The Gelfand-Graev character of GL(n,q)

Pedro Matos

Faculty of Sciences
University of Lisbon

May 20, 2016

Preliminaries

Definition

Let G be a group and V a finite dimensional vector space over some field K. A K-representation of G over V is a homomorphism $\rho: G \rightarrow G L(V)$.

Definition

$\rho: G \rightarrow G L(V)$ is said to be equivalent to $\sigma: G \rightarrow G L(W)$ if there exists a K-isomorphism $\varphi: V \rightarrow W$ such that:

$$
\varphi(\rho(g)(v))=\sigma(g)(\varphi(v)), \quad v \in V, g \in G
$$

Preliminaries

Sum of representations

Given $\rho: G \rightarrow G L(V)$ and $\sigma: G \rightarrow G L(W)$, then G has a natural K-representation

$$
\begin{aligned}
\rho \oplus \sigma: G & \rightarrow G L(V \oplus W) \\
g & \mapsto \rho(g) \oplus \sigma(g)
\end{aligned}
$$

where $\rho(g) \oplus \sigma(g)(v, w):=(\rho(g) v, \sigma(g) w)$.

Remark

If $W \leq V$ is G-invariant, then $\left.\rho\right|_{W}: G \rightarrow G L(W)$ is a K-representation of G over W, which we call a subrepresentation of ρ. It is called irreducible (and say that W is an irreducible subspace) if W has no other proper G-invariant subspaces besides $\{0\}$.

Preliminaries

Definition

$\rho: G \rightarrow G L(V)$ is completely reducible if every G-invariant subspace of V has a G-invariant complement. In particular V is a finite direct sum of irreducible subspaces.

Maschke's Theorem

If G is finite and car $K=0$, then any K-representation of G is completely reducible.

Theorem

If G is finite, car $K=0$ and K is algebraically closed, then:
$\#\{$ iso classes of irr K-representations of $G\}=\#\{$ conjugacy classes of $G\}$

Preliminaries

Remark

Let $\mathcal{B}=\left(v_{1}, \cdots, v_{n}\right)$ be a basis for V, and suppose $R(g)$ is the matrix of $\rho(g)$ relative to \mathcal{B}. Then $R: G \rightarrow G L_{n}(K), g \mapsto R(g)$ is a homomorphism, a matrix representation of G of degree \mathbf{n}.

Definition

Given matrix representations $T, T^{\prime}: G \rightarrow G L_{n}(K)$, we say that T is equivalent to S whenever there exists some $S \in G L_{n}(K)$ such that:

$$
T^{\prime}(g)=S T(g) S^{-1}, g \in G
$$

Preliminaries

Definition

Suppose that a representation ρ affords a matrix representation $R: G \rightarrow G L_{n}(K)$. The character afforded by R is the function:

$$
\chi_{R}: G \rightarrow K, \quad g \mapsto \operatorname{Tr}(R(g))
$$

Remark

χ_{R} is a class function i.e. $\chi_{R}\left(h g h^{-1}\right)=\chi_{R}(g)$.

Definition

We define the character afforded by ρ as the character $\chi_{\rho}:=\chi_{R}$ for some matrix representation R afforded by ρ. We refer to any of these as K-characters of G.

Preliminaries

Proposition

Isomorphic K-representations afford the same character. The converse holds if G is finite and car $K=0$.

Definition

- if ρ irreducible, we say χ_{ρ} is irreducible. Also, $\operatorname{Irr}_{K}(G)$ denotes the set of irreducible characters of G.
- If $n=1, \chi_{\rho}: G \rightarrow K^{\times}$is a homomorphism. We call these linear characters of G, and denote the set of these by $\operatorname{Lin}_{K}(G)$.
- $\chi_{\rho}\left(1_{G}\right)=n$ is called the degree of χ_{ρ}.

Preliminaries

Remarks

- $\rho \oplus \sigma \Rightarrow \chi_{\rho \oplus \sigma}=\chi_{\rho}+\chi_{\sigma}$.
- If ρ is completely reducible, then χ_{ρ} is a sum of irreducible characters.
- If G is finite, car $K=0$ and K is algebraically closed, then:

$$
\# \mid \mathrm{rr}_{K}(G)=\#\{\text { conjugacy classes of } G\}
$$

- In the case above, let $\operatorname{Irr}_{K}(G)=\left\{\chi_{1}, \cdots, \chi_{t}\right\}$. Then any K-character χ of G is of the form:

$$
\chi=n_{1} \chi_{1}+\cdots+n_{t} \chi_{t}
$$

where $n_{i} \in \mathbb{N}_{0}$ is called the multiplicity of χ_{i} in χ. We say that χ_{i} is a component of χ if $n_{i} \neq 0$.

