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Finite maps

We only work over the field C of complex numbers.

Definition
Let X ,Y be affine varieties. A morphism f : X −→ Y is
called finite if

1. f is dominant,

2. K [X ] is finitely generated as K [Y ] - module.

Definition
Let X ,Y be projective varieties. A morphism f : X −→ Y is
called finite if any point y ∈ Y has an affine neighborhood V
such that

1. f −1 (V ) is affine,

2. f |f −1(V ): f −1 (V ) −→ V is a finite map between affine
varieties.



Definition

1. An affine variety X is called normal if K [X ] is normal.

2. A projective variety X is called normal if every point has
a normal affine neighborhood.

From now, we assume that the varieties are projective
varieties over C.



Covers

Definition
A finite map f : X −→ Y between projective varieties is called
a cover of degree d if the fibre of f over a general point of Y
consists of d points.

Example

The following map

f : P1 −→ P1, (x0 : x1) 7−→
(

xd
0 : xd

1

)
is a cover of degree d .



Covers

Remark
The cover of degree d f : X −→ Y induces a degree d
extension C (Y ) ⊂ C (X )

Definition
Let f : X −→ Y be a cover of degree d . Denoting

Aut (f ) := {g : X −→ X | f ◦ g = f }

1. f is called Galois if |Aut (f )| = d .

2. A Galois cover f is called abelian if Aut (f ) is abelian.



Covers

Example

The following map

f : P1 −→ P1, (x0 : x1) 7−→
(
x2
0 : x2

1

)
is a cover of degree 2. And

Aut (f ) = {id , g} ,

where

g : P1 −→ P1, (x0 : x1) 7−→ (x0 : −x1)



First properties of abelian covers

Notation
Let f : X −→ Y be a Galois cover of degree d. We denote

1. G := Aut (f ).

2. A := f∗OX .

Theorem
Let f : X −→ Y be a Galois cover of degree d. Then

A = ⊕
ρ∈Irr(G)

A ρ

where Irr (G ) is the set of irreducible representations of G.



Properties of abelian covers

Corollary

Let f : X −→ Y be an abelian cover of degree d. Then

A = ⊕
ρ∈G∗

A ρ

where G ∗ is the set of characters of G .

In the case where f is an abelian cover of degree d , we can
write

A = OY ⊕

 ⊕
χ∈G∗
χ 6=1

L−1χ


where L−1χ are line bundles.



Building data

Definition
Let f : X −→ Y be a cover of degree d .

1. The set

B :=
{

y ∈ Y |
∣∣f −1 (y)

∣∣ < d
}

is called the branch locus of f .

2. We define the ramification locus R ⊆ X as the set of
points where the differential of f fails to be an
isomorphism.



Building data

Let f be a Galois cover of degree d . For each component S of
R,

IS := {g ∈ G | g .x = x , ∀x ∈ S}

is called the inertia subgroup.

Proposition

Let f be an abelian cover of degree d. Then

1. IS is a cyclic subgroup.

2. The tangent representation of IS at the point x ∈ S
decomposes as the sum n − 1 copies of the trivial
representation and of a 1-dimensional representation ψx .
Moreover, ψx is generator of I ∗S .



Building data

Notation
Let f : X −→ Y be an abelian cover of degree d.

1. For each component D of B, we denote

(ID , ψD) := (IS , ψS)

where S is a component of f −1 (D).

2. Let H be a cyclic subgroup of G , and ψ be a generator
of H∗. We denote

D(H,ψ) :=
∑

(ID ,ψD)=(H,ψ)
D is a component of B

D



Building data

Remark

B =
∑
(H,ψ)

D(H,ψ)

Definition
Let f : X −→ Y be an abelian cover of degree d . The
sheaves Lχ, χ ∈ G ∗ \ {1}, and the divisors D(H,ψ) are called
the building data of the cover.



Building data

Notation
Let χ, χ′ ∈ G ∗,H be a cyclic subgroup of G, and ψ is a
generator of H∗. Denote

1. mH := ord (H),

2. m
(H,ψ)
χ := min

{
k ∈ N | ψk = χ|H

}
,

3. ε
(H,ψ)
χ,χ′ :=

{
1, if m

(H,ψ)
χ + m

(H,ψ)
χ′ ≥ mH

0 otherwise

Theorem (R. Pardini 1991)

Let f : X −→ Y be an abelian cover of degree d, and χ, χ′ be
in G ∗. Then

Lχ + Lχ′ ≡ Lχχ′ +
∑
(H,ψ)

ε
(H,ψ)
χ,χ′ D(H,ψ) (1)



Theorem (R. Pardini 1991)

Let Y be a smooth projective variety, and G be an abelian
group of order d. Let {Lχ}χ∈G∗\{1} be line bundles of Y such
that Lχ 6= OY for every χ, and let D(H,ψ) be effective divisors
such that

∑
(H,ψ)

D(H,ψ) is reduced. Then

1. Lχ,D(H,ψ) are the building data of an abelian cover
f : X −→ Y if and only if they satisfy the fundamental
relation (1).

