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Definition of mathematical billiard

Billiard within a given domain is a dynamical system where a
particle is moving without friction inside the domain, and reflecting
absolutely elastically on the boundary.

Trajectories are polygonal lines with vertices lying on the domain
boundary, with congruent impact and reflection angles at each
vertex, while the particle speed remains constant.
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What about short trajectories of integrable billiards?

in the d -dimensional space

Billiards within ellipsoids

We will show that the shortest essential trajectories are of length
d + 1.

essential trajectories

The trajectories that are not placed in a hyper-plane of symmetry
of the ellipsoid.

non-essential trajectories

Can be considered as trajectories within an ellipsoid in a space of
lower dimension.



The planar case: billiard within an ellipse

Integrability

The caustics represent geometric manifestation of the integrals of
motion.



Poncelet porism
Jean-Victor Poncelet, 1813

Consider one periodic trajectory of the elliptic billiard. Then all
trajectories sharing the same caustic are also periodic, and become
closed after the same number of reflections.



Short periodic trajectories of elliptical billiard

2-periodic trajectories are trivial

Always along one of the axes of the ellipse.

3-periodic trajectories

They have unique caustic, always an ellipse.



Confocal families in the d -dimensional space

Family of confocal quadrics
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λ – real parameter
0 < a1 < · · · < ad – real constants



Differential equations
Jacobi
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Hyperelliptic curve

y2 = P(λ) = (a1 − λ) . . . (ad − λ)(α1 − λ) . . . (αd−1 − λ)

Solutions of the system

Common tangent lines of the caustics Qα1 , . . . , Qαd−1
.



Behaviour of Elliptic Coordinates along Trajectories
V. D, M. Radnović. (2004), following the ideas of Jacobi and Darboux

Domain Ω

Consists of all points of the billiard trajectories within Q0 with
caustics Qα1 , . . . , Qαd−1

.

In elliptic coordinates, Ω is just a box

Product of d segments in [0,+∞) where P(λ) is positive.

along any billiard trajectory

The elliptic coordinates change monotonously within their
segments, with the extreme points being the segments endpoints.

Endpoints of the segments correspond to

reflection off the boundary ellipsoid,

touching a caustic,

crossing a coordinate hyper-plane.



Periodic Trajectories
V. D, M. Radnović. (2004)

Theorem

A trajectory of the billiard system within with caustics Qα1 , . . . ,
Qαd−1

is periodic with exactly |ns | points at Qγ′

s
and |ns | points at

Qγ′′

s
(1 ≤ s ≤ d) if and only if

d
∑

s=1

ns
(

A(Pγ′

s
)−A(Pγ′′

s
)
)

= 0

on the Jacobian of the curve

Γ : y2 = P(x) := (a1 − x) · · · (ad − x)(α1 − x) · · · (αd−1 − x).

Here, A denotes the Abel-Jacobi map, where Pγ′

s
, Pγ′′

s
are points

on Γ with coordinates x = γ′s , x = γ′′s .



Winding numbers

Given an n-periodic trajectory. Denote m0 = n, ms = (−1)sns ,
md = 0, and call (m0,m1, . . . ,md−1) the winding numbers of the
given n-periodic billiard trajectory.



Notation: b1, . . . , b2d−1

{b1, . . . , b2d−1} = {a1, . . . , ad , α1, . . . , αd−1}
b1 < b2 < · · · < b2d−1, c2d = 0, cj = 1/bj .

Audin 1994, ”the Audin Alternative (AA)”

If α1 < α2 < · · · < αd−1, then αj ∈ {b2j−1, b2j}, for
1 ≤ j ≤ d − 1. We get: b2d−1 = ad .

Parity of winding numbers

Let (m0,m1, . . . ,md−1) be the winding numbers of a given
periodic billiard trajectory. Then:

(i) if the winding number mj , for j > 0 is odd, then b2j and b2j+1

are both in the set {α1, . . . , αd−1};

(ii) two consecutive winding numbers cannot both be odd;

(iii) md−1 is even.



d -dimensional case

Trajectories of period ≤ d are placed in coordinate planes.

This is because the divisors of small order do not have the assigned
space of functions rich enough to realise the requested equivalence.

trajectories of period d + 1 have uniquely prescribed types of
caustics

[

d − 1

2

]

pairs of the same type caustics;

and an ellipsoid as caustic if d is even.



