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RANDOM MATRIX THEORY



INTRODUCTION

The study of the asymptotics of statistics of the eigenvalues of random
matrices.

• 2d Ising model: correlation functions along lines are determinants of
Toeplitz matrices.

• Montgomery’s conjecture: the pair correlation between zeros of the
Riemann zeta function is the same as the pair correlation between
eigenvalues of the Gaussian Unitary Ensemble.

• Baik-Deift-Johansson theorem: the length of the longest increasing
subsequence of a random permutation of N numbers converges in
distribution to the Tracy-Widom distribution of the largest eigenvalue of
a random matrix from the Gaussian Unitary Ensemble.

• Gauge theory, nuclear physics, engineering, telephone encription...

We study matrix ensembles, which are spaces of matrices, often with certain
symmetries, with a probability measure defined on the entries of the
matrices.
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MATRIX ENSEMBLES

The most studied ensembles are the invariant ensembles

β = 1 Gaussian Orthogonal Ensemble (GOE), real symmetric
matrices

β = 2 Gaussian Unitary Ensemble (GUE), complex hermitian
matrices

β = 4 Gaussian Symplectic Ensemble (GSE), quaternionic self-dual
matrices

together with a probability measure invariant under orthogonal, unitary or
symplectic transformations respectively, and such that the entries of the
matrices are independent random variables. This makes the p.d.f. to be of
the form

dP(M) =
1

ZN,β
exp(−atr(M2) + btr(M) + c)dM (a > 0; b, c ∈ R);

dP(x1, . . . , xN) =
1

ZN,β
exp

−a
N∑
j=1

x2j + b
N∑
j=1

xj + c

∏
i<j

|xj − xi|βdx1 . . .dxN.
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THE JOINT PROBABILITY FUNCTION: DETERMINANTAL FORM

Starting from the Vandermonde determinant

∏
i<j

(xj−xi) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xN
x21 x22 . . . x2N
...

...
. . .

...
xN−1
1 xN−1

2 . . . xN−1
N

∣∣∣∣∣∣∣∣∣∣∣∣
∝

∣∣∣∣∣∣∣∣∣∣
p0(x1) p0(x2) . . . p0(xN)
p1(x1) p1(x2) . . . p1(xN)

...
...

. . .
...

pN−1(x1) pN−1(x2) . . . pN−1(xN)

∣∣∣∣∣∣∣∣∣∣
,

we see that the joint p.d.f. has the determinantal form

P(x1, . . . , xN) =
1

ZN,β
det


KN(x1, x1) KN(x1, x2) . . . KN(x1, xN)
KN(x2, x1) KN(x2, x2) . . . KN(x2, xN)

...
...

. . .
...

KN(xN, x1) KN(xN, x2) . . . KN(xN, xN)

 ,

where

KN(xi, xj) = e−x2i /2e−x2j /2
N−1∑
k=0

pk(xi)pk(xj).
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A SAMPLE COMPUTATION: THE DENSITY OF THE EIGENVALUES FOR GUE

If we choose the polynomials pk to satisfy∫ ∞

−∞
pj(x)pk(x)e−x2dx = cjδjk,

the Hermite polynomials, then KN is a reproducing kernel, and thus the
density of the eigenvalues becomes

σN(x) =
∫ ∞

−∞
. . .

∫ ∞

−∞
P(x, x2, . . . , xN)dx2 . . .dxN = KN(x, x) = e−x2

N−1∑
k=0

p2
k(x).

Thanks to Christoffel-Darboux formula
N−1∑
k=0

pk(x)pk(y) =
pN−1

pN

pN(x)pN−1(y)− pN−1(x)pN(y)
x− y ,

the analysis of this expression is much simplified. In the end, this leads to
Wigner’s semicircle law:

σN(x) ∼
1
π

√
2N− x2 (|x| <

√
2N).
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TOEPLITZ DETERMINANTS



TOEPLITZ OPERATORS

The Fourier coefficients of functions f ∈ L1(T) are defined as

fn =
1
2π

∫ π

−π

f(eiθ)e−inθdθ (n ∈ Z) .

If f ∈ L∞(T), the following expression defines a bounded operator on the
Hardy space H2 (P denotes the projection P : L2 → H2)

Tf(g) = P(fg) (g ∈ H2).

This is called a Toeplitz operator, and it has the following matrix expression

Tf = (fi−j)
∞
i,j=1 =


f0 f−1 f−2

f1 f0 f−1
. . .

f2 f1 f0
. . .

. . . . . . . . .

 .

Its finite truncations T(N)f are called Toeplitz matrices.
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THE STRONG SZEGŐ LIMIT THEOREM

Theorem (Szegő, 1952)
Let f(eiθ) = exp(

∑∞
k=−∞ ckeikθ), with

∞∑
k=−∞

|k||ck|2 < ∞;

then

lim
N→∞

(
det T(N)f /eNc0

)
= exp

(
∞∑
k=1

kckc−k

)
.

A consequence: for positive f, the eigenvalues are uniformly distributed

1
N

(
logλ(N)

1 + · · ·+ logλ(N)
N

)
∼ c0 =

1
2π

∫ π

−π

 ∞∑
k=−∞

ck(eikθ)

dθ.

There are at least 9 proofs of this result!
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MINORS OF TOEPLITZ MATRICES

If we consider a minor of a Toeplitz matrix, such as

f0 f−1 f−2 f−3 f−4 f−5 . . .

f1 f0 f−1 f−2 f−3 f−4 . . .

f2 f1 f0 f−1 f−2 f−3 . . .

f3 f2 f1 f0 f−1 f−2 . . .

f4 f3 f2 f1 f0 f−1 . . .
...

...
...

...
...

...


= (fi−j

+µj

)Ni,j=1,

the following formula holds

lim
N→∞

(
det
λ

T(N)f /eNc0
)

=
1
m!

∑
π∈Sm

χλ(π)∆(σ, π) exp
(

∞∑
k=1

kckc−k

)
,

where λ is a partition of m, and

∆(σ, π) =
∞∏
k=1

(kck)γk ,

where π has γk cycles of order k.
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