Preliminaries

Setting

G a finite group, $K=\mathbb{C}$. Let $\mathrm{cl}(G)$ be the vector space of \mathbb{C}-valued class functions of G. It can be shown that:

- $\operatorname{lrr}_{K}(G)$ is a basis for $\operatorname{cl}(G)$.

$$
\langle\chi, \psi\rangle_{G}:=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}
$$

defines an inner product in $\mathrm{cl}(G)$ for which $\operatorname{lrr}_{K}(G)$ is an o.n. basis such that $n_{i}=\left\langle\chi, \chi_{i}\right\rangle_{G}$.

Introduction

- Representation theory of finite matrix groups G as an interest of its own (e.g. description of conjugacy classes of $U(n, q)$ is known to be a wild problem).
- A possible strategy: construction of representations of G which has almost every irreducible components in its decomposition, with multiplicity at most one ("models"(Gelfand-Bernstein,1974)).
- Typical approach: induction (to G) of certain linear characters from a given p-Sylow subgroup U (Gelfand-Graev (1962) used this approach for $S L(n, q))$.
- Our case: $G=G L(n, q)$ and $U=U(n, q)$.

Outline

(1) Construction of the Gelfand-Graev character of $\mathrm{GL}(\mathrm{n}, \mathrm{q})$
(2) Some more Representation Theory
(3) Multiplicity free Theorem
(4) The greater framework: finite groups of Lie type
(1) Construction of the Gelfand-Graev character of $\mathrm{GL}(\mathrm{n}, \mathrm{q})$
(2) Some more Representation Theory

(3) Multiplicity free Theorem

4 The greater framework: finite groups of Lie type

Linear characters of U

Remark

Let H be a group. For any $\chi \in \operatorname{Lin}(H)$, we have $[H, H] \subseteq \operatorname{ker} \chi$.

$$
\operatorname{Lin}(H) \longleftrightarrow \operatorname{Irr}(H /[H, H])
$$

Linear characters of U

$$
\begin{gathered}
\left(\begin{array}{ccccc}
1 & a & \cdots & * & * \\
0 & 1 & b & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & c \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & a^{\prime} & \cdots & * & * \\
0 & 1 & b^{\prime} & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & c^{\prime} \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)= \\
\\
=\left(\begin{array}{ccccc}
1 & a+a^{\prime} & \cdots & * & * \\
0 & 1 & b+b^{\prime} & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & c+c^{\prime} \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
\end{gathered}
$$

Linear characters of U

$$
\left(\begin{array}{ccccc}
1 & a & \cdots & * & * \\
0 & 1 & b & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & c \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccccc}
1 & -a & \cdots & * & * \\
0 & 1 & -b & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & -c \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Linear characters of U

General form of a commutator in U :

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & * & * \\
0 & 1 & 0 & \cdots & * \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Linear characters of U

$$
U /[U, U] \simeq \underbrace{\mathbb{F}_{q}^{+} \times \cdots \times \mathbb{F}_{q}^{+}}_{n-1}
$$

$$
\operatorname{Lin}(U) \longleftrightarrow \operatorname{Irr}(\underbrace{\mathbb{F}_{q}^{+} \times \cdots \times \mathbb{F}_{q}^{+}}_{n-1})
$$

Linear characters of U

Fix a non trivial $\theta \in \operatorname{Irr}\left(\mathbb{F}_{q}^{+}\right)$.

$$
\begin{aligned}
\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)}: U & \longrightarrow \mathbb{C}^{\times} \\
u & \longmapsto \theta\left(\sum_{i=1}^{n-1} \alpha_{i} u_{i, i+1}\right)
\end{aligned}
$$

$\operatorname{Lin}(U)=\left\{\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)} \mid \alpha_{i} \in \mathbb{F}_{q}\right\}$

Action of T on $\operatorname{Lin}(U)$

Remark

Let H be a group, $K \leq H$ and $\varphi \in \operatorname{Irr}(K)$. Then for each $h \in H$:

- $\varphi^{h} \in \operatorname{lrr}\left(K^{h}\right)$ where $K^{h}:=h^{-1} K h$.
- $\operatorname{Ind}_{K}^{H} \varphi=\operatorname{Ind}_{K^{h}}^{H}\left(\varphi^{h}\right)$.