Important questions

Uniqueness and existence of a set of caustics generating
d + 1-periodic trajectories.

Monotonicity of the winding numbers.

Injectivity of the frequency map.

To classify/codify the sets of caustics generating n-periodic
trajectories in d -dimensional space, for any n > d .



From Cayley’s type conditions to polynomials

Theorem, V. D, M. Radnović, 2004

A billiard trajectory within E with caustics Qα1 ,. . . , Qαd−1
has

elliptic period m if and only if

rank









Cd+1 Cd+2 . . . Cm+1

Cd+2 Cd+3 . . . Cm+2

. . .
Cm+d−1 Cm+d . . . C2m−1









< m − d + 1,

with
√

P(x) = C0 + C1x + C2x
2 + C3x

3 + . . .

The above condition is satisfied if and only if there exist a pair of
polynomials pm and qm−d of degrees m and m − d respectively
such that: pm(x) + qm−d (x)

√

P(x) = O(x2m).



Pell’s Equation

The generalized Cayley’s condition C (n, d) is satisfied if and only if
there exist a pair of real polynomials p̂n, q̂n−d of degrees n and
n − d respectively such that the Pell equation holds:

p̂2n(s)− P̂2d (s)q̂
2
n−d (s) = 1.

P̂2d (s) = s

2d−1
∏

j=1

(

s −
1

bj

)

The signature (τ1, . . . , τd)

τj – the number of zeroes of q̂n−d in (c2j , c2j−1).



Generalized Chebyshev polynomials

Polynomials p̂n
Extremal polynomials on the system of d intervals
[c2d , c2d−1] ∪ [c2d−2, c2d−3] ∪ · · · ∪ [c2, c1].

Following the principles formulated by Chebyshev’s school and
Borel we are going to study the structure of extremal points of p̂n,
in particular the set of points of alternance.

Points of alternance

A subset of the solutions of the equation p̂2n(s) = 1, with the
maximal number of elements, such that the signs of p̂n alter on it.
Such a set is not uniquely determined, however the number of its
elements is fixed and equal to n + 1.



Theorem, V. D, M. Radnović, 2019

The winding numbers satisfy:

mj = mj+1 + τj + 1, 1 ≤ j ≤ d .

The winding numbers are strictly decreasing:

md−1 < md−2 < · · · < m1 < m0.

The outline of the proof

From Krein, Levin, Nudel’man 1990 (see also Sodin, Yuditskii 1992
overview): the number of points of alternance of the polynomial p̂n
on the segment [c2d , c2j+1] is equal to 1 +mj , for
j ∈ {1, . . . , d − 1}. The difference mj−1 −mj is thus equal to the
number of points of alternance on the interval [c2j+1, c2j−1].
According to the structure of the sets of the alternance, that
number equals the sum of the numbers of the double points of the
alternance from the interval (c2j , c2j−1) and one simple point of
alternance at one of the endpoints of the interval.



Corollary. All zeroes of q̂n−d are real.

The polynomial p̂n has n − d double extremal points in the interior
of the union of the intervals (c2d , c2d−1) ∪ · · · ∪ (c2, c1). These
roots of p̂′n coincide with the roots of the polynomial q̂n−d of
degree n − d .

Three 2014 Conjectures of Ramirez Ros

Theorem from the previous slide answers affirmatively to
Conjectures 1 and 3 from 2014 Ramirez Ros. The 2014 Ramirez
Ros Conjecture 2 is answered affirmatively in the above Corollary.



d + 1-periodic trajectories

Proposition

The winding numbers of the trajectories of period d + 1
within an ellipsoid in the d -dimensional space are

(m0,m1, . . . ,md−1) = (d + 1, d , d − 1, . . . , 3, 2).

The signature of such trajectories is (0, 0, . . . , 0, 1).

Proof

Follows from the Theorem, since among mi , even and odd
numbers alternate and decrease, and m0 = d + 1.



d + 1-periodic trajectories

Theorem, V. D, M. Radnović, 2019

For a given ellipsoid from a confocal pencil in E
d , the set of

caustics which generates (d + 1)-periodic trajectories is unique, if
it exists.

