The Gelfand-Graev character of GL(n,q)

Pedro Matos

Faculty of Sciences University of Lisbon

May 20, 2016

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016 1 / 44

Definition

Let G be a group and V a finite dimensional vector space over some field K. A K-representation of G over V is a homomorphism $\rho : G \to GL(V)$.

Definition

 $\rho: G \to GL(V)$ is said to be **equivalent** to $\sigma: G \to GL(W)$ if there exists a K-isomorphism $\varphi: V \to W$ such that:

$$arphi(
ho(g)(v))=\sigma(g)(arphi(v)), \quad v\in V, \ g\in G$$

Sum of representations

Given $\rho: G \to GL(V)$ and $\sigma: G \to GL(W)$, then G has a natural K-representation

 $\rho \oplus \sigma : G \to GL(V \oplus W)$ $g \mapsto \rho(g) \oplus \sigma(g)$

where $\rho(g) \oplus \sigma(g)(v, w) := (\rho(g)v, \sigma(g)w)$.

Remark

If $W \leq V$ is *G*-invariant, then $\rho|_W : G \rightarrow GL(W)$ is a *K*-representation of *G* over *W*, which we call a **subrepresentation** of ρ . It is called **irreducible** (and say that *W* is an **irreducible** subspace) if *W* has no other proper *G*-invariant subspaces besides $\{0\}$.

- 34

3 / 44

(日) (同) (三) (三)

Definition

 $\rho: G \to GL(V)$ is **completely reducible** if every G-invariant subspace of V has a G-invariant complement. In particular V is a finite direct sum of irreducible subspaces.

Maschke's Theorem

If G is finite and car K = 0, then any K-representation of G is completely reducible.

Theorem

If G is finite, car K = 0 and K is algebraically closed, then:

 $\#\{\text{iso classes of irr K-representations of } G\} = \#\{\text{conjugacy classes of } G\}$

Image: Image:

Remark

Let $\mathcal{B} = (v_1, \dots, v_n)$ be a basis for V, and suppose R(g) is the matrix of $\rho(g)$ relative to \mathcal{B} . Then $R : G \to GL_n(K)$, $g \mapsto R(g)$ is a homomorphism, a matrix representation of G of degree n.

Definition

Given matrix representations $T, T' : G \to GL_n(K)$, we say that T is equivalent to S whenever there exists some $S \in GL_n(K)$ such that:

$$T'(g)=ST(g)S^{-1},\;g\in G$$

Definition

Suppose that a representation ρ affords a matrix representation $R: G \to GL_n(K)$. The **character** afforded by R is the function:

 $\chi_R: G \to K, \qquad g \mapsto Tr(R(g))$

Remark

$$\chi_R$$
 is a class function i.e. $\chi_R(hgh^{-1}) = \chi_R(g)$.

Definition

We define the **character** afforded by ρ as the character $\chi_{\rho} := \chi_R$ for some matrix representation R afforded by ρ . We refer to any of these as K-characters of G.

Proposition

Isomorphic K-representations afford the same character. The converse holds if G is finite and car K = 0.

Definition

- if ρ irreducible, we say χ_ρ is irreducible. Also, Irr_K(G) denotes the set of irreducible characters of G.
- If n = 1, χ_ρ: G → K[×] is a homomorphism. We call these linear characters of G, and denote the set of these by Lin_K(G).
- $\chi_{\rho}(1_G) = n$ is called the **degree** of χ_{ρ} .

Remarks

- $\rho \oplus \sigma \Rightarrow \chi_{\rho \oplus \sigma} = \chi_{\rho} + \chi_{\sigma}.$
- If ρ is completely reducible, then χ_{ρ} is a sum of irreducible characters.
- If G is finite, car K = 0 and K is algebraically closed, then:

 $\# \operatorname{Irr}_{\mathcal{K}}(G) = \# \{ \operatorname{conjugacy classes of} G \}$

• In the case above, let $Irr_{\mathcal{K}}(G) = \{\chi_1, \cdots, \chi_t\}$. Then any \mathcal{K} -character χ of G is of the form:

$$\chi = n_1 \chi_1 + \dots + n_t \chi_t$$

where $n_i \in \mathbb{N}_0$ is called the **multiplicity** of χ_i in χ . We say that χ_i is a **component** of χ if $n_i \neq 0$.

