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Purpose of the seminar

To explain the basic philosophy of Monte Carlo methods and

suggest how they can be used to solve various problems.

To show how random games (Monte Carlo methods) can be

designed whose outcomes approximate solutions to differential

equations.
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Monte Carlo Methods (an Introduction)

Definition

Is a broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results.

Using in physical and mathematical problems and are most

useful when it is difficult or impossible to use other

mathematical methods.

Is mainly used in three distinct problem classes: optimization,

numerical integration, and generating draws from a probability

distribution.
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A breif history

Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has

probabilistic interpretations and MC algorithms for linear

elliptic and parabolic problems.

Fermi/von Neumann: Use Monte Carlo in the calculation of

neutron diffusion 1930.

Ulam: He realised that computers could be used to solve such

problems 1940.

Many papers on Monte Carlo simulation appeared in physics

literature 1950. The first major paper was published by

Metropolis et al in 1953.
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Generalisation of the Metropolis algorithm by Hastings which

led to development of MC 1970.

Important papers appeared in the fields of computer vision

and artificial intelligence but there were few significant

publications in the field of statistics 1980.

MC made the first significant impact in statistics in the work

of Gelfand and Smith.

Kac and Donsker: Used large deviation calculations to

estimate eigenvalues of a linear Schrodinger equation.

Forsythe and Leibler: Derived a MCM for solving special linear

systems related to discrete elliptic PDE problems.
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The basic philosophy

The basic idea here is that games of chance (like throwing

darts,...) can be played (generally on a computer) whose

outcomes approximate solutions to real-word problems.

First of all Monte Carlo methods are procedures for solving

nonprobabilistic-type problems (problems whose outcome does

not depend on chance) by probabilistic-type methods

(methods whose outcome depends on chance).
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The general philosophy of Monte-Carlo methods

9 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

Why Monte Carlo method?!!

A standard Monte Carlo method provides an approximation at

a given point without evaluating the values at other points.

The PDE methods where some stability conditions may be

required (like the Courant-Friedrichs-Lewy condition), the

above Monte Carlo method does not require any extra

condition to converge: it is unconditionally convergent.

Since a Monte Carlo method provides random evaluations of

E(X), different program runs will give different results (as a

difference with a deterministic method which systematically

has the same output).
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The memory required to run a PDE algorithm increases

exponentially with the dimension, as a difference with a

Monte Carlo approach.

It is commonly admitted that a PDE approach is more

suitable and efficient in dimension 1 and 2, whereas a Monte

Carlo procedure is more adapted for higher dimensions.

On the other hand, a PDE-based method computes a global

approximation of u (at any point (t, x)), while a Monte Carlo

scheme gives a pointwise approximation only.
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The approach is useful in these areas of application

whenever:

1 There is no other analytical or numerical solution to the

problem,

2 Checking the validity of new stochastic, numerical or

analytical methods,

3 Developing models for complex processes, and checking them

against experimental values,

4 Monte Carlo can offer in some cases a faster approach than

other methods such as finite differences, particularly in

multidimensional problems.
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Evaluating an integral

To illustrate the method, suppose we want to evaluate the

integral

I =

∫ b

a
f (x)dx

(a nonprobabilistic problem).

To use the Monte Carlo method, we would devise a game of

chance whose outcome is the value of the integral (or

approximates the integral).

There are, of course, many games that we could devise; the

actual game we use would depend on the accuracy of the

approximation, simplicity of the game, and so on.
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An obvious game to evaluate the integral would be throwing

darts at the rectangle

R = {(x , y) : a ≤ X ≤ b, 0 ≤ y ≤ maxf (x)}

Evaluation of an integral by the monte carlo method
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Its fairly obvious that if we randomly toss 100 or so darts at

the rectangle R enclosing the graph,

Hence, our outcome of the game

Î=[fraction of tosses under f (x)]×(area of R)

is used to estimate the true value of the integral I.

To carry out the actual computation on a computer, we would

have to generate the sequence of random points in some

way and have the computer play the dart tossing game.

Assuming for the time that we have a sequence of random

points then the flow diagram of the problem is as follows
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Flow diagram to evaluate
∫ b

a
f (x)dx by the Monte Carlo method (100

tosses)
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Random Numbers

Everything comes down to the question, how do we generate a

sequence of random numbers {ri ; i = 1, 2, ...} uniformly distributed

in [0; 1] to compute a random number xi inside [a; b]

xi = a + (b − a)ri
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Residue algorithm for generating random numbers

To generate a sequence of random integers (between 0 and P), we

use the residue algorithm.

