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Preliminaries

Definition
Let G be a group and V a finite dimensional vector space over some field
K . A K -representation of G over V is a homomorphism ρ : G → GL(V ).

Definition
ρ : G → GL(V ) is said to be equivalent to σ : G → GL(W ) if there exists
a K−isomorphism ϕ : V →W such that:

ϕ(ρ(g)(v)) = σ(g)(ϕ(v)), v ∈ V , g ∈ G
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Preliminaries

Sum of representations
Given ρ : G → GL(V ) and σ : G → GL(W ), then G has a natural
K−representation

ρ⊕ σ : G → GL(V ⊕W )

g 7→ ρ(g)⊕ σ(g)

where ρ(g)⊕ σ(g)(v ,w) := (ρ(g)v , σ(g)w).

Remark
If W ≤ V is G−invariant, then ρ|W : G → GL(W ) is a K−representation
of G over W , which we call a subrepresentation of ρ. It is called
irreducible (and say that W is an irreducible subspace) if W has no
other proper G−invariant subspaces besides {0}.

Pedro Matos (FCUL) The Gelfand-Graev character LisMath Seminars 2016 3 / 44



Preliminaries

Definition
ρ : G → GL(V ) is completely reducible if every G−invariant subspace of
V has a G−invariant complement. In particular V is a finite direct sum of
irreducible subspaces.

Maschke’s Theorem
If G is finite and car K = 0, then any K−representation of G is completely
reducible.

Theorem
If G is finite, car K = 0 and K is algebraically closed, then:

#{iso classes of irr K-representations of G} = #{conjugacy classes of G}
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Preliminaries

Remark
Let B = (v1, · · · , vn) be a basis for V , and suppose R(g) is the matrix of
ρ(g) relative to B. Then R : G → GLn(K ), g 7→ R(g) is a homomorphism,
a matrix representation of G of degree n.

Definition
Given matrix representations T ,T ′ : G → GLn(K ), we say that T is
equivalent to S whenever there exists some S ∈ GLn(K ) such that:

T ′(g) = ST (g)S−1, g ∈ G
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Preliminaries

Definition
Suppose that a representation ρ affords a matrix representation
R : G → GLn(K ). The character afforded by R is the function:

χR : G → K , g 7→ Tr(R(g))

Remark
χR is a class function i.e. χR(hgh−1) = χR(g).

Definition
We define the character afforded by ρ as the character χρ := χR for some
matrix representation R afforded by ρ. We refer to any of these as
K−characters of G .
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Preliminaries

Proposition
Isomorphic K−representations afford the same character. The converse
holds if G is finite and car K = 0.

Definition
if ρ irreducible, we say χρ is irreducible. Also, IrrK (G ) denotes the
set of irreducible characters of G .
If n = 1, χρ : G → K× is a homomorphism. We call these linear
characters of G , and denote the set of these by LinK (G ).
χρ(1G ) = n is called the degree of χρ.
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Preliminaries

Remarks
ρ⊕ σ ⇒ χρ⊕σ = χρ + χσ.
If ρ is completely reducible, then χρ is a sum of irreducible characters.
If G is finite, car K = 0 and K is algebraically closed, then:

#IrrK (G ) = #{conjugacy classes ofG}

In the case above, let IrrK (G ) = {χ1, · · · , χt}. Then any
K−character χ of G is of the form:

χ = n1χ1 + · · ·+ ntχt

where ni ∈ N0 is called the multiplicity of χi in χ. We say that χi is
a component of χ if ni 6= 0.
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Preliminaries

Setting
G a finite group, K = C. Let cl(G ) be the vector space of C−valued class
functions of G . It can be shown that:

IrrK (G ) is a basis for cl(G ).