Setting

G a finite group, $K = \mathbb{C}$. Let cl(G) be the vector space of \mathbb{C} -valued class functions of *G*. It can be shown that:

• $Irr_{\mathcal{K}}(G)$ is a basis for cl(G).

۲

$$\langle \chi, \psi \rangle_{\mathcal{G}} := rac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \chi(g) \overline{\psi(g)}$$

defines an inner product in cl(G) for which $Irr_{\mathcal{K}}(G)$ is an o.n. basis such that $n_i = \langle \chi, \chi_i \rangle_{\mathcal{G}}$.

- Representation theory of finite matrix groups G as an interest of its own (*e.g.* description of conjugacy classes of U(n, q) is known to be a wild problem).
- A possible strategy: construction of representations of *G* which has almost every irreducible components in its decomposition, with multiplicity at most one ("models"(Gelfand-Bernstein,1974)).
- Typical approach: induction (to G) of certain linear characters from a given p-Sylow subgroup U (Gelfand-Graev (1962) used this approach for SL(n, q)).
- Our case: G = GL(n,q) and U = U(n,q).

Construction of the Gelfand-Graev character of GL(n,q)

2 Some more Representation Theory

- 3 Multiplicity free Theorem
- 4 The greater framework: finite groups of Lie type

Construction of the Gelfand-Graev character of GL(n,q)

The greater framework: finite groups of Lie type

Remark

Let *H* be a group. For any $\chi \in \text{Lin}(H)$, we have $[H, H] \subseteq \text{ker}\chi$.

$Lin(H) \leftrightarrow Irr(H/[H, H])$

Pedro Matos (FCUL)

The Gelfand-Graev character

• • = • • = • LisMath Seminars 2016 13 / 44

3

Linear characters of U

$$\begin{pmatrix} 1 & a & \cdots & * & * \\ 0 & 1 & b & \cdots & * \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & c \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} 1 & a' & \cdots & * & * \\ 0 & 1 & b' & \cdots & * \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & c' \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} =$$
$$= \begin{pmatrix} 1 & a + a' & \cdots & * & * \\ 0 & 1 & b + b' & \cdots & * \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & c + c' \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Pedro Matos (FCUL)

イロト イポト イヨト イヨト

14 / 44

3

Linear characters of U

LisMath Seminars 2016

15 / 44

General form of a commutator in U:

Linear characters of U

$$U/[U, U] \simeq \underbrace{\mathbb{F}_{q}^{+} \times \cdots \times \mathbb{F}_{q}^{+}}_{n-1}$$
$$Lin(U) \longleftrightarrow \operatorname{Irr}(\underbrace{\mathbb{F}_{q}^{+} \times \cdots \times \mathbb{F}_{q}^{+}}_{n-1})$$

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016

æ

17 / 44

イロト イヨト イヨト イヨト

Fix a non trivial $\theta \in Irr(\mathbb{F}_q^+)$.

$$\chi_{(\alpha_1,\cdots,\alpha_{n-1})}: U \longrightarrow \mathbb{C}^{\times}$$
$$u \longmapsto \theta\left(\sum_{i=1}^{n-1} \alpha_i u_{i,i+1}\right)$$

$$\mathsf{Lin}(U) = \{ \chi_{(\alpha_1, \cdots, \alpha_{n-1})} \mid \alpha_i \in \mathbb{F}_q \}$$

Pedro Matos (FCUL)

Remark

Let *H* be a group, $K \leq H$ and $\varphi \in Irr(K)$. Then for each $h \in H$:

•
$$arphi^h \in \mathsf{Irr}(\mathsf{K}^h)$$
 where $\mathsf{K}^h := h^{-1}\mathsf{K}h$

