Ramified coverings of algebraic varieties

Nguyen Bin

Lismath

May 6, 2016

Outline

Covers

Properties of abelian covers

The structure theorem for abelian covers

Examples

Finite maps

We only work over the field ${\ensuremath{\mathbb C}}$ of complex numbers.

Definition

Let X, Y be affine varieties. A morphism $f: X \longrightarrow Y$ is called finite if

- 1. f is dominant,
- 2. K[X] is finitely generated as K[Y] module.

Definition

Let X, Y be projective varieties. A morphism $f : X \longrightarrow Y$ is called finite if any point $y \in Y$ has an affine neighborhood V such that

f⁻¹(V) is affine,
 f |_{f⁻¹(V)}: f⁻¹(V) → V is a finite map between affine varieties.

Definition

- 1. An affine variety X is called normal if K[X] is normal.
- 2. A projective variety X is called normal if every point has a normal affine neighborhood.

イロト (四) (日) (日) (日) (日) (0)

From now, we assume that the varieties are projective varieties over $\mathbb{C}.$

Covers

Definition

A finite map $f : X \longrightarrow Y$ between projective varieties is called a cover of degree d if the fibre of f over a general point of Yconsists of d points.

Example

The following map

$$f: \mathbb{P}^1 \longrightarrow \mathbb{P}^1, (x_0: x_1) \longmapsto \left(x_0^d: x_1^d\right)$$

イロト (四) (日) (日) (日) (日) (0)

is a cover of degree d.

Covers

Remark

The cover of degree $d f : X \longrightarrow Y$ induces a degree d extension $\mathbb{C}(Y) \subset \mathbb{C}(X)$

Definition

Let $f: X \longrightarrow Y$ be a cover of degree d. Denoting

$$Aut(f) := \{g : X \longrightarrow X \mid f \circ g = f\}$$

- 1. *f* is called Galois if |Aut(f)| = d.
- 2. A Galois cover f is called abelian if Aut(f) is abelian.

Covers

Example

The following map

$$f: \mathbb{P}^1 \longrightarrow \mathbb{P}^1, (x_0:x_1) \longmapsto \left(x_0^2:x_1^2\right)$$

is a cover of degree 2. And

$$Aut(f) = \{id,g\},\$$

where

$$g: \mathbb{P}^1 \longrightarrow \mathbb{P}^1, (x_0: x_1) \longmapsto (x_0: -x_1)$$

First properties of abelian covers

Notation

Let $f : X \longrightarrow Y$ be a Galois cover of degree d. We denote 1. G := Aut(f). 2. $\mathscr{A} := f_* \mathscr{O}_X$.

Theorem

Let $f : X \longrightarrow Y$ be a Galois cover of degree d. Then

$$\mathscr{A} = \bigoplus_{\rho \in \mathit{Irr}(\mathsf{G})} \mathscr{A}_{\rho}$$

where Irr(G) is the set of irreducible representations of G.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Properties of abelian covers

Corollary Let $f : X \longrightarrow Y$ be an abelian cover of degree d. Then

$$\mathscr{A} = \bigoplus_{\rho \in \mathsf{G}^*} \mathscr{A}_{\rho}$$

where G^* is the set of characters of G.

In the case where f is an abelian cover of degree d, we can write

$$\mathscr{A} = \mathscr{O}_{\mathbf{Y}} \oplus \left(\bigoplus_{\substack{\chi \in G^* \\ \chi \neq 1}} L_{\chi}^{-1} \right)$$

where L_{χ}^{-1} are line bundles.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition Let $f: X \longrightarrow Y$ be a cover of degree d.

1. The set

$$B := \{ y \in Y \mid |f^{-1}(y)| < d \}$$

イロト (四) (日) (日) (日) (日) (0)

is called the branch locus of f.

2. We define the ramification locus $R \subseteq X$ as the set of points where the differential of f fails to be an isomorphism.

Let f be a Galois cover of degree d. For each component S of R,

$$I_{S} := \{g \in G \mid g.x = x, \forall x \in S\}$$

is called the inertia subgroup.

Proposition

Let f be an abelian cover of degree d. Then

- 1. Is is a cyclic subgroup.
- 2. The tangent representation of I_S at the point $x \in S$ decomposes as the sum n - 1 copies of the trivial representation and of a 1-dimensional representation ψ_x . Moreover, ψ_x is generator of I_S^* .