〈χ, ψ〉G :=
1
|G |

∑
g∈G

χ(g)ψ(g)

defines an inner product in cl(G ) for which IrrK (G ) is an o.n. basis
such that ni = 〈χ, χi 〉G .
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Introduction

Representation theory of finite matrix groups G as an interest of its
own ( e.g. description of conjugacy classes of U(n, q) is known to be
a wild problem).
A possible strategy: construction of representations of G which has
almost every irreducible components in its decomposition, with
multiplicity at most one ("models"(Gelfand-Bernstein,1974)).
Typical approach: induction (to G ) of certain linear characters from a
given p−Sylow subgroup U (Gelfand-Graev (1962) used this approach
for SL(n, q)).
Our case: G = GL(n, q) and U = U(n, q).
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Outline

1 Construction of the Gelfand-Graev character of GL(n,q)

2 Some more Representation Theory

3 Multiplicity free Theorem

4 The greater framework: finite groups of Lie type
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Linear characters of U

Remark
Let H be a group. For any χ ∈ Lin(H), we have [H,H] ⊆ kerχ.

Lin(H)←→ Irr(H/[H,H])
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Linear characters of U


1 a · · · ∗ ∗
0 1 b · · · ∗

0 0 1
. . .

...
...

...
...

. . . c
0 0 0 · · · 1




1 a′ · · · ∗ ∗
0 1 b′ · · · ∗

0 0 1
. . .

...
...

...
...

. . . c ′

0 0 0 · · · 1

 =

=


1 a + a′ · · · ∗ ∗
0 1 b + b′ · · · ∗

0 0 1
. . .

...
...

...
...

. . . c + c ′

0 0 0 · · · 1


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Linear characters of U


1 a · · · ∗ ∗
0 1 b · · · ∗

0 0 1
. . .

...
...

...
...

. . . c
0 0 0 · · · 1



−1

=


1 −a · · · ∗ ∗
0 1 −b · · · ∗

0 0 1
. . .

...
...

...
...

. . . −c
0 0 0 · · · 1


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Linear characters of U

General form of a commutator in U:
1 0 · · · ∗ ∗
0 1 0 · · · ∗

0 0 1
. . .

...
...

...
...

. . . 0
0 0 0 · · · 1


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Linear characters of U

U/[U,U] ' F+
q × · · · × F+

q︸ ︷︷ ︸
n−1

Lin(U)←→ Irr(F+
q × · · · × F+

q︸ ︷︷ ︸
n−1

)
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Linear characters of U

Fix a non trivial θ ∈ Irr(F+
q ).

χ(α1,··· ,αn−1) :U −→ C×

u 7−→ θ

(
n−1∑
i=1

αiui ,i+1

)

Lin(U) = { χ(α1,··· ,αn−1) | αi ∈ Fq }
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Action of T on Lin(U)

Remark
Let H be a group, K ≤ H and ϕ ∈ Irr(K ). Then for each h ∈ H:

ϕh ∈ Irr(Kh) where Kh := h−1Kh.
IndHKϕ = IndHKh(ϕh).

Remark
T normalizes U. Hence T acts on Lin(U) by conjugation:

χt(u) := χ(tut−1), u ∈ U
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Action of T on Lin(U)

χ(α1,··· ,αn−1) ∈ Lin(U), t = diag(t1, · · · , tn) ∈ T

Action of T on Lin(U)

χt
(α1,··· ,αn−1)

= χ(t1α1(t2)−1,··· ,tn−1αn−1(tn)−1)
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Action of T on Lin(U)

Action of T on Lin(U)

χt
(α1,··· ,αn−1)

= χ(t1α1(t2)−1,··· ,tn−1αn−1(tn)−1)

Definition
We say χ(α1,··· ,αn−1) ∈ Lin(U) is nondegenerate if αi 6= 0 for every
i ∈ {1, · · · , n − 1}

Proposition
T acts transitively on the set of nondegenerate linear characters of U.
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Definition

Let σ ∈ Lin(U) nondegenerate. Then Γ := IndGU σ is called the
Gelfand-Graev character of G = GL(n, q).
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1 Construction of the Gelfand-Graev character of GL(n,q)
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Representations and characters of f.d. K−algebras

Recall
Let A be a f.d. K−algebra and V an A−module. Then V affords a
K−algebra homomorphism ρ : A→ EndK (V ) i.e. a representation of A
over V . Fixing a K−basis B = {v1, · · · , vn} for V , we get a matrix
representation ρ : A→ Mn(K ).