•
$$\operatorname{Ind}_{K}^{H}\varphi = \operatorname{Ind}_{K^{h}}^{H}(\varphi^{h}).$$

Remark

T normalizes U. Hence T acts on Lin(U) by conjugation:

$$\chi^t(u) := \chi(tut^{-}1), \ u \in U$$

《曰》 《聞》 《臣》 《臣》 三臣

$$\chi_{(\alpha_1,\cdots,\alpha_{n-1})} \in Lin(U), \quad t = diag(t_1,\cdots,t_n) \in T$$

Action of T on Lin(U)

$$\chi^{t}_{(\alpha_{1},\cdots,\alpha_{n-1})} = \chi_{(t_{1}\alpha_{1}(t_{2})^{-1},\cdots,t_{n-1}\alpha_{n-1}(t_{n})^{-1})}$$

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016

< □ > < □ > < □ > < □ > < □ > < □ >

æ

20 / 44

Action of T on Lin(U)

$$\chi^{t}_{(\alpha_{1},\cdots,\alpha_{n-1})} = \chi_{(t_{1}\alpha_{1}(t_{2})^{-1},\cdots,t_{n-1}\alpha_{n-1}(t_{n})^{-1})}$$

Definition

We say $\chi_{(\alpha_1, \dots, \alpha_{n-1})} \in Lin(U)$ is nondegenerate if $\alpha_i \neq 0$ for every $i \in \{1, \dots, n-1\}$

Proposition

T acts transitively on the set of nondegenerate linear characters of U.

• • = • • = •

3

Definition

Let $\sigma \in Lin(U)$ nondegenerate. Then $\Gamma := Ind_{U}^{G} \sigma$ is called the **Gelfand-Graev character** of G = GL(n, q).

3

3 Multiplicity free Theorem

The greater framework: finite groups of Lie type

Recall

Let A be a f.d. K-algebra and V an A-module. Then V affords a K-algebra homomorphism $\rho : A \to \operatorname{End}_{K}(V)$ i.e. a **representation** of A over V. Fixing a K-basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V, we get a **matrix representation** $\rho : A \to \operatorname{M}_{n}(K)$.

Definition

Let V be an A-module, and consider the representation

$$\rho: A \to End_{\mathcal{K}}(A), \quad a \mapsto a_L$$

where $a_L(v) := a \cdot v$. Suppose it affords some matrix representation $R : A \to M_n(K)$. The **character** afforded by V is the K-linear map

$$\chi_M: A \to K, \quad a \mapsto Tr(R(a))$$

< 行い

(B)

Group algebra

Define the group algebra KG of G as the ring of formal K-linear combinations $\sum_{g \in G} \alpha(g)g$, $\alpha(g) \in K$. Then KG is a K-algebra with basis G.

Equivalent study of KG-modules

- Any representation of G extends linearly to a representation of KG. Conversely, any representation of KG restricts to a representation of G $(K-\text{rep of } G \leftrightarrow KG-\text{modules}).$
- Subrepresentations \leftrightarrow submodules.
- Completely reducible rep of $G \leftrightarrow$ semisimple KG-modules.
- Irr representations of $G \leftrightarrow \text{simple } KG-\text{modules}$.
- Characters of $KG \leftrightarrow K$ -characters of G.

< □ ▶ < /₽

Definition

A ring R with unity is **semisimple** if R is a finite direct sum of minimal left ideals i.e. if $_{R}R$ is a semisimple module.

Proposition

- R is a semisimple ring iff every f.d. R-module is semisimple.
- If R is semisimple, then every simple R-module is isomorphic to some minimal left ideal of R.
- If R semisimple, then left ideals of R are generated by idempotent elements.

May as well fix a finite set $\{M_1, \dots, M_t\}$ of representatives of the iso classes of simple R-modules.