Remark

T normalizes U. Hence T acts on $\operatorname{Lin}(U)$ by conjugation:

$$
\chi^{t}(u):=\chi\left(t u t^{-} 1\right), u \in U
$$

Action of T on $\operatorname{Lin}(U)$

$$
\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)} \in \operatorname{Lin}(U), \quad t=\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right) \in T
$$

Action of T on $\operatorname{Lin}(U)$

$$
\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)}^{t}=\chi_{\left(t_{1} \alpha_{1}\left(t_{2}\right)^{-1}, \cdots, t_{n-1} \alpha_{n-1}\left(t_{n}\right)^{-1}\right)}
$$

Action of T on $\operatorname{Lin}(U)$

Action of T on $\operatorname{Lin}(U)$

$$
\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)}^{t}=\chi_{\left(t_{1} \alpha_{1}\left(t_{2}\right)^{-1}, \cdots, t_{n-1} \alpha_{n-1}\left(t_{n}\right)^{-1}\right)}
$$

Definition

We say $\chi_{\left(\alpha_{1}, \cdots, \alpha_{n-1}\right)} \in \operatorname{Lin}(U)$ is nondegenerate if $\alpha_{i} \neq 0$ for every $i \in\{1, \cdots, n-1\}$

Proposition

T acts transitively on the set of nondegenerate linear characters of U.

Definition

Let $\sigma \in \operatorname{Lin}(U)$ nondegenerate. Then $\Gamma:=\operatorname{Ind} d_{U}^{G} \sigma$ is called the Gelfand-Graev character of $G=G L(n, q)$.
(1) Construction of the Gelfand-Graev character of $\mathrm{GL}(\mathrm{n}, \mathrm{q})$
(2) Some more Representation Theory

(3) Multiplicity free Theorem

4 The greater framework: finite groups of Lie type

Representations and characters of f.d. K-algebras

Recall

Let A be a f.d. K-algebra and V an A-module. Then V affords a K-algebra homomorphism $\rho: A \rightarrow \operatorname{End}_{K}(V)$ i.e. a representation of A over V. Fixing a K-basis $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ for V, we get a matrix representation $\rho: A \rightarrow \mathrm{M}_{n}(K)$.

Definition

Let V be an A-module, and consider the representation

$$
\rho: A \rightarrow \operatorname{End}_{K}(A), \quad a \mapsto a_{L}
$$

where $a_{L}(v):=a \cdot v$. Suppose it affords some matrix representation $R: A \rightarrow M_{n}(K)$. The character afforded by V is the K-linear map

$$
\chi_{M}: A \rightarrow K, \quad a \mapsto \operatorname{Tr}(R(a))
$$

Study of $K G$-modules

Group algebra

Define the group algebra $K G$ of G as the ring of formal K-linear combinations $\sum_{g \in G} \alpha(g) g, \alpha(g) \in K$. Then $K G$ is a K-algebra with basis G.

Equivalent study of $K G$-modules

- Any representation of G extends linearly to a representation of $K G$. Conversely, any representation of $K G$ restricts to a representation of G (K-rep of $G \leftrightarrow K G$-modules).
- Subrepresentations \leftrightarrow submodules.
- Completely reducible rep of $G \leftrightarrow$ semisimple $K G$-modules.
- Irr representations of $G \leftrightarrow$ simple $K G$-modules.
- Characters of $K G \leftrightarrow K$-characters of G.

Semisimple rings

Definition

A ring R with unity is semisimple if R is a finite direct sum of minimal left ideals i.e. if ${ }_{R} R$ is a semisimple module.

Proposition

- R is a semisimple ring iff every f.d. R-module is semisimple.
- If R is semisimple, then every simple R-module is isomorphic to some minimal left ideal of R.
- If R semisimple, then left ideals of R are generated by idempotent elements.

May as well fix a finite set $\left\{M_{1}, \cdots, M_{t}\right\}$ of representatives of the iso classes of simple R-modules.

Semisimple rings

$$
\begin{gathered}
R=\mathcal{L}_{1} \oplus \cdots \oplus \mathcal{L}_{t} \\
\mathcal{B}_{i}:=\sum_{\mathcal{L}_{j} \cong_{R} M_{i}} \mathcal{L}_{j}, \quad R=\mathcal{B}_{1} \oplus \cdots \oplus \mathcal{B}_{t}
\end{gathered}
$$

Wedderburn-Artin Structure Theorem

If R is a semisimple ring, then there exist unique $n_{1}, \cdots, n_{t} \in \mathbb{N}$ and division rings D_{1}, \cdots, D_{t} such that:

$$
R \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{t}}\left(D_{t}\right)
$$

Each n_{i} corresponds to the number of times M_{i} "appears"in the decomposition of $K G$ i.e. number of minimal left ideals iso to M_{i}.

