2d TQFT's and partial fractions

Topological Quantum Field Theory Club

December 4, 2020

Victor Ostrik (University of Oregon)
(joint with M.Khovanov and
Y.Kononov)

Definition(M.Atiyah): A TQFT is a symmetric tensor functor Cob_d-Vec.

Generalization: replace Vec by a symmetric tensor category C
C-valued TQFT: symmetric tensor functor Cob_d $\rightarrow \mathrm{C}$.
Examples: C=Vec, sVec, Rep(G) etc
Today: $\mathrm{d}=2$!

Category of cobordisms Cob_d:

$$
d=2 \quad 000
$$

Objects: (d-1)-dimensional closed oriented manifolds Morphisms: d-dimensional oriented cobordisms Composition: gluing

Identity morphisms=?

Tensor product: disjoint union Unit object=?

Symmetry:

Some important objects of Cob_2: empty set=1 and circle=A

Some important morphisms:

$$
\begin{aligned}
& \text { K associative unital } \\
& \text { commutative unit an }
\end{aligned}
$$

* Thus A is a commutative Frobenius object in Cob_2: commutative associative unital monoid equipped with a map $A \rightarrow 1$ such that the composition $A \otimes A \rightarrow A \rightarrow 1$ is a non-degenerate pairing.

Theorem (R.Dijkgraaf + folklore): Cob_2 is free category
generated by the commutative Frobenius object A.

Corollary: C-valued 2d TQFT's = Functors Cob_2 \rightarrow C $=$ commutative Frobenius objects in C.

TQFT output: values a) closed d-manifolds-eeements of Higm_C $(1,1)$

Linear setup: choose a field k
C-k-linear category
Hom_C(1,1)=k

Frobenius object $=$ Frobenius algebra
TQFT output: sequence $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ of elements of k

Take C = VCob_ α := linearized Cob_2 modulo

$$
\begin{aligned}
& e t c \\
& \text { Ho m' are so dim'l } \operatorname{Hom}(A, A)=0 \text { orio }
\end{aligned}
$$

Realization of sequence $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots.\right)$: pair (C,A) such that the corresponding TQFT outputs α.

Realization is finite if Hom spaces in C are finite dimensional.

Answer 2 (M.Khovanov): sequence α admits a finite realization if and only if it is linearly recursive, that is the
generating function $Z(T)=\alpha_{0}+\alpha_{1} T+\alpha_{2} T_{2}^{2} \not \psi_{1}$ is $\underset{x}{\text { rational }}(\sigma \approx 0) \in H_{l} m_{c}\left(A, A^{\text {is }}\right.$
$1 ; x, x^{2}, x^{3}, \ldots$ are linearly dependent e. S. $\begin{aligned} & x^{3}-2 x^{4}+3 x^{5}=0 \text { negligible } \\ & \text { hence } x^{n}-2 x^{n+1}+3 x^{n+2}=0 \text { for } n \geqslant 3\end{aligned}$ hence $x^{n}-2 x^{n+1}+3 x=0$ for $n \geqslant 3$
hence $\frac{\alpha_{n}-2 \alpha_{n+1}+3 \alpha_{n+2}=0 \text { for } n \geq 3}{}$ $\alpha_{n}=F(0: 0 \approx \approx \approx 0: 0)$ $F(0) x^{n} F(\omega)$

Khovanov - Sazdanovic
\square
Existence: some quotients Cob_ α of linearized VCob_2.

* Realization is abelian if C is abelian, rigid, with finite dimensional How spaces.

Answer 3 (M.Khovanov, Y.Kononov, V.O.): sequence α admits an abelian realization if and only if it is

1) linearly recursive, $Z(T)=\frac{P(T)}{Q(T)}$ withrelativelyprimefK $P(T)$ and $Q(T)$.
 Thus $\mathrm{Z}(\mathrm{T})=\delta_{0}+\delta_{1} \mathrm{~T}+\sum_{i} \frac{\rho_{i}}{1-\gamma_{i} T} \quad$ end in char $k=0$
2) If char $\mathrm{k}=\mathrm{p}>0$ then δ_{1} and $\beta_{i} \gamma_{i}$ (for all i) are in the prime
subfield $F_{p} \subset$ k
Remark: conditions 2) and 3) can be expressed in terms of 1-form Z(T) $\frac{d T}{T^{2}}$:
2. all its poles are simple except, possibly, at $\mathrm{T}=0$
3. All its residues are in F_{p}