Proof

The polynomial p̂d+1 has one (1 = d + 1− d) double point of the
alternance, which is the zero of polynomial q̂1: q̂1(γ) = 0, with
γ ∈ (c2d = 0, c2d−1), according to the Propositon above. In
addition, p̂d+1(s) has d + 1 simple points of the alternance at the
endpoints of the intervals [c2d , c2d−1],. . . ,[c2, c1].



Proof, continuation:

The following properties of the polynomial p̂d+1 follow from the
structure and distribution of the points of alternance, the winding
numbers and the signature:

p̂d+1 takes value −1 at 0, 1/a1, . . . , 1/ad ;

in (0, 1/ad ), p̂d+1 has a local maximum equal to unity;

p̂d+1 takes value 1 at 1/α1, . . . , 1/αd−1.



Proof, continuation: p̂4

1
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Proof, continuation: p̂5

1

rs−1 rs rs rs rs

γ

c7 c6

c5 c4

c3 c2

c1

For each d , there is a unique polynomial satisfying the properties.
γ – the only point of local extremum in (0, 1/ad ) of
rd+1(s) = s

∏d
j=1(s − 1/aj); p̂d+1(s) = 2rd+1(s)/rd+1(γ)− 1,

q̂1(s) = s − γ.



d + 1-periodic in d -dim space

1/α1, . . . , 1/αd−1

are the solutions of the equation p̂d+1 = 1, different from γ.

If those solutions exist, they are uniquely determined.

Theorem, V. D, M. Radnović, 2019

For a given ellipsoid E , the quadrics Qλk
are the caustics of

(d + 1)-periodic trajectories if λ−1
1 , . . . , λ−1

d−1 are the solutions of
the equation p̂d+1(s)− 1 = 0, distinct from γ.



n-periodic in d -dim space, any n > d

Theorem, V. D, M. Radnović, 2018

Given an ellipsoid E in d -dimensional space and n > d an integer.
There is at most one set of caustics {α1, . . . , αd−1} of the given
types, which generates n-periodic trajectories within E having a
prescribed signature.

Lemma A – the Audin Alternative

If Qα, Qβ are caustics of the same type of a given billiard
trajectory within E , then {α−1, β−1} = {c2k+1, c2k}, for some k .



n-periodic in d -dim space, any n > d

Lemma B: Theorem 2.12 Peherstorfer, Schiefermayr 1999

Let pn, p
∗
n be two polynomials of degree n, which solve the Pell

equations. Denote by

Id = ∪d−1
j=0 [c2(d−j), c2(d−j)−1] and I∗

d = ∪d−1
j=0 [c

∗
2(d−j), c

∗
2(d−j)−1]

respectively the sets {x | |pn(x)| ≤ 1} and {x | |p∗n(x)| ≤ 1}.
Suppose that:

i at least one of the intervals from Id coincides with one of the
intervals from I∗

d ;

ii j ∈ {0, . . . , d − 1}: c2(d−j) = c∗2(d−j) or c2(d−j)−1 = c∗2(d−j)−1;

iii in each pair of the corresponding intervals [c2(d−j), c2(d−j)−1]
and [c∗2(d−j), c

∗
2(d−j)−1] the polynomials pn, p

∗
n have the same

number of extreme points.

Then the polynomials pn, p
∗
n coincide up to a constant multiplier

and sets Id and I∗
d coincide.



3d zoo of short periodic trajectories

3-periodic trajectories are placed in coordinate planes

4-periodic trajectories

the caustics are 1-sheeted hyperboloids;

C3 = 0; and C0 + C1α2 + C2α
2
2 = 0,

with
√

P(x)

α1 − x
= C0 + C1x + C2x

2 + C3x
3 + . . . .

According to a Theorem above, the winding numbers of such
trajectories satisfy m0 > m1 > m2, with m0 = 4 and m2 being
even. Thus, (m0,m1,m2) = (4, 3, 2).

Such trajectories also appear as an example in a classification of
symmetric periodic trajectories by Casas and Ramirez-Ros (2012).



The case of a double caustic

Each confocal family of quadrics contains a unique pair of ellipsoid
and 1-sheeted hyperboloid such that there is a 4-periodic billiard
trajectory within the ellipsoid with the segments placed on the
hyperboloid.