1 Pick the first random integer any way you like between 0 and

P (P was picked in advance).

2 Multiply this random integer by some fixed integer M (picked

in advance).

3 Add to that product another fixed integer K (picked in

advance).

4 Divide the resulting sum by P and pick the remainder as the

new random integer. Now go back to step 2 and repeat steps

2-4 until you have enough random integers.
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This residue algorithm can be written as

ri+1 = (Mri + k)modP, i = 0, 1, 2, ...

which says, if we are given a random integer ri , then to compute a

new one ri+1, we multiply by M, add K, divide by P, and pick the

remainder.
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Remarks

If we choose, for example, P = 100 in our random number

generator, the remainders will be one of the integers

0, 1, 2, ..., 99, and, hence, our entire process will start

repeating before long.

In fact, our random numbers might be

15, 71, 43, 7, 43, 7, 43, 7, (Cycle of two numbers)

and, hence, our method is not good.
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It can be proven mathematically that if the numbers M, K,

and P are chosen according to certain rules, then no matter

how we pick the first random number r0, the algorithm will

generate the entire residue class.

So, if we pick P very large (like 240), we are assured that (for

practical purposes) the process will never repeat.

21 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

Monte Carlo solution of PDEs

The linear second order elliptic partial differential equation

L[u] = F (x , y) (1)

with the operator L[.] defined by

L[u] = Auxx + 2Buxy + Cuyy + Dux + Euy ,

where {A,B,C ,D,E} are all functions of (x , y). The operator L[.]

may be discretized to yield the approximation:
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L[u] 'Ai ,j [
vi+1,j − 2vi ,j + vi−1,j

(∆x)2
]

+ 2Bi ,j [
vi+1,j+1 − vi ,j+1 − vi+1,j + vi ,j

(∆x)(∆y)
]

+ Ci ,j [
vi ,j+1 − 2vi ,j + vi ,j−1

(∆y)2
] + Di ,j [

vi+1,j − vi ,j
∆x

] (2)

+ Ei ,j [
vi ,j+1 − vi ,j

∆y
]

where xi = x0 + i(∆x), yj = y0 + j(∆y), vi ,j = u(xi , yj), and a

subscript of i , j means an evaluation at the point (xi , yj).
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If the {Γ.,.} and Qi ,j are defined by

Γi+1,j+1 = [
2Bi ,j

(∆x)(∆y)
],

Γi+1,j = [
Ai ,j

(∆x)2
−

2Bi ,j

(∆x)(∆y)
+

Di ,j

∆x
],

Γi ,j+1 = [
Ci ,j

(∆y)2
−

2Bi ,j

(∆x)(∆y)
+

Ei ,j

∆y
],

Γi−1,j = [
Ai ,j

(∆x)2
],

Γi ,j−1 = [
Ci ,j

(∆x)2
],

Qi ,j = [
2Ai ,j

(∆x)2
−

2Bi ,j

(∆x)(∆y)
+

2Ci ,j

(∆y)2
+

Di ,j

∆x
+

Ei ,j

∆y
],
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then, equation (1) may approximated as

Qi ,jvi ,j =Γi+1,jvi+1,j + Γi+1,j+1vi+1,j+1 + Γi ,j+1vi ,j+1

+ Γi−1,jvi−1,j + Γi ,j−1vi ,j−1 − Fi ,j .

Dividing through by Qi ,j and defining pi ,j =
Γi ,j

Qi ,j
we have,

vi ,j =pi+1,jvi+1,j + pi+1,j+1vi+1,j+1 + pi ,j+1vi ,j+1

+ pi−1,jvi−1,j + pi ,j−1vi ,j−1 −
Fi ,j
Qi ,j

. (3)

Since the operator L[.] has been presumed to be elliptic, then ∆x

and ∆y may be chosen small enough so that each of the p,s are

positive.
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We interpret p,s as the probabilities of taking a step in a specified

direction. Specifically, for equation (3), if a particle is at position

(i , j) at step N, then,

With probability pi,j+1, the particle goes to (i , j + 1) at step N + 1.

With probability pi,j−1, the particle goes to (i , j − 1) at step N + 1.