Examples:

$$
\begin{gathered}
C=\operatorname{Vec}, A=K \\
A \rightarrow K \text { id }
\end{gathered}
$$

1) $\alpha=1,1,1,1, \ldots$ Thus $Z(T)=\frac{1}{1-T}$ and α has an abelian realization over any field.
2) $\alpha=1,2,3,4,5, \ldots$ Thus $\mathrm{Z}(\mathrm{T})=\frac{1}{(1-T)^{2}}$ and α has no
abelian realization over any field
3) $\alpha=1,2,1,2,1,2, \ldots$ Thus $Z(\mathrm{~T})=\frac{1+2 T}{1-T^{2}}=\frac{\frac{3}{2}}{1-T}+\frac{-\frac{1}{2}}{1+T}$
, so α has an abelian realization over any field of characteristic not 2.
4) $\alpha=1,1,2,3,5,8,13, . . \mathrm{T}$ this $Z(\mathrm{~T})=\frac{1}{1-T-T^{2}}$
α has an abelian realization: $\mathrm{p}=0,11,19,29,31,41$,
α has no abelian realization: $\mathrm{p}=2,3,5,7,13,17,23,37$
Note that: $\alpha=-1,2,1,3,4,7,11, \ldots$ has an abelian realization over any field.

$$
\begin{aligned}
& 1,1,0,0,0,0, \ldots . \\
& \mathcal{N}^{\prime} \operatorname{dim}(A)
\end{aligned}
$$

Remark: abelian realization in characteristic $p>0$ implies a realization with $\mathrm{C}=\mathrm{Vec}$. This is NOT the case in characteristic 0 . Deligne categories (like $\operatorname{Rep}\left(S_{t}\right)$) of super-exponential growth are needed.

Example:

1) $\alpha=1,2,1,2,1,2, \ldots$ so $Z(T)=\frac{\frac{3}{2}}{1-T}+\frac{-\frac{1}{2}}{1+T}$; realization of α requires $\operatorname{Rep}\left(S_{t}\right)$ with $\mathrm{t}=3 / 2$ and $\mathrm{t}=1 / 2$.
2) $\alpha=3,1,3,1,3,1, \ldots$ Here $Z(T)=\frac{2}{1-T}+\frac{1}{1+T}$; realization of α requires $\operatorname{Rep}\left(S_{-1}\right)$.

Answer 4 (well known?) Assume $\mathrm{p}=0$ and $\mathrm{Z}(\mathrm{T})=\delta_{0}+\delta_{1} \mathrm{~T}$ $+\sum_{i} \frac{\beta_{i}}{1-\gamma_{i} T}$ (or $\delta_{1}=0$ and $\delta_{0}=0$)
Sequence α admits an abelian realization of exponential growth if and only if δ_{1} is an integer and $\beta_{i} \gamma_{i}$ (for all i) are integers >0.

This implies a realization with $\mathrm{C}=\mathrm{sVec}$.

Sequence α admits an realization with $\mathrm{C}=\mathrm{Vec}$ if and only if δ_{1} is an integer >1 andi $\hat{p}_{i} \gamma_{i}$ (for all i) are integers >0.

Crucial tool: quotients by negligible morphisms ""gịgible" quotients) aka "semisimplifications".

Theorem of Andre-Kahn (abstract version of Jannsen | theorem) implies:
true in seneral

Corollary: α admits an abelian realization if and only if the gligible quotient Cob_ α of $\mathrm{SCob}_{-} \alpha$ is semisimple.

Important computation: compute categories Cob_ α.

Results for α with abelian realization (k algebraically
closed):

$$
p=0
$$

1) if $Z(T)=s u m$ of partial fractions then the gligible quotient is a product of quotients for each summand.

