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The 21st Century

Various technological advances in the 21st century are only possible through
integrated mathematical modeling, simulation, and optimization.

Further Examples:

Gas networks
 Modeling of gigantic control systems

Atomistic molecular dynamics
 Simulations with ultralong timescales

Medical imaging
 Recovery from distorted data sets

There is a pressing need to go beyond
pure modeling, simulation, and optimization approaches!
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Impact of Deep Learning (Artificial Intelligence)

Health Care

SurveillanceSelf-Driving Cars

Legal Issues

Very few theoretical results explaining their success!
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From Data-Driven to Model-Based Approaches

Problems, Viewpoints and Solution Strategies:

Pure data-driven approaches.
Detect structural components in data sets!

Machine learning with physical constraints.
Insert physical information in machine learning algorithm!

Parametric differential equations.
Learn parameters from given data sets!

Data assimilation.
Combine sparse data with physical model to generate a general model!

Data analysis on simulation data.
Study simulation generated data in search of underlying laws!

Optimal balancing of
data-driven and model-based approaches!
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Modern Imaging Science
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Inverse Problems

Recovering the original data from a
transformed version!

Some Examples from Imaging:

Inpainting.
 Recovery from incomplete data.

Magnetic Resonance Imaging.
 Recovery from point samples of the Fourier transform.

Feature Extraction.
 Separating the image into

different features.
+

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 6 / 47



Inverse Problems

Recovering the original data from a
transformed version!

Some Examples from Imaging:

Inpainting.
 Recovery from incomplete data.

Magnetic Resonance Imaging.
 Recovery from point samples of the Fourier transform.

Feature Extraction.
 Separating the image into

different features.
+

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 6 / 47



Computed Tomography (CT)

Problem with Limited-Angle Tomography:

The data is too complex for mathematical modeling!
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Outline

1 Model-Based Side
Sparse Regularization of Inverse Problems
Shearlet Systems come into Play

2 Data-Based Side
Deep Neural Networks
Deep Learning and Inverse Problems

3 Taking the Best out of Both Worlds
General Conceptual Approach
LtI: Learning the Invisible
DeNSE: Deep Network Shearlet Edge Extractor

4 Conclusions
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Model-Based Approach to Inverse Problems:

Sparse Regularization
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Solving Inverse Problems

Tikhonov Regularization:
Given an (ill-posed) inverse problem

Kf = g , where K : X → Y ,

an approximate solution f α ∈ X , α > 0, can be determined by

f α := argminf ∈X

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · P(f )︸ ︷︷ ︸
Penalty term

]
.

Penalty Term: The penalty term P
ensures continuous dependence on the data,

incorporates properties of the solution.
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The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (〈f , ψj ,m〉)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).
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How to Penalize Non-Sparsity?

Intuition:

 Use the `1 norm!

Sparse Regularization:
Solve an ill-posed inverse problem Kf = g by

f α := argminf

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,m〉)j ,m‖1︸ ︷︷ ︸
Penalty term

]
.
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Shearlets come into Play
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Mathematical Model for Images

Key Observation:

Images are governed by edge-like
structures!

Problem with Wavelets:
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Shearlets

Shearlets (Kutyniok, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).
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Shearlets are Optimal

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

Matlab (Kutyniok, Lim, Reisenhofer; 2013)

Julia (Loarca; 2017)

Python (Look; 2018)

Tensorflow (Loarca; 2019)
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Inpainting

(Source: Kutyniok, Lim; 2012)

(Source: Kutyniok, Lim; 2015)
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A Microlocal Viewpoint

Considering edge-structures and their direction!

Wavefront Sets:

Notion for singularities and their direction.
The direction indicates the propagation of the singularity.

x1

x2

f = ID for a set D ⊆ R2 with smooth
boundary

x1

x2

φ

Visualization in phase space

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 16 / 47



A Microlocal Viewpoint

Considering edge-structures and their direction!

Wavefront Sets:

Notion for singularities and their direction.
The direction indicates the propagation of the singularity.

x1

x2

f = ID for a set D ⊆ R2 with smooth
boundary

x1

x2

φ

Visualization in phase space

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 16 / 47



Why is the Wavefront Set Important?

Analysis of Image:

Information about core structures of image.

Detecting directional information often important.

Analysis of Inverse Problem:

Analysis of available data.

Example: Information about missing parts.

Image Reconstruction:

Knowledge of wavefront set can be used for regularization.