5-periodic trajectories in 3-dimensional space

A 5-periodic trajectory of the billiard within ellipsoid E , with
non-degenerate caustics Qα1 and Qα2 if and only if:

since the period is odd, one of the caustics, say Qα1 , is an
ellipsoid, i.e. α1 ∈ (0, a1); and

C3 = C4 = 0,

with C3, C4 being the coefficients in the Taylor expansion about
x = 0:
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x)

α1 − x
= C0+C1x+C2x

2+. . .



5-periodic, continuation

The winding numbers are (m0,m1,m2) = (5, 4, 2)

Since m0 = 5, m0 > m1 > m2 and m1, m2 are even.

The graph of p̂5(s):

1

rs−1 rs rs rs rs

c5 c4 c3 c2

c1

c1 = 1/α1, c2 = 1/a1, {c3, c4} = {1/a2, 1/α2}, c5 = 1/a3



6-periodic trajectories in dimension three

Winding numbers

4-periodic and 5-periodic trajectories have uniquely determined
winding numbers. This is not the case with the trajectories of
period 6:

(m0,m1,m2) ∈ {(6, 4, 2), (6, 5, 4), (6, 5, 2), (6, 3, 2)}.



Euclidean Billiard Partitions

I. M. Gelfand 1990

The older I get, the more I believe that at the bottom of most
deep mathematical problems there is a combinatorial problem.

G. Andrews, V. Dragović, M. Radnović, 2020

Combinatorics of periodic ellipsoidal billiards, The Ramanujan
Journal.

Let D denote the set of all integer partitions into distinct parts
where

(E1) the smallest part is even;

(E2) adjacent parts are never both odd.

Let pD(n) denote the number of partitions of n that are in D



Weighted Euclidean Billiard Partitions

G. Andrews, V. Dragović, M. Radnović, 2019

Combinatorics of periodic ellipsoidal billiards, soon to appear.

Additionally, we consider weighting the partitions in D in
accordance with the Audin Alternative. Suppose π ∈ D and that π
has d parts with largest part n and s odd parts. The weight
φ(n, d , π) is given by:

φ(2m, d , π) = 2d−1−2s ;

φ(2m + 1, d , π) = 2d−2s .

Examples:

π1 = (5, 4, 2), φ(5, 3, π1) = 23−2·1 = 2;

π2 = (6, 5, 2), φ(6, 3, π2) = 23−1−2·1 = 1;

π3 = (6, 4, 2), φ(6, 3, π3) = 23−1−2·0 = 4.



G. Andrews, V. D., M. Radnović, 2019

Let pD(m, n) denote the number of weighted partitions of n in D
with weight m.

Theorem

The generating function for the weighted Euclidean billiard

partitions has the following formula:

1 +
∑

n≥1,m≥0

pD(m, n)qn = 1 +

∞
∑

d=1

∞
∑

n=0

s(d , n)

(q2; q2)d
,

where

s(d , 2n) = x2n−d−1q2n
2−2dn−n+d2+2d

[

n − 1
2n − d − 1

]

q2

;

s(d , 2n + 1) = x2n−dq2n
2−2dn−n+d2+3n

[

n− 1
2n − d

]

q2

.



G. Andrews, V. D., M. Radnović, 2019

s(d , n): the generating function for the partitions in D̄ that have
exactly d (dimension of the space) parts and largest part equal n
(the period). ŝ(d , n): the generating function for the partitions in
D that have exactly d (dimension of the space) parts and largest
part equal n (the period).

ŝ(d , n) = s(d , n)
1

(1 − q2)(1− q4) · · · (1− q2d )
=

s(d , n)

(q2; q2)d
,

where the product
1

(q2; q2)d

generates the general partition into at most d even parts. The
Gaussian polynomials or q-binomial coefficients:

[

A

B

]

q

=

{

0, if B < 0 or B > A
(q;q)A

(q;q)B (q;q)A−B
, 0 ≤ B ≤ A

and (x ; q)N = (1− x)(1− xq) · · · (1− xqN−1).
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Although this may seem a paradox, all exact science is dominated

by the idea of approximation. When a man tells you that he knows

the exact truth about anything, you are safe in infering that he is

an inexact man.

Bertrand Russell