Thus if $\mathrm{Z}(\mathrm{T})=\delta_{0}+\delta_{1} \mathrm{~T}+\sum_{i} \frac{\beta_{i}}{1-\gamma_{i} T}$ we need to consider only the following cases:
2) If $Z(T)=\frac{\beta}{1-\gamma T}$ then the semisimplification of Cob_2 $2(\alpha)$ is semisimplification of $\operatorname{Rep}\left(S_{t}\right)$ with $\mathrm{t}=\beta \gamma$ (exceptiona ${ }^{2}-1=(\lambda-1)^{2}$ values of t : non-negative integers)
3) if $\mathrm{Z}(\mathrm{T})=\delta_{0}+\delta_{1} \mathrm{~T}$ with $\delta_{1} \neq 0$ then the semisimplification of Cob_2(α) is semisimplification of Rep(O_t) with $\mathrm{t}=\delta_{1}-2$ (exceptional values of t : integers)
4) if $\mathrm{Z}(\mathrm{T})=\delta_{0}$ then the semisimplification of Cob_2(α) is Rep(osp(1|2)) or, in characteristic p, a semisimplification

Example: $Z(T)=1+2 T$. In characteristic $\neq 2$ we get
$\mathrm{C}=\mathrm{Vec}$ and $\mathrm{A}=\mathrm{k}[x] / x^{2}$. In characteristic 2 we get $\mathrm{C}=\mathrm{Z} / 22$-grauded vector spaces and $\mathrm{A}=\mathrm{k}\left[x\left[\int\left(2\left(x_{\text {exp }}^{2} \mathrm{xp}(t)-2\right)\right.\right.\right.$
What about zequences without abelian realization, e.g. 1,2,3,4,5,...?

We can start by finding dimensions of Hom spaces in the gligible quotients $\operatorname{Cob} _\alpha$, e.g. $\operatorname{Hom}\left(1, A^{\otimes n}\right)=: a_{-}$n.

Theorem. Assume b_2 is nonzero. Then we have

Conjecture: Assume $Z\left(T^{+}\right)=\frac{1}{(1-T)^{2}}$ or, more generally, 2 $Z(T)=\frac{\beta}{(1-\gamma T)^{2}}$. Then the category Sc\&bQ α has ho negligible mophisms, i.e. Cob_ $\alpha=$ Cob_ α. Thus the generating function 0

What if $Z(T)=$ quadratic polynomial =b_0+b_1T+b_2T^2.
Then the category Cob_ α does have negligible morphisms, ie. Cob_ $\alpha \neq \operatorname{Cob} _\alpha$.
main copy

1. Gram determinants

n	B_{n}	det
1	1	β
2	2	$\beta^{2}(\beta \gamma-1)$
3	5	$\beta^{5}(\beta \gamma-1)^{4}(\beta \gamma-2)$
4	15	$\beta^{15} \gamma(\beta \gamma-1)^{14}(\beta \gamma-2)^{7}(\beta \gamma-3)$
5	52	$\beta^{52} \gamma^{10}(\beta \gamma-1)^{51}(\beta \gamma-2)^{36}(\beta \gamma-3)^{11}(\beta \gamma-4)$
6	203	$\beta^{203} \gamma^{73}(\beta \gamma-1)^{202}(\beta \gamma-2)^{171}(\beta \gamma-3)^{81}(\beta \gamma-4)^{16}(\beta \gamma-5)$
7	877	$\beta^{877} \gamma^{490}(\beta \gamma-1)^{876}(\beta \gamma-2)^{813}(\beta \gamma-3)^{512}(\beta \gamma-4)^{162}(\beta \gamma-5)^{22}(\beta \gamma-6)$

Table 1. Determinants of the bilinear form on $A(n)$ for the generating function $Z(T)=\frac{\beta}{1-\gamma T}$.

n	$B_{n}^{(2)}$	det
1	2	$-\beta^{2}$
2	6	$-\beta^{10} \gamma^{12}$
3	22	$-\beta^{50} \gamma^{66}$
4	94	$-\beta^{266} \gamma^{376}$
5	454	$-\beta^{152} \gamma^{2270}$

Table 2. Two-colored Bell numbers and Gram determinants for the function $Z(T)=\beta /(1-\gamma T)^{2}$.

n	dim	det
1	2	$-\left(\beta_{0} \gamma+\beta_{1}\right)^{2}$
2	6	$-\gamma^{2}\left(\beta_{0} \gamma+\beta_{1}\right)^{10}$
3	22	$-\gamma^{16}\left(\beta_{0} \gamma+\beta_{1}\right)^{50}$
4	94	$-\gamma^{110}\left(\beta_{0} \gamma+\beta_{1}\right)^{266}$
5	454	$-\gamma^{748}\left(\beta_{0} \gamma+\beta_{1}\right)^{1522}$

Table 3. Dimensions and determinants for the function $Z(T)=\left(\beta_{0}+\right.$ $\left.\beta_{1} T\right) /(1-\gamma T)^{2}$. The difference with the previous table is $\beta_{0} \gamma+\beta_{1}$ taking place of β.