Example: Canonical relation between wavefront set of Radon transform
and reconstructed image.
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Shearlets and Wavefront Sets

Theorem (K, Labate; 2006)(Grohs; 2011):
We have

WF(f )c =
{

(t0, s0) ∈ R2 × [−1, 1] : for (t, s) in neighborhood U of (t0, s0):

| 〈f , ψa,s,t〉 | = O(ak) as a −→ 0,∀k ∈ N, unif. over U
}

Shearlets can identify the
wavefront set at fine scales!

Shearlets are a representation system which...

...is generated by one or a few ‘mother functions’,

...precisely resolves the wavefront set,

...provides optimally sparse approximation of cartoons,

...allows for compactly supported analyzing elements,

...is associated with fast decomposition algorithms,

...treats the continuum and digital ‘world’ uniformly.
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Mathematical Modeling Reaches a Barrier
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Limited Angle-(Computed) Tomography

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
,

φ ∈ [−π/2, π/2), and s ∈ R.

Challenging inverse problem if Rf (·, s) is only
sampled on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, breast tomosynthesis,
electron tomography,...
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Model-Based Approaches Fail

Sparse Regularization:

argminf

[
‖Rf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,k,m〉)j ,k,m‖1︸ ︷︷ ︸
Penalty term

]
.

Clinical Data:

Original Image

Filtered BackprojectionSparse Regularization with Shearlets
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Let’s bring Deep Learning into the Game
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The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

ρ : R→ R: (Non-linear) function called activation function.

T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))mi=1 of a function
such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (T`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
(A`,b`)`

m∑
i=1

L(Φ(A`,b`)`(xi ), f (xi )) + λR((A`, b`)`)

yielding the network Φ(A`,b`)` : Rd → RNL ,

Φ(A`,b`)`(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(A`,b`)` ≈ f
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Deep Learning = Alchemy?

„Ali Rahimi, a researcher in arti�cial intelligence (AI) at Google in San 

Francisco, California, took a swipe at his �eld last December—and 

received a 40-second ovation for it. Speaking at an AI conference, 

Rahimi charged that machine learning algorithms, in which 

computers learn through trial and error, have become a form 

of „alchemy."  Researchers, he said, do not know why some algo-

rithms work and others don't, nor do they have rigorous criteria 

for choosing one AI architecture over another....“ 

                                                                                                       Science, May 2018
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Statistics, ...

Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Deep Neural Networks and Inverse Problems
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Typical Deep Learning Approaches to Inverse Problems

Denoising Direct Inversion [Kang,Min,Ye,2017], [Unser et. al.,2017], [Antholzer et al.,2019]

Idea: Direct inversion, e.g. with filtered backprojection, then train CNN to
remove (structured) noise and artefacts.

Plug-and-play with CNN-denoising [Venkatakrishnan,Bouman,Wohlberg,2013],
[Romano,Elad,Milanfar,2016], [Meinhardt et al.,2017], [Reehorst,Schniter,2019]

Iterative solvers such as Douglas-Rachford or ADMM contain a denoising step.

Replace this step by a trained CNN.

Learned Iterative Schemes [Gregor,LeCun,2010], [Yang et al.,2016], [Hammernick et

al.,2016] [Adler,Öktem,2017], [Hammernick et al.,2018], [Hauptmann et al.,2018]

Iterative solvers such as ADMM or Primal-Dual are proximal algorithms.

Replace proximal steps by parametrized operators (not necessarily prox),
where the parameters are learned.

Generative Models Priors [Bora et al.,2017], [Mixon,Villar,2018], [Hand,Voroninski,2018],
[Wei,Yang,Wang,2019], [Shah,Hegde,2019], [Xu,Zeng,Romberg,2019]

Solve minz∈Rk ‖AG (z)− y‖2
2, where G is a generative model (e.g. GAN).
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remove (structured) noise and artefacts.

Plug-and-play with CNN-denoising [Venkatakrishnan,Bouman,Wohlberg,2013],
[Romano,Elad,Milanfar,2016], [Meinhardt et al.,2017], [Reehorst,Schniter,2019]

Iterative solvers such as Douglas-Rachford or ADMM contain a denoising step.

Replace this step by a trained CNN.

Learned Iterative Schemes [Gregor,LeCun,2010], [Yang et al.,2016], [Hammernick et

al.,2016] [Adler,Öktem,2017], [Hammernick et al.,2018], [Hauptmann et al.,2018]

Iterative solvers such as ADMM or Primal-Dual are proximal algorithms.

