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Section I. G2 and G2 holonomy.
The exceptional Lie group G2 can be defined in various ways.

The octonion (or Cayley) algebra is a nonassociative
algebra structure on R1 ⊕ R7. This gives a cross product
× : R7 × R7 → R7, just as the ordinary cross-product on R3

is related to the quaternions. The group G2 can be defined
as the subgroup of GL(7, R) preserving this cross product.
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The formula |x |2 = (−1/6) TrL2
x , where Lx(y) = x × y ,

defines the Euclidean structure on R7 and hence an
exterior 3-form:

φ(x , y , z) = 〈x × y , z〉.

The cross product can be recovered from φ so G2 can also
be defined as the subgroup which preserves φ.

In fact the GL(7, R) orbit of φ is open in Λ3 and G2 has
dimension 49 − 35 = 14.

The spin representation in dimension 7 is a representation
of Spin(7) on R8, acting transitively on the unit sphere S7.
The group G2 can be defined as the stabiliser in Spin(7) of
a unit vector. (Check: the dimension is 21 − 7 = 14.)
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The group G2 is important in Riemannian geometry because it
arises as a holonomy group.

Recall that a Riemannian metric g on an n-manifold M defines
a Levi-Civita connection and hence the notion of parallel
transport of tangent vectors along paths. Considering parallel
transport around loops gives a holonomy group Hol(g) ⊂ O(n).
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There is a small “Berger” list of possible (connected) holonomy
groups which can arise (leaving aside “symmetric spaces”).

SO(n);

U(m) and SU(m) when n = 2m. These are Kähler and
Calabi-Yau metrics.

Sp(1).Sp(r) and Sp(r) when n = 4r . These are
quaternionic Kähler and hyperkähler metrics.

G2 ⊂ SO(7) when n = 7 and Spin(7) ⊂ SO(8) when n = 8.
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The exceptional cases G2, Spin(7) are important in some
branches of theoretical physics. Such manifolds have zero
Ricci curvature and parallel spinor fields, which are required for
supersymmetry.
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A Riemannian manifold with holonomy G2 has a cross-product
on tangent vectors which is preserved by parallel transport.
Equivalently it has a parallel 3-form φ.

Simon Donaldson, Co-associative fibrations of G2-manifolds and deformations of singular sets



There are some special geometric objects one can consider in
a manifold M of holonomy G2.
A 3-dimensional vector subspace of R7 is called associative if it
is closed under cross product. A 4-dimensional subspace is
called co-associative if its orthogonal complement is
associative.
These definitions give rise to the notions of associative and
co-associative submanifolds of M. They are minimal and
“calibrated” submanifolds with finite-dimensional deformation
spaces, analogous to holomorphic curves in complex Kähler
manifolds.
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Standard questions in G2-manifold theory.

Find the 7-manifolds M which admit G2-structures.

Describe the moduli spaces of these structures and the
relation with the period map φ 7→ [φ] ∈ H3(M; R) (which
defines a local equivalence)

Describe the associative and co-associative submanifolds
etc.

These questions are all inaccessible at present, in any kind of
generality.
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Section II. Adiabatic constructions and K 3-surfaces.
Generalities
If one is studying some kind of structures on a manifold M it is
often useful to consider a situation where there is a fibration
π : M → B with very small fibres, with fibres of diameter O(ε)
and base of diameter O(1).
One expects that, on a scale O(ε) a neighbourhood of π−1(b) is
modelled on a product Xb × Rp where p = dimB, scaled by a
factor ε.
But on a scale O(1) the structure Xb on the fibre can vary.
One expects that there should be some adiabatic equation on
B which governs this variation in the limit as ε → 0.
In realistic cases there will usually be some discriminant set
Δ ⊂ B where the fibres are singular, which causes extra
complications.
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The topic of this talk is a programme of this kind where M is a
G2-manifold, the base has dimension 3 and the (smooth) fibres
are co-associative submanifolds of dimension 4.
The product model on X × R3 is given by a 3-form

φ =
3∑

i=1

ωi dti + dt1dt2dt3,

where ti are co-ordinates on R3 and ω1, ω2, ω3 are closed
2-forms on the 4-manifold X with

ωi ∧ ωj = δij volX .

This structure on X is equivalent to a hyperkähler structure,
with three complex structures I1, I2, I3 obeying the quaternion
relations and such that (X , Ii , ωi) is Kähler.
It is known that, for compact X , this can only occur if X is a flat
torus or a K 3-manifold. We focus on the second case (because
there are good reasons to think that there will be many
examples).
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This programme has analogies with the Strominger, Yau,
Zaslow proposal to study Special Lagrangian fibrations of
Calabi-Yau manifolds, near the “large complex structure” limit.
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The moduli space of hyperkähler structures on a K3 manifold X
is described by the “Torelli Theorem”. Recall that H2(X ; R) has

a quadratic form defined by the cup-product. This has
signature (3, 19) and we will write H2(X ; R) = R3,19.

an integer lattice Λ ⊂ R3,19.