Notation

- Let $f: X \longrightarrow Y$ be an abelian cover of degree d.
 - 1. For each component D of B, we denote

 $(I_D,\psi_D):=(I_S,\psi_S)$

where S is a component of $f^{-1}(D)$.

2. Let H be a cyclic subgroup of G, and ψ be a generator of H^{*}. We denote

$$D_{(H,\psi)} := \sum_{\substack{(I_D,\psi_D) = (H,\psi) \\ D \text{ is a component of } B}} D$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Remark

$$B = \sum_{(H,\psi)} D_{(H,\psi)}$$

Definition

Let $f : X \longrightarrow Y$ be an abelian cover of degree d. The sheaves $L_{\chi}, \chi \in G^* \setminus \{1\}$, and the divisors $D_{(H,\psi)}$ are called the building data of the cover.

Notation

Let $\chi, \chi' \in G^*, H$ be a cyclic subgroup of G, and ψ is a generator of H^* . Denote

1.
$$m_{H} := ord(H),$$

2. $m_{\chi}^{(H,\psi)} := min\{k \in \mathbb{N} \mid \psi^{k} = \chi|_{H}\},$
3. $\epsilon_{\chi,\chi'}^{(H,\psi)} := \begin{cases} 1, if m_{\chi}^{(H,\psi)} + m_{\chi'}^{(H,\psi)} \ge m_{H} \\ 0 \text{ otherwise} \end{cases}$

Theorem (R. Pardini 1991)

Let $f:X\longrightarrow Y$ be an abelian cover of degree d, and χ,χ' be in $G^*.$ Then

$$L_{\chi} + L_{\chi'} \equiv L_{\chi\chi'} + \sum_{(H,\psi)} \varepsilon_{\chi,\chi'}^{(H,\psi)} D_{(H,\psi)}$$
(1)

Theorem (R. Pardini 1991)

Let Y be a smooth projective variety, and G be an abelian group of order d. Let $\{L_{\chi}\}_{\chi \in G^* \setminus \{1\}}$ be line bundles of Y such that $L_{\chi} \neq \mathscr{O}_Y$ for every χ , and let $D_{(H,\psi)}$ be effective divisors such that $\sum_{(H,\psi)} D_{(H,\psi)}$ is reduced. Then

- 1. $L_{\chi}, D_{(H,\psi)}$ are the building data of an abelian cover $f : X \longrightarrow Y$ if and only if they satisfy the fundamental relation (1).
- 2. The building data determine $f : X \longrightarrow Y$ up to G-equivariant isomorphisms.

Theorem (R. Pardini 1991)

Let $f : X \longrightarrow Y$ be an abelian cover with branch locus B, let $y \in Y$ be a point, let D_1, D_2, \ldots, D_s be the irreducible components of B that contain y and let (H_i, ψ_i) be the pair subgroup - character associated to $D_i, i = 1, \ldots s$. Then X is smooth above y if and only if

- 1. D_i is smooth at y for every i;
- 2. the D_i meet transversely at y;
- 3. the natural map $H_1 \oplus H_2 \oplus \ldots \oplus H_s \to G$ is injective.

Theorem (R. Pardini 1991)

Let Y be a smooth projective variety, and G be an abelian group of order d. Let $\chi_1, \chi_2, \ldots, \chi_k \in G^*$ be such that

 $G^* = \langle \chi_1 \rangle \oplus \langle \chi_2 \rangle \oplus \ldots \oplus \langle \chi_k \rangle.$

Let $\{L_{\chi_i}\}_{i=1,...k}$ be line bundles of Y, and let $D_{(H,\psi)}$ be effective divisors such that $\sum_{(H,\psi)} D_{(H,\psi)}$ is reduced. Then

1. $\{L_{\chi_i}, D_{(H,\psi)}\}$ can be extended to be a set of building data $\{L_{\chi}, D_{(H,\psi)}\}$ satisfying (1) if and only if $\{L_{\chi_i}, D_{(H,\psi)}\}$ satisfy

$$d_i L_{\chi_i} \equiv \sum_{(H,\psi)} \frac{d_i m_{\chi_i}^{(H,\psi)}}{m_H} D_{(H,\psi)}$$
(2)

2. The $\{L_{\chi_i}, D_{(H,\psi)}\}$ uniquely determine L_{χ} .

We assume that Y is a smooth projective variety.

Double covers

Example

Let $G = \mathbb{Z}_2$.