Replace proximal steps by parametrized operators (not necessarily prox),
where the parameters are learned.

Generative Models Priors [Bora et al.,2017], [Mixon,Villar,2018], [Hand,Voroninski,2018],
[Wei,Yang,Wang,2019], [Shah,Hegde,2019], [Xu,Zeng,Romberg,2019]

Solve minz∈Rk ‖AG (z)− y‖2
2, where G is a generative model (e.g. GAN).
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Models and Data: A Microlocal Perspective

General Mission Statement:

Employ model-based approaches as far as they are reliable.

Apply deep learning only when it is necessary.

Guiding Principle:

Edges are key features of each image.

Recovery of the wavefront set is crucial:
I Use as prior [Davison; 1983],....
I Reveal missing parts.
I ...

Apply the shearlet transform to “sense” the wavefront set.
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Learning the Invisible (LtI)

joint with

Maximilian März (TU Berlin)

Wojciech Samek and Vignesh Srinivan (Fraunhofer HHI Berlin)

Tatiana Bubba, Matti Lassas, and Samuli Siltanen (University of Helsinki)
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Zooming in on the Recovery Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Illustration of Theorem ([Quinto, 1993]):

“visible”: singularities tangent “invisible”: singularities not tangent

to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

The Shearlet Transform:

Shearlets can identify the wavefront set at fine scales.

Shearlets can separate the visible and invisible part.

ξ1

ξ2

Wφ

Invisible
Semi-visible

Visible
Visible Wedge
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Our Approach “Learn the Invisible (LtI)”

Step 1: Reconstruct the visible

f ∗ := argminf≥0‖Rφ f − g‖2
2 + ‖ SHψ(f )‖1,w

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k, l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)

Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )
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Our Approach – Step 2: PhantomNet

U-Net-like CNN architecture NN θ (40 layers) that is trained by minimizing:

min
θ

1

N

N∑
j=1

‖NN θ(SH(f ∗j ))− SH(f gtj )Iinv‖2
w ,2.
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Learning the Invisible

Model Based & Data Driven: Only learn what needs to be learned!

Advantages over Pure Data Based Approach:

Interpretation of what the CNN does ( 3D inpainting)

Reliability by learning only what is not visible in the data

Better performance due to better input

The neural network does not process entire image, leading to...

I ...less blurring by U-net
I ...fewer unwanted artifacts

Better generalization

Disadvantage:

Speed: dominated by `1-minimization
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Setup

Experimental Scenarios:

Mayo Clinic1: human abdomen scans provided by the Mayo Clinic for the
AAPM Low-Dose CT Grand Challenge.

I 10 patients (2378 slices of size 512× 512 with thickness 3mm)
I 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
I simulated noisy fanbeam measurements for 60◦ missing wedge

Lotus Root: real data measured with the µCT in Helsinki

I generalization test of our method (training is on Mayo data!)
I 30◦ missing wedge

. . .

1We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in
Medicine (AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bio-
engineering for providing the Low-Dose CT Grand Challenge data set.

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 32 / 47



Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Evaluation on Test Patient

fgt fFBP: RE = 0.50, HaarPSI=0.35

fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35

fTV: RE = 0.21, HaarPSI=0.41

f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41

f ∗: RE = 0.19, HaarPSI=0.43

f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43

f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40

fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40

fLtI: RE = 0.09, HaarPSI=0.76

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 33 / 47



Average over Test Patient

Method RE PSNR SSIM HaarPSI
fFBP 0.47 17.16 0.40 0.32
fTV 0.18 25.88 0.85 0.37
f ∗ 0.17 26.34 0.85 0.40

f[Gu & Ye, 2017] 0.25 23.06 0.61 0.34
NN θ(fFBP) 0.15 27.40 0.78 0.52

NN θ(SH(fFBP)) 0.16 26.80 0.74 0.52
fLtI 0.08 32.77 0.93 0.73

HaarPSI (Reisenhofer, Bosse, K, and Wiegand; 2018)

Advantages over (MS-)SSIM, FSIM, PSNR, GSM, VIF, etc.:

Achieves higher correlations with human opinion scores.