Image: Image:

$$R = \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_t$$

 $\mathcal{B}_i := \sum_{\mathcal{L}_j \cong_R M_i} \mathcal{L}_j, \quad R = \mathcal{B}_1 \oplus \cdots \oplus \mathcal{B}_t$

Wedderburn-Artin Structure Theorem

If R is a semisimple ring, then there exist unique $n_1, \dots, n_t \in \mathbb{N}$ and division rings D_1, \dots, D_t such that:

$$R \cong M_{n_1}(D_1) \times \cdots \times M_{n_t}(D_t)$$

Each n_i corresponds to the number of times M_i "appears" in the decomposition of KG i.e. number of minimal left ideals iso to M_i .

Maschke's Theorem

If G is finite and car K = 0, then KG is semisimple.

Theorem

In the above conditions, if K is also algebraically closed then:

$$KG \cong M_{n_1}(K) \times \cdots \times M_{n_t}(K)$$

Remark

Since KG is semisimple, irreducible K-representations of G are afforded by minimal left ideals of KG, hence are related to certain idempotents of KG.

Goal

Given $H \leq G$ and a representation ρ of H over V, want to build from it a new representation of G over some new vector space.

Definition

Let $H \leq G$ and suppose V is a (left) KH-module. We define the **induced module** $V^G := KG \otimes_{KH} V$ (module multiplication is given by $g \cdot (z \otimes v) := (g \cdot z) \otimes v$). If V affords the character χ of H, then we denote by $Ind_H^G(\chi)$ the character of G afforded by V^G , which is called the **induced character** of χ from H to G.

Remarks

Let $H \leq G$. If $e \in KG$ is idempotent such that KHe affords a character χ of H, then:

- $KG \otimes_{KH} KHe \cong_{KG} KGe$ affords $\operatorname{Ind}_{H}^{G}(\chi)$.
- *eKGe* is a ring which does not depend (up to iso) on the idempotent that affords χ (Hecke algebra of χ).
- If KG is semisimple, it can be shown that eKGe is also semisimple.

Theorem

Assume G finite, car K = 0 and K algebraically closed. Let $Irr_{K}(G) = \{\chi_{1} \cdots \chi_{t}\}$. Furthermore, let $H \leq G$, ψ a K-character of H and \mathcal{H} its Hecke algebra. Then:

- $\chi_i|_{\mathcal{H}} \neq 0$ if and only if $\langle Ind_H^G(\psi), \chi_i \rangle_G \neq 0$.
- The map χ → χ|_H is a bijection between irreducible characters of G s.t. ⟨Ind^G_H(ψ), χ_i⟩_G ≠ 0 and irreducible characters of H.

Key remark

$$\mathcal{H} \cong M_{n_1}(K) \times \cdots \times M_{n_t}(K)$$

31 / 44

The greater framework: finite groups of Lie type

Theorem

 Γ is multiplicity free i.e. its irreducible components appear with multiplicity at most one.

э

Setting

- Fix $\sigma \in Lin(U)$ nondegenerate.
- Take an idempotent $e \in \mathbb{C}U$ such that $\mathbb{C}Ue$ affords σ .
- C*Ge* affords Γ.
- The Hecke algebra of σ is $\mathcal{H} = e\mathbb{C}Ge$.

$$\mathcal{H}\cong M_{n_1}(\mathbb{C})\times\cdots\times M_{n_t}(\mathbb{C})$$

Hence just need to show that H is commutative!

Lemma

Let $N \le G := GL(n, q)$ be the subgroup of monomial matrices, and $B \le GL(n, q)$ the subgroup of upper triangular matrices. Then: • $B = U \rtimes T$.

•
$$G = BNB = UNU$$
.

$$ege \in \mathcal{H} \Rightarrow ege = eunu'e = \sigma(u)\sigma(u')ene \quad u, u' \in U, n \in N$$

Conclusion

$$\mathcal{H} = \langle \{ ene \mid n \in N \} \rangle_{\mathbb{C}}$$

Pedro Matos (FCUL)

э

35 / 44

Lemma

 \mathcal{H} is commutative if there exists a linear isomorphism $\psi : \mathbb{C}G \to \mathbb{C}G$ satisfying the following conditions:

- 1. $\forall a, b \in \mathbb{C}G, \psi(ab) = \psi(b)\psi(a).$
- **2**. $\psi(U) = U$.