Definition
Let V be an A−module, and consider the representation

ρ : A→ EndK (A), a 7→ aL

where aL(v) := a · v . Suppose it affords some matrix representation
R : A→ Mn(K ). The character afforded by V is the K−linear map

χM : A→ K , a 7→ Tr(R(a))
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Study of KG−modules

Group algebra
Define the group algebra KG of G as the ring of formal K−linear
combinations

∑
g∈G α(g)g , α(g) ∈ K . Then KG is a K−algebra with

basis G .

Equivalent study of KG−modules
Any representation of G extends linearly to a representation of KG .
Conversely, any representation of KG restricts to a representation of G
(K−rep of G ↔ KG -modules).
Subrepresentations ↔ submodules.
Completely reducible rep of G ↔ semisimple KG−modules.
Irr representations of G ↔ simple KG−modules.
Characters of KG ↔ K−characters of G .
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Semisimple rings

Definition
A ring R with unity is semisimple if R is a finite direct sum of minimal left
ideals i.e. if RR is a semisimple module.

Proposition
R is a semisimple ring iff every f.d. R−module is semisimple.
If R is semisimple, then every simple R−module is isomorphic to some
minimal left ideal of R .
If R semisimple, then left ideals of R are generated by idempotent
elements.

May as well fix a finite set {M1, · · · ,Mt} of representatives of the iso
classes of simple R−modules.
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Semisimple rings

R = L1 ⊕ · · · ⊕ Lt
Bi :=

∑
Lj∼=RMi

Lj , R = B1 ⊕ · · · ⊕ Bt

Wedderburn-Artin Structure Theorem
If R is a semisimple ring, then there exist unique n1, · · · , nt ∈ N and
division rings D1, · · · ,Dt such that:

R ∼= Mn1(D1)× · · · ×Mnt (Dt)

Each ni corresponds to the number of times Mi "appears"in the
decomposition of KG i.e. number of minimal left ideals iso to Mi .
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Reformulation of Maschke’s Theorem and its consequences

Maschke’s Theorem
If G is finite and car K = 0, then KG is semisimple.

Theorem
In the above conditions, if K is also algebraically closed then:

KG ∼= Mn1(K )× · · · ×Mnt (K )

Remark
Since KG is semisimple, irreducible K−representations of G are afforded by
minimal left ideals of KG , hence are related to certain idempotents of KG .
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Induction of characters

Goal
Given H ≤ G and a representation ρ of H over V , want to build from it a
new representation of G over some new vector space.

Definition
Let H ≤ G and suppose V is a (left) KH−module. We define the induced
module V G := KG ⊗KH V (module multiplication is given by
g · (z ⊗ v) := (g · z)⊗ v). If V affords the character χ of H, then we
denote by IndGH(χ) the character of G afforded by V G , which is called the
induced character of χ from H to G .
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Hecke algebras and decomposition of induced characters

Remarks
Let H ≤ G . If e ∈ KG is idempotent such that KHe affords a character χ
of H, then:

KG ⊗KH KHe ∼=KG KGe affords IndGH(χ).
eKGe is a ring which does not depend (up to iso) on the idempotent
that affords χ (Hecke algebra of χ).
If KG is semisimple, it can be shown that eKGe is also semisimple.
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Hecke algebras and decomposition of induced characters

Theorem
Assume G finite, car K = 0 and K algebraically closed. Let
IrrK (G ) = {χ1 · · ·χt}. Furthermore, let H ≤ G , ψ a K−character of H
and H its Hecke algebra. Then:

χi |H 6= 0 if and only if
〈
IndG

H (ψ), χi

〉
G
6= 0.

The map χ 7→ χ|H is a bijection between irreducible characters of G
s.t.