Can be computed very efficiently and significantly faster.

www.haarpsi.org
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Generalization to Lotus Root

fgt

fFBP: RE = 0.31, HaarPSI=0.61fTV: RE = 0.12, HaarPSI=0.74f ∗: RE = 0.11, HaarPSI=0.75f[Gu & Ye, 2017]: RE = 0.25, HaarPSI=0.62fLtI: RE = 0.11, HaarPSI=0.83
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Deep Network Shearlet Edge Extractor (DeNSE)

joint with

Hector Andrade-Loarca (LMU Munich)

Ozan Öktem (KTH Royal Institute of Technology)

Philipp Petersen (University of Vienna)
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Key Ideas

Model-Based World:

Shearlets can precisely resolve the wavefront set.

Shearlet coefficients provide a significantly improved representation for
wavefront set extraction.

 Use shearlets for the heavy lifting in preprocessing!

Data-Driven World:

Deep neural networks allow a strong adaptation to a function class.

Stability can be increased if the data is suitably prepared.

 Apply a neural networks in shearlet domain for classification!

Compute the wavefront set of the reconstructed CT image!

Use for regularization of inverse problems!
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Deep Network Shearlet Edge Extractor (DeNSE)

Key Steps:

(1) Apply the shearlet transform to an image.
 Extract the correct features.
 Derive a good data representation.

(2) Consider patches of shearlet coefficients.
 Localize to each position.

(3) Apply a convolutional neural network.
 Predict the direction (180 directions) in each patch.

Network Architecture:
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Smoothed Ellipses and Parallelograms

Original

Human Annotation [Yi, Labate, Easley, Krim; 2009]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Comparison Results

Comparison for Ellipses/Parallelograms:

Method MF-score
Canny 49.1
Sobel 40.0
BEL 63.3

Yi-Labate-Easley-Krim 70.3
CoShREM 90.6
DeNSE 97.5

MF-Score:
2PR

R + P
, where

P is the precision, i.e., the number of true positives divided by the sum of
true and false positives,

R is the recall, i.e., the number of true positives divided by the sum
of true positives and false negatives.
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BSDS500 Data Set

Original

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Comparison Results

Comparison for BSDS500 Data Set:

Method MF-score
gPb-owt-ucm 73.7

gPb 71.5
Mean Shift - Comaniciu, Meer 64.0

Normalized Cuts - Cour, Benezit, Shi 64.2
Fetzenszwalb, Huttenlocher 61.0

Canny 60.3
CoShREM 75.7
DeepEdge 75.3
DeNSE 95.4
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Computed Tomography and Wavefront Sets

Course of Action:

1. Detect the wavefront set of the sinogram.

2. Apply the inverse canonical relation.

3. Derive the wavefront set of the reconstructed image.

Canonical Relation:
The canonical relation C satisfies

WF
(
R(f )

)
= C ◦WF(f ) whenever f ∈ D′(R2),

where

C =
{(
θ, p, s(−x · ω(θ)⊥dθ + dp); x , sω(θ)dx

)
∈ T ∗(M) :

(θ, p) ∈M, x ∈ R2, s 6= 0, x · ω(θ) = p
}
.
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Application of the Canonical Relation

Phantom Wavefront Set by DeNSE

Sinogram Wavefront Set by Canonical Relation
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Application of the Inverse Canonical Relation

Phantom Wavefront Set by Inverse Canonical Relation

Low-Dose Sinogram Wavefront Set by DeNSE
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Comparison Results

Comparison for Application of Inverse Canonical Relation:

Inversion technique Mean square error
Tikhonov 443.0
Total variation 380.9
Filtered backprojection 504.3
Canonical relations 168.1

Superior performance to any first-invert-then-extract strategy!
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Conclusions

Gitta Kutyniok (LMU Munich) Deep Learning meets Physics IST Lisbon 2020 45 / 47



What to take Home...?

Model-Based Side:

Inverse problems can be solved by sparse regularization.

Shearlets are optimal for imaging science problems.

Methods based on mathematical models today often reach a barrier.

Deep Learning:

Impressive performance for Inverse Problems.

Theoretical foundation of neural networks almost entirely missing:
Expressivity, Learning, Generalization, and Interpretability.

Combining Both Sides (Limited-Angle Tomography):

LtI: Learning the Invisible
 Accessing the visible part by (sparse regularization) with shearlets.
 Learning only the invisible part.

DeNSE: Deep Network Shearlet Edge Extractor
 Extracting the wavefront set by shearlets and deep learning.
 Applying the canonical relation to use the wavefront set as prior.
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THANK YOU!

References (soon) available at:
www.math.lmu.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:
Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications
Cambridge University Press, 2012.
G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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