3.
$$\forall u \in U, \sigma(\psi(u)) = \sigma(u).$$

4. $\psi(n) = n$ for all $n \in N$ such that $ene \neq 0$.

Proof of the multiplicity free Theorem

$$e=\frac{1}{|U|}\sum_{u\in U}\sigma(u^{-1})u$$

$$\psi(e) = \psi\left(\frac{1}{|U|}\sum_{u\in U}\sigma(u^{-1})u\right) = \frac{1}{|U|}\sum_{u\in U}\sigma(u^{-1})\psi(u) = \\ = \frac{1}{|U|}\sum_{u\in U}\sigma(\psi^{-1}(u^{-1}))u = \frac{1}{|U|}\sum_{u\in U}\sigma(u^{-1})u = e$$

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016

37 / 44

$$ene \neq 0, \ \psi(ene) = \psi(e)\psi(n)\psi(e) = ene$$

Conclusion

$$\psi|_{\mathcal{H}} = \mathit{id}_{\mathcal{H}}$$

$$a, b \in \mathcal{H}, ab = \psi(ab) = \psi(b)\psi(a) = ba$$

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016 3

38 / 44

Involution of G

$$g: G o G$$

 $g \mapsto n_0 (g^{-1})^T n_0$

where

$$n_0 = \left(\begin{array}{ccc} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{array}\right)$$

Remark

The map:

$$\check{\sigma}: U o \mathbb{C}^{ imes} \ u \mapsto \sigma(\gamma(u^{-1}))$$

is also a nondegenerate linear character of U.

Since T acts transitively on nondegenerate linear characters of U, choose $t \in T$ such that $\tilde{\sigma} = \sigma^t$.

$$\sigma(\psi(u)) = \sigma(t\gamma(u^{-1})t^{-1}) =$$

= $\sigma^t(\gamma(u^{-1})) = \widetilde{\sigma}(\gamma(u^{-1})) =$
= $\sigma(\gamma(\gamma(u^{-1})^{-1})) = \sigma(u)$

Pedro Matos (FCUL)

The Gelfand-Graev character

LisMath Seminars 2016

41 / 44

э

3 Multiplicity free Theorem

Remarks

For our proof the following facts were essential:

- 1. $B = U \rtimes T$ and G = BNB.
- Existence of T and its transitive action on Lin(U).
- 3. Existence of a certain involution of GL(n, q).
- 4. (although not seen) Facts on representation theory of S_n .

Connected reductive group "counterparts"

- 1. Existence of a BN-pair (BBorel subgroup, N normalizer of a maximal torus $T \subset B$, Uthe unipotent radical of B).
- Z(G) connected implies
 "good"action of T over simple
 root subgroups of G.
- 3. Dynkin diagram automorphism and related opposition graph automorphism of *G*.
- 4. Representation theory of Weyl group W = N/T and respective action on $Hom(T, K^{\times})$.

- 1. I. M. Gelfand, M. I. Graev, *Construction of irreducible representations of simple algebraic groups over a finite field*, Dokl. Akad. Nauk SSSR, 147 (1962).
- 2. R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.
- 3. J. A. Green, *Discrete series characters for GL(n, q)*, Algebras and Representation Theory, 02 (1999), pp. 61-82.
- 4. C. W. Curtis, I. Reiner, *Representation theory of finite groups and associative algebras*, John Wiley and Sons Inc, 1962.
- 5. C. W. Curtis, I. Reiner, *Methods of Representation Theory, Vol. I. With applications to finite groups and orders*, John Wiley, New York, 1981.
- 6. R. W. Carter, *Finite groups of Lie type: conjugacy classes and complex characters*, John Wiley and Sons Inc, 1993.

Image: Image:

A B M A B M