2d TQFT's and partial fractions

Tuesday, September 8, 2020 10:53 AM

Topological Quantum Field Theory Club

December 4, 2020

Victor Ostrik (University of Oregon) (joint with M.Khovanov and Y.Kononov)

Definition (M.Atiyah): A TQFT is a symmetric tensor functor Cob_d - Vec.

Generalization: replace Vec by a symmetric tensor category C C-valued TQFT: symmetric tensor functor Cob_d \rightarrow C.

Examples: C=Vec, sVec, Rep(G) etc

Today: d=2!

Category of cobordisms Cob_d: $\sqrt{-2}$

-2 000

Objects: (d-1)-dimensional closed oriented manifolds Morphisms: d-dimensional oriented cobordisms Composition: gluing

Identity morphisms=?

Tensor product: disjoint union Unit object=?

Some important objects of Cob_2: empty set=1 and circle=A

★ Thus A is a commutative Frobenius object in Cob_2: commutative associative unital monoid equipped with a map A→1 such that the composition A⊗A→A→1 is a non-degenerate pairing.

<u>Theorem</u> (R.Dijkgraaf + folklore): Cob_2 is free category

generated by the commutative Frobenius object A.

<u>Corollary</u>: C-valued 2d TQFT's = Functors Cob_ $2 \rightarrow C =$ commutative Frobenius objects in C.

TQFT output: values at closed d-manifolds-cerements of Hom_C(1,1)

Linear setup: choose a field k C — k-linear category Hom_C(1,1)=k

Frobenius object = Frobenius algebra

TQFT output: sequence α_0 , α_1 , α_2 , of elements of k

* Maswerlestibae avances expressions we will observe?

Take C = VCob_ α := linearized Cob_2 modulo relations = d_0 = d_1 = d_2 etc Hom are so dim the Hom (A, A) = $\frac{0}{2} = 0$

* Realization of sequence $\alpha = (\alpha_0, \alpha_1, \alpha_2,)$: pair (C,A) such that the corresponding TQFT outputs α .

Realization is finite if Hom spaces in C are finite dimensional.

overtuelly receivent

<u>Answer 2</u> (M.Khovanov): sequence α admits a finite realization if and only if it is <u>linearly recursive</u>, that is the

 $_0 + _1T + _2 ^2 + \dots$

generating function Z(T) = $\alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots$ is rational: rational. are linearly dependent $2x^{7}+3x^{5}=0$ $\frac{1}{10} = 0.4 \text{ or } h \frac{7}{2} \frac{3}{5}$ 2× +3× hence -22441 +3 244 F(m)X"F(D Khowanov - Sazdanovic Existence: some quotients $SCob_{\alpha}$ of linearized VCob_2.

 Realization is abelian if C is abelian, rigid, with finite dimensional Hom spaces.

<u>Answer 3</u> (M.Khovanov, Y.Kononov, V.O.): sequence α admits an abelian realization if and only if it is

1) linearly recursive, $Z(T) = \frac{P(T)}{Q(T)}$ with relatively prime f(T)P(T) and Q(T). 2) Q(T) has no multiple roots (in K) and deg $P \le \deg Q+1$. Thus $Z(T) = \delta_0 + \delta_1 T + \sum_i \frac{\beta_i}{1 - \gamma_i T}$ and in der K = 0

3) If char k=p>0 then δ_1 and $\beta_i \gamma_i$ (for all i) are in the prime

subfield $F_p \subset k$

Remark: conditions 2) and 3) can be expressed in terms of 1-form Z(T) $\frac{\alpha T}{T^2}$:

- 2. all its poles are simple except, possibly, at T=0
- 3. All its residues are in F_p
- ★ Examples:

Examples: 1) $\alpha = 1, 1, 1, 1, ...$ Thus Z(T)= $\frac{1}{1-T}$ and α has an abelian

realization over any field.

2)
$$\alpha = 1, 2, 3, 4, 5, \dots$$
 Thus Z(T)= $\frac{1}{(1-T)^2}$ and α has no

abelian realization over any field

3)
$$\alpha = 1, 2, 1, 2, 1, 2, ...$$
 Thus Z(T) = $\frac{1+2T}{1-T^2} = \frac{3}{2} + \frac{1}{1-T} + \frac{1}{2}$

, so α has an abelian realization over any field of characteristic not 2.

4)
$$\alpha$$
=1,1,2,3,5,8,13,... thus Z(T)= $\frac{1}{1-T-T^2}$

 α has an abelian realization: p=0,11,19,29,31,41, α has no abelian realization: p=2,3,5,7,13,17,23,37 -tel

Note that: α =-1,2,1,3,4,7,11,... has an abelian realization over any field.

1, 1, 0, 0, 0, 0, ...-dim (A)

Remark: abelian realization in characteristic p>0 implies * a realization with C=Vec. This is NOT the case in characteristic 0. Deligne categories (like $\text{Rep}(S_t)$) of super-exponential growth are needed.

0.1.