2. The building data determine f : X −→ Y up to G−
equivariant isomorphisms.



Theorem (R. Pardini 1991)

Let f : X −→ Y be an abelian cover with branch locus B, let
y ∈ Y be a point, let D1,D2, . . . ,Ds be the irreducible
components of B that contain y and let (Hi , ψi ) be the pair
subgroup - character associated to Di , i = 1, . . . s. Then X is
smooth above y if and only if

1. Di is smooth at y for every i ;

2. the Di meet transversely at y ;

3. the natural map H1 ⊕ H2 ⊕ . . .⊕ Hs → G is injective.



Theorem (R. Pardini 1991)

Let Y be a smooth projective variety, and G be an abelian
group of order d. Let χ1, χ2, . . . , χk ∈ G ∗ be such that

G ∗ = 〈χ1〉 ⊕ 〈χ2〉 ⊕ . . .⊕ 〈χk〉 .

Let {Lχi}i=1,...k be line bundles of Y , and let D(H,ψ) be
effective divisors such that

∑
(H,ψ)

D(H,ψ) is reduced. Then

1.
{

Lχi ,D(H,ψ)

}
can be extended to be a set of building

data
{

Lχ,D(H,ψ)

}
satisfying (1) if and only if{

Lχi ,D(H,ψ)

}
satisfy

diLχi ≡
∑
(H,ψ)

dim
(H,ψ)
χi

mH
D(H,ψ) (2)

2. The
{

Lχi ,D(H,ψ)

}
uniquely determine Lχ.



We assume that Y ia a smooth projective variety.

Double covers

Example

Let G = Z2.

1. Let χ1 be the non trivial character of G .

2. Let H1 be the non-trivial cyclic subgroup of G . And let

ψ1 = χ1. Then m
(H1,ψ1)
χ1 = 1.

So the building data is {L1,D1} with the following relation

L1 + L1 ≡ D1



Bidouble covers

Let G = Z2 × Z2 and g1 = (1, 0) , g2 = (0, 1) , g3 = (1, 1)

1. Let χ1, χ2, χ3 be the non trivial characters of G defined
by

χi (gi ) = 1

for all i .

2. The cyclic subgroups of G are Hi = 〈gi 〉 for all
i = 1, 2, 3. And

H∗i = 〈ψi 〉

where ψi (gi ) = −1.



Bidouble covers

We have m
(H1,ψ1)
χ1 m

(H2,ψ2)
χ1 m

(H3,ψ3)
χ1

m
(H1,ψ1)
χ2 m

(H2,ψ2)
χ2 m

(H3,ψ3)
χ2

m
(H1,ψ1)
χ3 m

(H2,ψ2)
χ3 m

(H3,ψ3)
χ3

 =

 0 1 1
1 0 1
1 1 0


Then the building data is {L1, L2, L3,D1,D2,D3} with the
following relations 

L1 + L1 ≡ D2 + D3

L2 + L2 ≡ D1 + D3

L3 + L3 ≡ D1 + D2

L1 + L2 ≡ L3 + D3

L1 + L3 ≡ L2 + D2

L2 + L3 ≡ L1 + D1



Bidouble covers

The reduced building data is {L1, L2,D1,D2,D3} with the
following relations {

L1 + L1 ≡ D2 + D3

L2 + L2 ≡ D1 + D3



Cyclic covers

Let G = Z3.

1. Let χ1, χ2 be the non trivial characters of G defined by

χ1 (1) = e i
2π
3 , χ2 (1) = e i

4π
3

2. There is only one non-trivial cyclic subgroup H1 = 〈1〉 of
G , and two characters generating H∗, χ1, χ2. So pairs
are (H, χ1), (H, χ2).



Cyclic covers

We have [
m

(H1,ψ1)
χ1 m

(H2,ψ2)
χ1

m
(H1,ψ1)
χ2 m

(H2,ψ2)
χ2

]
=

[
1 2
2 1

]
Then the building data is {L1, L2,D1,D2} with the following
relations 

L1 + L1 ≡ L2 + D2

L2 + L2 ≡ L1 + D1

L1 + L2 ≡ D1 + D2

The reduced building data is {L1,D1,D2} with the relation

3L1 ≡ D1 + 2D2



Cyclic covers

If we consider

ψ1 := χ1 ∈ H∗1 ,

We have [
m

(H1,ψ1)
χ1

m
(H1,ψ1)
χ2

]
=

[
1
2

]



Cyclic covers

Then the building data is {L1, L2,D1} with the following
relations 

L1 + L1 ≡ L2

L2 + L2 ≡ L1 + D1

L1 + L2 ≡ D1

The reduced building data is {L1,D1} with the relation

3L1 ≡ D1
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