Let ω1, ω2, ω3 be a hyperkähler structure on X as above. The
cohomology classes [ωi ] ∈ H2(X ) span a maximal positive
subspace in R3,19. Conversely, a maximal positive subspace
P ⊂ R3,19 arises from a hyperkähler structure (which is
essentially unique) if and only if there is no class α ∈ Λ with
α2 = −2 orthogonal to P.
The moduli space of hyperkähler structures is the quotient of
an open subset U ⊂ Gr+ = Gr+3 (R3,19) by a discrete group
Γ ⊂ O(Λ). The complement of U has codimension 3.
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What is the adiabatic equation which governs the variation of
the fibre structure?
Locally, on a suitably small open set B0 ⊂ B, the variation is
given by a map

f : B0 → Gr+.

The adiabatic equation is that this is the Gauss map of a
(parametrised) maximal positive submanifold in R3,19.

(Related to work of Baraglia in the case of torus fibres.)
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A maximal positive submanifold in Rp,q is a p-dimensional
submanifold whose tangent spaces are positive for the
quadratic form and which is solution of the Euler-Lagrage
equations associated to the volume functional.
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Example Take q = 1 and consider the graph of a function u on
Rp.

In Euclidean space Rp+1 the minimal submanifold equation
is

∑

i

∂

∂xi

(
1

√
1 + |∇u|2

∂u
∂xi

)

.

In Lorentzian space Rp,1 the maximal submanifold
equation is

∑

i

∂

∂xi

(
1

√
1 − |∇u|2

∂u
∂xi

)

,

for functions u with |∇u| < 1
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Section III. Singular fibres
Recall that in complex geometry a Lefschetz fibration of a
compact complex manifold V of complex dimension m is a
holomorphic map

p : V → CP1

with a finite set of critical values Δp ⊂ CP1. Each critical value
is the image of a unique critical point and in local complex
co-ordinates centred on those points the map is given by a
nondegenerate quadratic form

∑
z2

i .
They are “meromorphic Morse functions”.
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Fix attention on the case m = 3, so the general fibres are
complex surfaces. Going round a small loop about a point in Δp

we get a monodromy action on the 2-dimensional homology of
the fibre F . There is a vanishing cycle α ∈ H2(F ) with α2 = −2
and the monodromy is given by the Picard-Lefschetz reflection:

Rα(h) = h + (α.h)h.
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We consider Kovalev-Lefschetz fibrations which, topologically,
are smooth maps

π : M7 → S3

which are fibrations with K 3 fibres outside a discriminant set
Δ ⊂ S3 which is a link (a union of disjoint embedded circles).
Over the link the local model is the product of a Lefschetz
fibration with R.
The cohomology of the fibres defines a flat vector bundle with
fibre R3,19 over S3 \ Δ and structure group Γ ⊂ O(Λ).
Equivalently, we have a homomorphism ρ : π1(S3 \ Δ) → Γ. A
small loop around a component of Δ maps to a reflection.
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There is one more piece of data, which is a lift ρ̂ of ρ to the
affine extension:

0 → (R3,19, +) → Γ̂ → Γ → 1.

This lift corresponds to a class χ in a certain cohomology group
(a real vector space) H1

ρ . It defines a flat affine bundle Eρ,χ over
S3 \ Δ with fibre R3,19.

The data χ ∈ H1
ρ is related to the cohomology class

[φ] ∈ H3(M7; R).
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A global solution of the adiabatic equation is given by a section
U of Eρ,χ which, in a local trivialisation, maps to a maximal
positive submanifold.
Around a point of Δ we require that the section is a “branched”
solution, modelled transverse to Δ on the graph of the
multivalued function

u(z) = Re(z3/2),

in R2,1 or R3.

Simon Donaldson, Co-associative fibrations of G2-manifolds and deformations of singular sets



One can also study adiabatic limits of the associative and
co-associative submanifold equations.
“Adiabatic associatives” are integral curves of certain vector
fields on S3.
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We get adiabatic versions of our “standard questions”.

Find data (Δ, ρ, χ) which admit maximal positive sections.

Describe the moduli spaces of these solution and the
relation with the class χ (which defines a local
equivalence—see below).

Describe the adiabatic associatives and co-associatives.

These questions are perhaps somewhat more accessible.
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In reality there is much foundational work to do in setting up this
theory.
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Section IV. Deforming the singular set
One of the foundational analysis problems is that of deforming
a solution (U0, Δ0, ρ, χ0) for a prescribed small deformation in
the continuous parameter χ.
This is a prototype for a circle of related questions such as
“gluing problems”.
Questions of a similar nature have arisen in other areas in
differential geometry in the past few years. Taubes, Takahashi,
Wu, Zhang, Haydys, Walpuski and others have studied
multivalued harmonic functions, spinors and 1-forms, related to
compactness of solutions in gauge theory over 3-manifolds and
4-manifolds.
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These questions are analogous to “free boundary problems”,
with the difference that the singular set Δ has codimension 2
rather than 1.
It seems important to develop techniques to handle these
questions.
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We would expect to solve the deformation problem by some
version of an implicit function theorem, which depends on
inverting the linearised operator.