Reformulation of Maschke's Theorem and its consequences

Maschke's Theorem

If G is finite and car $K=0$, then $K G$ is semisimple.

Theorem

In the above conditions, if K is also algebraically closed then:

$$
K G \cong M_{n_{1}}(K) \times \cdots \times M_{n_{t}}(K)
$$

Remark

Since $K G$ is semisimple, irreducible K-representations of G are afforded by minimal left ideals of $K G$, hence are related to certain idempotents of $K G$.

Induction of characters

Goal

Given $H \leq G$ and a representation ρ of H over V, want to build from it a new representation of G over some new vector space.

Definition

Let $H \leq G$ and suppose V is a (left) $K H$-module. We define the induced module $V^{G}:=K G \otimes_{K H} V$ (module multiplication is given by $g \cdot(z \otimes v):=(g \cdot z) \otimes v)$. If V affords the character χ of H, then we denote by $\operatorname{Ind}_{H}^{G}(\chi)$ the character of G afforded by V^{G}, which is called the induced character of χ from H to G.

Hecke algebras and decomposition of induced characters

Remarks

Let $H \leq G$. If $e \in K G$ is idempotent such that $K H e$ affords a character χ of H, then:

- $K G \otimes_{K H} K H e \cong_{K G} K G e$ affords $\operatorname{Ind}_{H}^{G}(\chi)$.
- eKGe is a ring which does not depend (up to iso) on the idempotent that affords χ (Hecke algebra of χ).
- If $K G$ is semisimple, it can be shown that e $K G e$ is also semisimple.

Hecke algebras and decomposition of induced characters

Theorem

Assume G finite, car $K=0$ and K algebraically closed. Let $\operatorname{Irr}_{K}(G)=\left\{\chi_{1} \cdots \chi_{t}\right\}$. Furthermore, let $H \leq G, \psi$ a K-character of H and \mathcal{H} its Hecke algebra. Then:

- $\left.\chi_{i}\right|_{\mathcal{H}} \neq 0$ if and only if $\left\langle\operatorname{Ind}{ }_{H}^{G}(\psi), \chi_{i}\right\rangle_{G} \neq 0$.
- The map $\left.\chi \mapsto \chi\right|_{\mathcal{H}}$ is a bijection between irreducible characters of G s.t. $\left\langle\operatorname{Ind}_{H}^{G}(\psi), \chi_{i}\right\rangle_{G} \neq 0$ and irreducible characters of \mathcal{H}.

Key remark

$$
\mathcal{H} \cong M_{n_{1}}(K) \times \cdots \times M_{n_{t}}(K)
$$

(1) Construction of the Gelfand-Graev character of $\mathrm{GL}(\mathrm{n}, \mathrm{q})$
(2) Some more Representation Theory
(3) Multiplicity free Theorem

4 The greater framework: finite groups of Lie type

Theorem
Γ is multiplicity free i.e. its irreducible components appear with multiplicity at most one.

Proof of the multiplicity free Theorem

Setting

- Fix $\sigma \in \operatorname{Lin}(U)$ nondegenerate.
- Take an idempotent $e \in \mathbb{C} U$ such that $\mathbb{C} U e$ affords σ.
- $\mathbb{C} G e$ affords Γ.
- The Hecke algebra of σ is $\mathcal{H}=e \mathbb{C} G e$.

$$
\mathcal{H} \cong M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{t}}(\mathbb{C})
$$

Hence just need to show that H is commutative!

Proof of the multiplicity free Theorem

Lemma

Let $N \leq G:=G L(n, q)$ be the subgroup of monomial matrices, and $B \leq G L(n, q)$ the subgroup of upper triangular matrices. Then:

- $B=U \rtimes T$.
- $G=B N B=U N U$.

$$
\text { ege } \in \mathcal{H} \Rightarrow \text { ege }=\text { eunu'e }=\sigma(u) \sigma\left(u^{\prime}\right) \text { ene } \quad u, u^{\prime} \in U, n \in N
$$

Conclusion

$$
\mathcal{H}=\langle\{\text { ene } \mid n \in N\}\rangle_{\mathbb{C}}
$$

Proof of the multiplicity free Theorem

Lemma

\mathcal{H} is commutative if there exists a linear isomorphism $\psi: \mathbb{C} G \rightarrow \mathbb{C} G$ satisfying the following conditions:

1. $\forall a, b \in \mathbb{C} G, \psi(a b)=\psi(b) \psi(a)$.
2. $\psi(U)=U$.
3. $\forall u \in U, \sigma(\psi(u))=\sigma(u)$.
4. $\psi(n)=n$ for all $n \in N$ such that ene $\neq 0$.