〈
IndG

H (ψ), χi

〉
G
6= 0 and irreducible characters of H.

Key remark

H ∼= Mn1(K )× · · · ×Mnt (K )

Pedro Matos (FCUL) The Gelfand-Graev character LisMath Seminars 2016 31 / 44



1 Construction of the Gelfand-Graev character of GL(n,q)

2 Some more Representation Theory

3 Multiplicity free Theorem

4 The greater framework: finite groups of Lie type

Pedro Matos (FCUL) The Gelfand-Graev character LisMath Seminars 2016 32 / 44



Theorem
Γ is multiplicity free i.e. its irreducible components appear with multiplicity
at most one.
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Proof of the multiplicity free Theorem

Setting
Fix σ ∈ Lin(U) nondegenerate.
Take an idempotent e ∈ CU such that CUe affords σ.
CGe affords Γ.
The Hecke algebra of σ is H = eCGe.

H ∼= Mn1(C)× · · · ×Mnt (C)

Hence just need to show that H is commutative!
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Proof of the multiplicity free Theorem

Lemma
Let N ≤ G := GL(n, q) be the subgroup of monomial matrices, and
B ≤ GL(n, q) the subgroup of upper triangular matrices. Then:

B = U o T .
G = BNB = UNU.

ege ∈ H ⇒ ege = eunu′e = σ(u)σ(u′)ene u, u′ ∈ U, n ∈ N

Conclusion

H = 〈{ene | n ∈ N}〉C
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Proof of the multiplicity free Theorem

Lemma
H is commutative if there exists a linear isomorphism ψ : CG → CG
satisfying the following conditions:
1. ∀ a, b ∈ CG , ψ(ab) = ψ(b)ψ(a).
2. ψ(U) = U.
3. ∀ u ∈ U, σ(ψ(u)) = σ(u).
4. ψ(n) = n for all n ∈ N such that ene 6= 0.
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Proof of the multiplicity free Theorem

e =
1
|U|

∑
u∈U

σ(u−1)u

ψ(e) = ψ

(
1
|U|

∑
u∈U

σ(u−1)u

)
=

1
|U|

∑
u∈U

σ(u−1)ψ(u) =

=
1
|U|

∑
u∈U

σ(ψ−1(u−1))u =
1
|U|

∑
u∈U

σ(u−1)u = e
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Proof of the multiplicity free Theorem

ene 6= 0, ψ(ene) = ψ(e)ψ(n)ψ(e) = ene

Conclusion

ψ|H = idH

a, b ∈ H, ab = ψ(ab) = ψ(b)ψ(a) = ba
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Proof of the multiplicity free Theorem

Involution of G

γ : G → G

g 7→ n0(g−1)Tn0

where

n0 =

 0 · · · 1
...

...
...

1 · · · 0


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Proof of the multiplicity free Theorem

Remark
The map:

σ̃ : U → C×

u 7→ σ(γ(u−1))

is also a nondegenerate linear character of U.

Since T acts transitively on nondegenerate linear characters of U, choose
t ∈ T such that σ̃ = σt .
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Proof of the multiplicity free Theorem

σ(ψ(u)) = σ(tγ(u−1)t−1) =

= σt(γ(u−1)) = σ̃(γ(u−1)) =

= σ(γ(γ(u−1)−1)) = σ(u)
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Remarks
For our proof the following facts
were essential:
1. B = U o T and G = BNB .
2. Existence of T and its

transitive action on Lin(U).
3. Existence of a certain

involution of GL(n, q).
4. (although not seen) Facts on

representation theory of Sn.

Connected reductive group
"counterparts"
1. Existence of a BN−pair ( B

Borel subgroup, N normalizer
of a maximal torus T ⊂ B , U
the unipotent radical of B).

2. Z (G ) connected implies
"good"action of T over simple
root subgroups of G .

3. Dynkin diagram automorphism
and related opposition graph
automorphism of G .

4. Representation theory of Weyl
group W = N/T and
respective action on
Hom(T ,K×).
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