The linearisation of the maximal submanifold equation at the
solution U0 is a Laplace-type operator L. With a fixed Δ0 we
can solve the equation Lf = ρ for f but in general f will have
asymptotic behaviour

f ∼ Re(A(t)z1/2)

near Δ.
Here (z, t) with z ∈ C and t ∈ R are local co-ordinates around a
point of Δ
Since |∇f | → ∞ as z → 0 the section U0 + f does not make
sense as an approximation to a solution of the maximal
submanifold equation near Δ0.
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The explanation is the formula

d
dz

z3/2 =
3
2

z1/2,

in other words

(z + h)3/2 ∼ z3/2 +
3
2

z1/2h,

for |h| << |z|.
A deformation U0 + f away from Δ0 needs to be matched with a
deformation of Δ0. If U0 ∼ Re(B(t)z3/2) and f ∼ Re(A(t)z1/2)

then taking h(t) = 2A(t)
3B(t)

U0(z + h(t), t) ≈ U0(z, t) + f (z, t)

provided that |h| << |z| << 1.
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The problem is to control the derivatives of the deformation of
Δ0.
This can be attacked using Nash-Moser theory. We will outline
a more elementary approach which perhaps gives more
detailed information.
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Notation:

For a small perturbation χ of χ0, write the maximal
submanifold equation for a section V schematically as
F(V ) = 0.

For a link Δ close to Δ0 and small radius r write Ω+(r , Δ)
for the set of points of distance greater that r/2 from Δ and
Ω−(r , Δ) for the r -neighbourhood of Δ. Write Ω(r , Δ) for
intersection, i.e. the annular region of points of distance
between r/2 and r from Δ.
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We can suppose that we start with an “approximate solution” V0

such that F(V0) is supported in Ω(1, Δ0) and

|F(V0)| ≤ η0.

We can assume that η0 as small as we like.

The strategy is to generate a sequence of pairs (Vk , Δk ) such
that F(Vk ) is (essentially) supported in Ω(Δk , λk ) with
|F(Vk )| ≤ ηk . Here λ < 1/2 is to be determined later.

If the Δk converge in C∞ to some Δ∞ and if ηk → 0 then one
can show that the Vi converge to a limit V∞ with singular set
Δ∞ which gives a solution to the problem.
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Make the HYPOTHESIS that in our strategy the Δk are
C∞-small perturbations of Δ0.

Then at stage k one shows that the equation F(Vk + f ) = 0 can
be solved by small perturbation f over Ω+(λk+1, Δk ), provided
that ηk is small enough.

(i.e. the nonlinear problem is effectively linearised on the outer
region Ω+(λk+1, Δk ).)

The perturbation f has a leading term f ∼ Re(Akz1/2) in a local
co-ordinates z transverse to Δk

Simon Donaldson, Co-associative fibrations of G2-manifolds and deformations of singular sets



We define Δk+1 by deforming Δk according to the leading term
Ak in f , as above. One finds that

|Ak | ≤ C0λ
k/2ηk

We define Vk+1 by patching Vk + f over the outer region
Ω+(λk+1, Δk ) with the translate of Vk over the inner region
Ω−(λk+1, Δk ). This patching is done using cut-off functions on
the annular intersection region Ω(λk+1, Δk ).
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Calculations show that this produces an error |F(Vk+1)| ≤ ηk+1

over Ω(λk+1, Δk+1) where

ηk+1 ≤ (C1λ
1/2)ηk ,

plus an additional error term which turns out to be negligible,
under our HYPOTHESIS.

Here C0, C1 are constants independent of λ.
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We choose λ so that C1λ
1/2 = μ < 1. Then

ηk , |Ak | ≤ C2μ
k → 0,

as k → ∞.
Then under our HYPOTHESIS the iteration scheme converges
to a solution.
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The problem is to conform to our HYPOTHESIS. To achieve
this we modify the scheme by introduce smoothing operators.

For functions on R, a smoothing operator of scale ε could be
defined by convolution with Sε where

Sε(x) = ε−1S(x/ε),

with S a compactly-supported function of integral 1.
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At stage k we smooth Ak (t) over a scale k−1 in the variable t .
This gives Ak with

|∇mAk | ≤ const.km‖Ai‖L∞ ≤ const.kmηk

Then one finds that this introduces only small extra errors in the
matching construction and we have

|∇mAk | ≤ const.kmμk .

Since μ < 1 we have
∑∞

k=0 ‖∇
mAk‖ ≤ const.m and with this

modification the HYPOTHESIS holds.
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