With probability pi+1,j , the particle goes to (i + 1, j) at step N + 1.

With probability pi−1,j , the particle goes to (i − 1, j) at step N + 1.

With probability pi+1,j+1, the particle goes to (i + 1, j + 1) at step N + 1.
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Suppose a particle starts at the point P0 = z and undergoes

arandom walk according to the above prescription.

After, say, m steps it will hit the boundary where the sequence

of points that this particle visits is {P0,P1,P2, ...,Pm}.

Then, an unbiased estimator of the value of u(z) for the

following elliptic problem:

L[u] = F (x , y), for all points x , y in the domain R,

u = φ(x , y), for all points x , y on the boundary ∂R,
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is given by

u(z) ' φ(Pm)−
m∑
j=0

F (Pj)

Q(Pj)

In practice, several random paths will be taken, and the average

taken to estimate u(z). That is,

u(z) ' 1

K

K∑
k=1

{φ(Pk
mk

)−
mk∑
j=0

F (Pk
j )

Q(Pk
j )
},

where (Pk
0 ,P

k
1 , ...P

k
mk

), represent the path taken by kth random

particle.

28 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

Examples of Laplace equation

Example

PDE : ∆u = 0 0 < r < 3, 0 < θ < 2π

BC : u(1, θ) = 4, u(3, θ) = 6
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We will approximate the value of u(z), when

z = (r = 2; θ = 0).

The exact solution for this problem is u(r) = 4 + 2logr/log3,

so that u(z) = 4 + log2/log3 ' 5.261.

To approximate the solution to this problem numerically, We

will use the rectangular variables x and y, rather than the

polar coordinate variables r and θ.

Using a standard second order approximation to the

Laplacian, we find
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∆u '
vi+1,j + vi−1,j + vi ,j−1 − 4vi ,j

h2
= 0

where vi ,j = u(xi , yj), h << 1.

Then we have

vi ,j =
vi+1,j

4
+

vi−1,j

4
+

vi ,j+1

4
+

vi ,j−1

4
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Fortran programm for Monte Carlo method applied to elliptic

equations: (Zwillinger, 1997)
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This code used to simulate the motion of the particles according to

the above probability law. That output of that program is given

below for u(r = 2, θ = 0). As more more points are taken, the

approximation becomes better.
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Example

To find a function u(x , y) that satisfies

PDE : ∆u = 0, 0 < x < 1, 0 < y < 1

BC : u(x , y) = g(x , y) =


1; On the top of the square

0; On the sides and bottom

of the square

To illustrate the Monte Carlo method in this problem, we

introduce a game called tour du wino.
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How Tour du Wino is played?

1 The wino starts from an arbitrary point (point A in our case).

2 At each stage of the game, the wino staggers off randomly to

one of the four neighboring points.The probability of going to

each of these neighbors is 1/4.
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3 After arriving at a neighboring point, the wino continues this

process wandering from point to point until eventually hitting

a boundary point pi . He then stops, and we record that point

pi . This completes one random walk.

4 We repeat steps 1-3 until many random walks are completed.

We now compute the fraction of times the wino had ended up

at each of the boundary points pi .
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Suppose the wino

receives a reward gi

and if he ends his walk

at the boundary point

pi , then the average

reward for all this

walks is

R(A) = g1PA(p1) + g2PA(p2) + ...+ g12PA(p12)

= 1(.04) + 1(.15) + 1(.03) + 0(.06) + ...+ 0(.04)

= 0.22.

The game is completed with the determination of R(A). 37 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

Remarks

It turns out that the average reward is the approximate solution to

our Dirichlet problem at Point A. This interesting observation is

based on two facts:

1 Suppose the wino started at a point A that was on the

boundary of the square. Each resulting random walk ends

immediately at that point, and the wino collects the amount

gi . Thus, his average reward for starting from a boundary

point is also gi .
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2 Now suppose the wino starts from an interior point. Then, the

average reward R(A) is clearly the average of the four average

rewards of the four neighbors

R(A) = 1/4[R(B) + R(C ) + R(D) + R(E )]
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We have seen that R(A) satisfies two equations{
R(A) = 1/4(R(B) + R(c) + R(D) + R(E )) (A an interior point)

R(A) = gi (A a boundary point)

If we let gi be the value of the boundary function g(x , y) at

the boundary point pi , then our two equations are exactly the

two equations we arrived at when we solved the Dirichlet

problem by the finite-difference method.
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That is, R(A) corresponds to ui ,j in the finite-difference

equations ui ,j =
ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1

4
; (i , j) an interior point

ui ,j = gi ,j ; gi ,j the solution at a boundary point

Hence, R(A) will approximate the true solution of the PDE at

A.
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These rules give the solution at one point inside the square:

1 Generate several random walks starting at some specific point

A and ending once you hit a boundary point. Keep track of

how many times you hit each boundary point.