Example:

1)
$$\alpha$$
=1,2,1,2,1,2,... so Z(T)= $\frac{\frac{3}{2}}{1-T} + \frac{-\frac{1}{2}}{1+T}$; realization
of α requires Rep(S_t) with t=3/2 and t=1/2.
2) α =3,1,3,1,3,1,... Here Z(T)= $\frac{2}{1-T} + \frac{1}{1+T}$; realization
of α requires Rep(S_{-1}).

* Answer 4 (well known?) Assume p=0 and Z(T)= $\delta_0 + \delta_1 T$ + $\sum_{i=1-\gamma_i T} \beta_i$ (or $\delta_1 = 0$ and $\delta_0 = 0$)

Sequence α admits an abelian realization of exponential growth if and only if δ_1 is an integer and $\beta_i \gamma_i$ (for all i) are integers >0.

This implies a realization with C=sVec.

Sequence α admits an realization with C=Vec if and only if δ_1 is an integer >1 and $\hat{p}_i \gamma_i$ (for all i) are integers >0.

Crucial tool: quotients by negligible morphisms ("gligible" quotients) aka "semisimplifications".

Theorem of Andre-Kahn (abstract version of Jannsen theorem) implies:

true in Second Corollary: α admits an abelian realization if and only if the gligible quotient Cob_ α of SCob_ α is semisimple.

Important computation: compute categories Cob_{α} .

***** Results for α with abelian realization (k algebraically

closed):

_____ P=0

1) if Z(T)=sum of partial fractions then the gligible quotient is a product of quotients for each summand.

Thus if Z(T)= $\delta_0 + \delta_1 T + \sum_i \frac{\beta_i}{1 - \gamma_i T}$ we need to consider

only the following cases:

 $P = O \qquad \beta \qquad 2 \overrightarrow{I}$ 2) If $Z(T) = \frac{\beta}{1 - \gamma T}$ then the semisimplification of Cob_2(α) is semisimplification of Rep(S_t) with $t = \beta \gamma$ (exceptional $2 - 1 = (\lambda - 1)^2$ values of t: non-negative integers)

3) if $Z(T)=\delta_0 + \delta_1 T$ with $\delta_1 \neq 0$ then the semisimplification of Cob_2(α) is semisimplification of Rep(O_t) with $t=\delta_1 - 2$ (exceptional values of t: integers)

4) if $Z(T)=\delta_0$ then the semisimplification of Cob_2(α) is Rep(osp(1|2)) or, in characteristic p, a semisimplification

Example: Z(T)=1+2T. In characteristic $\neq 2$ we get C=Vec and A=k[x]/x². In characteristic 2 we get C=Z/2Z-graded vector spaces and A=k[x]/($x^2 = p^2$)

What about sequences without abelian realization, e.g. 1,2,3,4,5,...?

We can start by finding dimensions of Hom spaces in the gligible quotients Cob_{α} , e.g. $Hom(1, A^{\otimes n}) = :a_n$.

Theorem. Assume b_2 is nonzero. Then we have

2

Conjecture: Assume $Z(T) = \frac{1}{(1-T)^2}$ or, more generally, 2 $Z(T) = \frac{\beta}{(1-\gamma T)^2}$. Then the category $SCob_{\alpha}$ has no negligible $\frac{1}{6}$ morphisms, i.e. $SCob_{\alpha} = Cob_{\alpha}$. Thus the generating function

 $\begin{array}{c} -1, -1, -1, \cdots \\ t, t, t, t, \cdots \\ What if Z(T) = quadratic polynomial = b_0 + b_1 T + b_2 T^2. \end{array}$

What if $Z(T) = quadratic polynomial = b_0+b_1T+b_2T^2$. Then the category SCob_ α does have negligible morphisms, i.e. SCob_ $\alpha \neq Cob_{\alpha}$.

1. Gram determinants

n	B_n	det
1	1	β
2	2	$eta^2 \left(eta \gamma - 1 ight)$
3	5	$eta^5(eta\gamma-1)^4(eta\gamma-2)$
4	15	$eta^{15} \gamma (eta \gamma - 1)^{14} (eta \gamma - 2)^7 (eta \gamma - 3)$
5	52	$eta^{52} \gamma^{10} (eta \gamma - 1)^{51} (eta \gamma - 2)^{36} (eta \gamma - 3)^{11} (eta \gamma - 4)$
6	203	$eta^{203}\gamma^{73}(eta\gamma-1)^{202}(eta\gamma-2)^{171}(eta\gamma-3)^{81}(eta\gamma-4)^{16}(eta\gamma-5)$
7	877	$\beta^{877} \gamma^{490} \left(\beta \gamma - 1\right)^{876} \left(\beta \gamma - 2\right)^{813} \left(\beta \gamma - 3\right)^{512} \left(\beta \gamma - 4\right)^{162} \left(\beta \gamma - 5\right)^{22} \left(\beta \gamma - 6\right)$

TABLE 1. Determinants of the bilinear form on A(n) for the generating function $Z(T) = \frac{\beta}{1-\sqrt{T}}$.

