to \mathcal{D}_{dg}(T^{\lambda,r}, 0)$ is an autoequivalence, with inverse given by $\Xi^{-1} := \operatorname{RHOM}_T(X, -)$.
- **2** There are natural isomorphisms of functors $\mathbf{E} \circ \Xi \cong \Xi \circ \mathbf{E}$, $\mathbf{E} \circ \mathbf{B}_i \cong \mathbf{B}_i \circ \mathbf{E}$ and $\mathbf{E} \circ \overline{\mathbf{B}}_i \cong \overline{\mathbf{B}}_i \circ \mathbf{E}$ (similarly for \mathbf{F} in the place of \mathbf{E}).
- **(3)** There are quasi-isomorphisms of A_{∞} -bimodules

$$\mathcal{T}^{(1,d)} \xrightarrow{\simeq} \bar{B}_{i\pm 1} \otimes^{\mathbf{L}}_{\mathcal{T}} B_i,$$
$$q(\mathcal{T}^{(1,d)})[1] \oplus q^{-1}(\mathcal{T}^{(1,d)})[-1] \xrightarrow{\simeq} \bar{B}_i \otimes^{\mathbf{L}}_{\mathcal{T}} B_i.$$

The q.i. above correspond to

$$= 0 \quad \text{and} \quad = -q - q^{-1}$$

Theorem (Lacabanne-Naisse-V. '20)

There is a quasi-isomorphism

$$\operatorname{Cone}\left(\lambda q^{2}\Xi[1] \to q^{2}\operatorname{Id}[1]\right)[1] \xrightarrow{\simeq} \operatorname{Cone}\left(\Xi \circ \Xi \to \lambda^{-1}\Xi\right)$$

of dg-functors, and a quasi-isomorphism

$$\lambda q(\mathcal{T}^{(1,d)})[1] \oplus \lambda^{-1} q^{-1}(\mathcal{T}^{(1,d)})[-1] \xrightarrow{\simeq} \bar{B}_1 \otimes^{\mathbf{L}}_{\mathcal{T}} X \otimes^{\mathbf{L}}_{\mathcal{T}} B_1,$$

of A_∞ -bimodules.

These correspond to the last two defining relations of $\mathcal{B}_d(\lambda, q)$:

$$\lambda q^2 \mathbf{H} - q^2 \mathbf{H} = \mathbf{H} - \lambda^{-1} \mathbf{H}$$

and

$$-(\lambda q + \lambda^{-1} q^{-1}) = \bigcirc$$

Final remarks

• A link diagram with a pole gives a functor from $\mathcal{D}_{dg}(\mathcal{T}^{(1,0)},0)$ to itself, categorifying the Jones invariant.

At the time beeing we cannot tell this is equivalent to APS...

give a htpy construction (calculational-friendly) of the 2-blob (imitating Mackaay–Webster seems too technical at the moment)...

- $\textbf{@ other } \mathfrak{g's, other } V's$
- several poles
- ④ · · ·

• A different application (Naisse–V. '17) of categorification of parabolic Verma modules for \mathfrak{gl}_{2n} allows a HRT construction of Khovanov–Rozansky HOMFLYPT homology (the connection between HOMFLYPT polynomial and Verma modules was not known before).

Thanks for your attention !

Geometric constructions?

Higher structure?

 \mathbb{Z} -h w 2-Vermas?

 $(2-\mathcal{O}?)$

2-Vermas

Topology

HOMFLYPT HKhR w/ Naisse

. . .

Annular HKh w/ Lacabanne, Naisse

2-blob algebra w/ Lacabanne, Naisse

2-Ariki-Koike? 2-row quotients (generalized blob)? Hecke algebras / S_n -reps w/ Maksimau, Rizzo

2-representation theory?

à la Mazorchuck-Miemietz-Mackaay et al.