Proof of the multiplicity free Theorem

$$
\begin{gathered}
e=\frac{1}{|U|} \sum_{u \in U} \sigma\left(u^{-1}\right) u \\
\psi(e)=\psi\left(\frac{1}{|U|} \sum_{u \in U} \sigma\left(u^{-1}\right) u\right)=\frac{1}{|U|} \sum_{u \in U} \sigma\left(u^{-1}\right) \psi(u)= \\
=\frac{1}{|U|} \sum_{u \in U} \sigma\left(\psi^{-1}\left(u^{-1}\right)\right) u=\frac{1}{|U|} \sum_{u \in U} \sigma\left(u^{-1}\right) u=e
\end{gathered}
$$

Proof of the multiplicity free Theorem

$$
e n e \neq 0, \psi(e n e)=\psi(e) \psi(n) \psi(e)=e n e
$$

Conclusion

$$
\left.\psi\right|_{\mathcal{H}}=i d_{\mathcal{H}}
$$

$$
a, b \in \mathcal{H}, a b=\psi(a b)=\psi(b) \psi(a)=b a
$$

Proof of the multiplicity free Theorem

Involution of G

$$
\begin{aligned}
\gamma: G & \rightarrow G \\
& g \mapsto n_{0}\left(g^{-1}\right)^{T} n_{0}
\end{aligned}
$$

where

$$
n_{0}=\left(\begin{array}{ccc}
0 & \cdots & 1 \\
\vdots & . & \vdots \\
1 & \cdots & 0
\end{array}\right)
$$

Proof of the multiplicity free Theorem

Remark

The map:

$$
\begin{aligned}
\widetilde{\sigma}: U & \rightarrow \mathbb{C}^{\times} \\
u & \mapsto \sigma\left(\gamma\left(u^{-1}\right)\right)
\end{aligned}
$$

is also a nondegenerate linear character of U.

Since T acts transitively on nondegenerate linear characters of U, choose $t \in T$ such that $\widetilde{\sigma}=\sigma^{t}$.

Proof of the multiplicity free Theorem

$$
\begin{aligned}
& \left.\left.\quad \begin{array}{l}
\sigma(\psi(u))=\sigma\left(t \gamma\left(u^{-1}\right)\right.
\end{array}\right) t^{-1}\right)= \\
& =\sigma^{t}\left(\gamma\left(u^{-1}\right)\right)=\tilde{\sigma}\left(\gamma\left(u^{-1}\right)\right)= \\
& \\
& \quad=\sigma\left(\gamma\left(\gamma\left(u^{-1}\right)^{-1}\right)\right)=\sigma(u)
\end{aligned}
$$

(1) Construction of the Gelfand-Graev character of GL($n, q)$
(2) Some more Representation Theory
(3) Multiplicity free Theorem

4 The greater framework: finite groups of Lie type

Connected reductive group "counterparts"

Remarks

For our proof the following facts were essential:

1. $B=U \rtimes T$ and $G=B N B$.
2. Existence of T and its transitive action on $\operatorname{Lin}(U)$.
3. Existence of a certain involution of $G L(n, q)$.
4. (although not seen) Facts on representation theory of S_{n}.
5. Existence of a $B N$-pair (B Borel subgroup, N normalizer of a maximal torus $T \subset B, U$ the unipotent radical of B).
6. $Z(G)$ connected implies "good"action of T over simple root subgroups of G.
7. Dynkin diagram automorphism and related opposition graph automorphism of G.
8. Representation theory of Weyl group $W=N / T$ and respective action on $\operatorname{Hom}\left(T, K^{\times}\right)$.

Bibliography

1. I. M. Gelfand, M. I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk SSSR, 147 (1962).
2. R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.
3. J. A. Green, Discrete series characters for $G L(n, q)$, Algebras and Representation Theory, 02 (1999), pp. 61-82.
4. C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, John Wiley and Sons Inc, 1962.
5. C. W. Curtis, I. Reiner, Methods of Representation Theory, Vol. I. With applications to finite groups and orders, John Wiley, New York, 1981.
6. R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, John Wiley and Sons Inc, 1993.