1

2. Polynomial generating functions

n	$B_{n}^{(2)}$	$\operatorname{dim} A(n)$	det
1	2	2	$-\beta_{1}^{2}$
2	6	5	$\left(\beta_{1}-2\right) \beta_{1}^{8}$
3	22	14	$-\left(\beta_{1}-2\right)^{6} \beta_{1}^{30}$
4	94	43	$\left(\beta_{1}-3\right)^{2}\left(\beta_{1}-2\right)^{27} \beta_{1}^{113}$
5	454	142	$-\left(\beta_{1}-3\right)^{20}\left(\beta_{1}-2\right)^{110} \beta_{140}^{434}$
6	2430	499	$\left(\beta_{1}-4\right)^{5}\left(\beta_{1}-3\right)^{134}\left(\beta_{1}-2\right)^{435} \beta_{1}^{1774}\left(\beta_{1}+2\right)$
7	14214	1850	$-\left(\beta_{1}-4\right)^{70}\left(\beta_{1}-3\right)^{756}\left(\beta_{1}-2\right)^{1722} \beta_{1}^{7406}\left(\beta_{1}+2\right)^{14}$

Table 4. Determinants of the bilinear form on $A(n)$ for the generating function $Z(T)=\beta_{0}+\beta_{1} T$. Notice the appearance of the term $\beta_{1}+2$ in the last two lines.

Prediction for $n=8$ (determinant of size 7193):

$$
\left(\beta_{1}-5\right)^{14}\left(\beta_{1}-4\right)^{630}\left(\beta_{1}-3\right)^{3912}\left(\beta_{1}-2\right)^{6937}\left(\beta_{1}-1\right)^{14} \beta_{1}^{31931}\left(\beta_{1}+2\right)^{133}\left(\beta_{1}+4\right)
$$

n	$B_{n}^{(3)}$	dim	det
0	1	1	1
1	3	3	$-\beta_{2}^{3}$
2	12	11	$-\beta_{2}^{20}$
3	57	46	β_{2}^{118}
4	309	213	β_{2}^{696}
5	1866	1073	$-\beta_{2}^{4225}$

Table 5. Computation of dimensions and the determinant for $Z(T)=\beta_{0}+$ $\beta_{1} T+\beta_{2} T^{2}$.

n	$B_{n}^{(4)}$	dim	det
0	1	1	1
1	4	4	β_{3}^{4}
2	20	19	$-\beta_{3}^{35}$
3	116	102	$-\beta_{2}^{266}$
4	756	604	β_{3}^{2307}
5	5428	3884	β_{3}^{15540}

Table 6. Computation of dimensions and the determinant for $Z(T)=\beta_{0}+$ $\beta_{1} T+\beta_{2} T^{2}+\beta_{3} T^{3}$.

$$
A=\beta_{2}^{2} \sum_{(2,1)} 1
$$

Figure 2.0.1. Relation in $A(3)$ for $Z(T)=\beta_{0}+\beta_{1} T+\beta_{2} T^{2}$. Numbers 1 and 2 show the number of handles (dots) on the component. Summation means symmetrization with respect to permutations of boundary components parametrized by cosets of the stabilizer of the surface in S_{3}. Sums A, B, C have $3,3,1$ terms respectively (7 terms in the right hand side in total).

4

$$
D_{4}=\left(3 \beta_{1}^{2}-\beta_{0} \beta_{2}\right) \sum_{(4)} \because 2
$$

Figure 2.0.2. Relation in $A(4)$ for $Z(T)=\beta_{0}+\beta_{1} T+\beta_{2} T^{2}$. Numbers 1 and 2 show the number of handles (dots) on the component. Summation means symmetrization with respect to permuting the boundary components, as described in the proof. Sums $A, B, C_{1}, C_{2}, C_{3}, D_{1}, D_{2}, D_{3}, D_{4}$ have $4,3,6$, $12,6,4,6,4,1$ terms respectively (46 terms in the right hand side in total).

Figure 2.0.3. Relations in $A(2)$ and $A(1)$ for $Z(T)=\beta_{0}+\beta_{1} T+\beta_{2} T^{2}$.