- 1. Let χ_1 be the non trivial character of G.
- 2. Let H_1 be the non-trivial cyclic subgroup of G. And let $\psi_1 = \chi_1$. Then $m_{\chi_1}^{(H_1,\psi_1)} = 1$.

So the building data is $\{L_1, D_1\}$ with the following relation

$$L_1 + L_1 \equiv D_1$$

ション ション ション ション シックション

Bidouble covers

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$
 and $g_1 = (1,0)$, $g_2 = (0,1)$, $g_3 = (1,1)$
1. Let χ_1, χ_2, χ_3 be the non trivial characters of G defined by

$$\chi_i(g_i) = 1$$

for all *i*.

2. The cyclic subgroups of G are $H_i = \langle g_i \rangle$ for all i = 1, 2, 3. And

$$H_i^* = \langle \psi_i \rangle$$

where $\psi_i(g_i) = -1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bidouble covers

We have

$$\begin{bmatrix} m_{\chi_1}^{(H_1,\psi_1)} & m_{\chi_1}^{(H_2,\psi_2)} & m_{\chi_1}^{(H_3,\psi_3)} \\ m_{\chi_2}^{(H_1,\psi_1)} & m_{\chi_2}^{(H_2,\psi_2)} & m_{\chi_2}^{(H_3,\psi_3)} \\ m_{\chi_3}^{(H_1,\psi_1)} & m_{\chi_3}^{(H_2,\psi_2)} & m_{\chi_3}^{(H_3,\psi_3)} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Then the building data is $\{L_1, L_2, L_3, D_1, D_2, D_3\}$ with the following relations

$$\begin{cases} L_1 + L_1 \equiv D_2 + D_3 \\ L_2 + L_2 \equiv D_1 + D_3 \\ L_3 + L_3 \equiv D_1 + D_2 \\ L_1 + L_2 \equiv L_3 + D_3 \\ L_1 + L_3 \equiv L_2 + D_2 \\ L_2 + L_3 \equiv L_1 + D_1 \end{cases}$$

The reduced building data is $\{L_1, L_2, D_1, D_2, D_3\}$ with the following relations

$$\begin{cases} L_1 + L_1 \equiv D_2 + D_3 \\ L_2 + L_2 \equiv D_1 + D_3 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Let $G = \mathbb{Z}_3$.

1. Let χ_1, χ_2 be the non trivial characters of G defined by

$$\chi_1(1) = e^{i\frac{2\pi}{3}}, \chi_2(1) = e^{i\frac{4\pi}{3}}$$

2. There is only one non-trivial cyclic subgroup $H_1 = \langle 1 \rangle$ of G, and two characters generating H^* , χ_1, χ_2 . So pairs are (H, χ_1) , (H, χ_2) .

We have

$$\begin{bmatrix} m_{\chi_1}^{(H_1,\psi_1)} & m_{\chi_1}^{(H_2,\psi_2)} \\ m_{\chi_2}^{(H_1,\psi_1)} & m_{\chi_2}^{(H_2,\psi_2)} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Then the building data is $\{L_1, L_2, D_1, D_2\}$ with the following relations

$$\left\{ \begin{array}{l} L_1 + L_1 \equiv L_2 + D_2 \\ L_2 + L_2 \equiv L_1 + D_1 \\ L_1 + L_2 \equiv D_1 + D_2 \end{array} \right.$$

The reduced building data is $\{L_1, D_1, D_2\}$ with the relation

$$3L_1 \equiv D_1 + 2D_2$$

If we consider

$$\psi_1 := \chi_1 \in H_1^*,$$

We have

$$\left[\begin{array}{c}m_{\chi_1}^{(H_1,\psi_1)}\\m_{\chi_2}^{(H_1,\psi_1)}\end{array}\right] = \left[\begin{array}{c}1\\2\end{array}\right]$$

Then the building data is $\{L_1, L_2, D_1\}$ with the following relations

$$\left\{ \begin{array}{l} L_1 + L_1 \equiv L_2 \\ L_2 + L_2 \equiv L_1 + D_1 \\ L_1 + L_2 \equiv D_1 \end{array} \right.$$

The reduced building data is $\{L_1, D_1\}$ with the relation

$$3L_1 \equiv D_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

References I

- Shafarevich, Igor R., Basic Algebraic Geometry 1.
- Nartshorne, Robin, Algebraic Geometry.
- New York, Serge, Algebra.

R.Pardini, Abelian covers of algebraic varieties, J. reine angew. Math., 417 (1991), 191 - 213.

Thank you for your attention