2 After completing the walks, compute the fraction of times you

have ended at each point pi . Call these fractions PA(pi ).

3 Compute the approximate solution u(A) from the formula

u(A) = g1PA(p1) + g2PA(p2) + ...+ gNPA(pN)

where gi is the value of the function at pi and N is the number of

boundary points.
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Example

To find a function u(x , y) that satisfies

PDE : uxx + (sinx)uyy = 0, 0 < x < π, 0 < y < π

BC: u(x , y) = g(x , y) On the boundary of the square

To solve this example, we replace uxx , uyy and sin x by

uxx = [ui ,j+1−2ui ,j+ui ,j−1]/h2, uyy = [ui+1,j−2ui ,j+ui−1,j ]/k
2

sinx = sinxj .

Then plug them into the PDE we have

ui ,j =
ui ,j+1 + ui ,j−1 + sinxj(ui+1,j + ui−1,j)

2(1 + sinxj) 43 / 48
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In other words, if the wino is at the point (i , j), he then goes

to the point:

(i , j + 1) with probability
1

2(1 + sinxj)

(i , j − 1) with probability
1

2(1 + sinxj)

(i + 1, j) with probability
sinxj

2(1 + sinxj)

(i − 1, j) with probability
sinxj

2(1 + sinxj)

Other than this slight modification, the game is exactly the

same as before.

44 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

Some Physical Application

In fact, Monte Carlo methods were originally developed to

study difficult neutron-diffusion problems that were

impossible to solve analytically.

The Monte Carlo method has been applied to conductive and

radiative heat transport. Its application to convective heat

transport has been minimal despite the fact that energy

transport in turbulent flows depends primarily on random

processes.
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Monte Carlo simulations can be used a wide range of conduction

problems:

1 Steady state conduction,

2 Transient conduction,

3 Various geometrical configurations,

4 Different boundary conditions including radiative and

convective heat transport with volumetric sources.

5 Anisotropic and nonhomogeneous media.

46 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

References I

Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I.”Why the Monte Carlo method is

so important today”. WIREs Comput Stat 6: 386−392 (2014). doi:10.1002/wics.1314.

Emmanuel, G., Introduction to stochastic calculus and to the resolution of PDEs using

Monte Carlo simulations - Lectures notes of XV Spanish-French School on Numerical

Simulation in Physics and Engineering (2012),

https://cel.archives-ouvertes.fr/cel-00736268.

Jerzy, T., Object-Oriented Computer Simulation of Discrete-Event Systems, published

by Kluwer Academic Publishers in (1999).

Stanley J. F., Partial Differential Equations for Scientists and Engineers, Dover

publication, inc. New york (1982).

47 / 48



Purpose of the seminar
Monte Carlo Methods (an Introduction)

Evaluating an integral
Random Numbers

Monte Carlo solution of PDEs
Some Physical Application

References II

http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html

Zwillinger, D., Handbook of Differential Equations, 3rd edition, Academic Press

(1997).

Talay, D., Monte Carlo Methods for PDE’s. In Encyclopaedia of Mathematics, M.

Hazewinkel (Ed.). Kluwer Academic Press (1997).

Maire, S. and Talay, D., On a Monte Carlo method for neutron transport criticality

computations, IMA Journal Numerical Analysis, 657-685 (2006).

Vajargah, B. F. and Vajargah, K. F., Monte Carlo Method for Finding the Solution of

Dirichlet Partial Differential Equations, Applied Mathematical Sciences, 453 -462

(2007).

48 / 48


	Purpose of the seminar
	Monte Carlo Methods (an Introduction)
	Definition
	A breif history
	The basic philosophy
	Why Monte Carlo method?!!

	Evaluating an integral
	Random Numbers
	Residue algorithm for generating random numbers

	Monte Carlo solution of PDEs
	The linear second order elliptic partial differential equation
	Examples of Laplace equation

	Some Physical Application 