n	$B_{n}^{(2)}$	det
1	2	$-\beta^2$
2	6	$-\beta^{10}\gamma^{12}$
3	22	$-\beta^{50}\gamma^{66}$
4	94	$-\beta^{266}\gamma^{376}$
5	454	$-\beta^{1522}\gamma^{2270}$

TABLE 2. Two-colored Bell numbers and Gram determinants for the function $Z(T) = \beta/(1 - \gamma T)^2$.

n	dim	det
1	2	$-\left(eta_0\gamma+eta_1 ight)^2$
2	6	$-\gamma^{2} \left(\beta_{0} \gamma + \beta_{1} \right)^{10}$
3	22	$-\gamma^{16} \left(\beta_0 \gamma + \beta_1 \right)^{50}$
4	94	$-\gamma^{110} (\beta_0 \gamma + \beta_1)^{266}$
5	454	$-\gamma^{748} \left(\beta_0 \gamma + \beta_1 \right)^{1522}$

TABLE 3. Dimensions and determinants for the function $Z(T) = (\beta_0 + \beta_1 T)/(1 - \gamma T)^2$. The difference with the previous table is $\beta_0 \gamma + \beta_1$ taking place of β .

1

 $\mathbf{2}$

2. Polynomial generating functions

n	$B_{n}^{(2)}$	$\dim A(n)$	det
1	2	2	$-eta_1^2$
2	6	5	$(\beta_1 - 2) \beta_1^8$
3	22	14	$-(eta_1-2)^6 \hat{eta}_1^{30}$
4	94	43	$(\beta_1 - 3)^2 (\beta_1 - 2)^{27} \beta_1^{113}$
5	454	142	$-(\beta_1-3)^{20}(\beta_1-2)^{110}\beta_1^{440}$
6	2430	499	$(\beta_1 - 4)^5 (\beta_1 - 3)^{134} (\beta_1 - 2)^{435} \beta_1^{1774} (\beta_1 + 2)$
7	14214	1850	$-(\hat{\beta}_1-4)^{70}(\hat{\beta}_1-3)^{756}(\hat{\beta}_1-2)^{1722}\hat{\beta}_1^{7406}(\beta_1+2)^{14}$

TABLE 4. Determinants of the bilinear form on A(n) for the generating function $Z(T) = \beta_0 + \beta_1 T$. Notice the appearance of the term $\beta_1 + 2$ in the last two lines.

Prediction for n = 8 (determinant of size 7193):

$$(\beta_1-5)^{14}(\beta_1-4)^{630}(\beta_1-3)^{3912}(\beta_1-2)^{6937}(\beta_1-1)^{14}\beta_1^{31931}(\beta_1+2)^{133}(\beta_1+4).$$

n	$B_{n}^{(3)}$	dim	det
0	1	1	1
1	3	3	$-\beta_2^3$
2	12	11	$-\beta_{2}^{20}$
3	57	46	β_{2}^{118}
4	309	213	β_{2}^{696}
5	1866	1073	$-\beta_{2}^{4225}$

TABLE 5. Computation of dimensions and the determinant for $Z(T) = \beta_0 + \beta_1 T + \beta_2 T^2$.

n	$B_{n}^{(4)}$	dim	det
0	1	1	1
1	4	4	β_3^4
2	20	19	$-\beta_{3}^{35}$
3	116	102	$-\beta_{3}^{266}$
4	756	604	β_{3}^{2007}
5	5428	3884	β_{3}^{15540}

TABLE 6. Computation of dimensions and the determinant for $Z(T) = \beta_0 + \beta_1 T + \beta_2 T^2 + \beta_3 T^3$.

3

FIGURE 2.0.1. Relation in A(3) for $Z(T) = \beta_0 + \beta_1 T + \beta_2 T^2$. Numbers 1 and 2 show the number of handles (dots) on the component. Summation means symmetrization with respect to permutations of boundary components parametrized by cosets of the stabilizer of the surface in S_3 . Sums A, B, C have 3, 3, 1 terms respectively (7 terms in the right hand side in total).

FIGURE 2.0.2. Relation in A(4) for $Z(T) = \beta_0 + \beta_1 T + \beta_2 T^2$. Numbers 1 and 2 show the number of handles (dots) on the component. Summation means symmetrization with respect to permuting the boundary components, as described in the proof. Sums $A, B, C_1, C_2, C_3, D_1, D_2, D_3, D_4$ have 4, 3, 6, 12, 6, 4, 6, 4, 1 terms respectively (46 terms in the right hand side in total).

pg	Р	Α	\square
$\beta_2 \sum 2$	= (2)	(2)	$\begin{pmatrix} 3 \end{pmatrix} = 0$
\sim	\cup	0	\bigcirc

FIGURE 2.0.3. Relations in A(2) and A(1) for $Z(T) = \beta_0 + \beta_1 T + \beta_2 T^2$.

Numbers 2 and 3 show the number of handles (dots) on the component.