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The Ah family
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Heisenberg’s Uncertainty Principle

YX − XY = 1

This is the defining relation for the Weyl algebra A1.

A1 can also be seen as the algebra of first order differential operators
on F[t] with polynomial coefficients:

X = multiplication by t

Y =
d

dt

YX .p(t) =
d

dt
t p(t) = p(t) + t

d

dt
p(t) = XY .p(t) + p(t)

= (XY + 1).p(t)
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The Meromorphic Weyl Algebra aka The Jordan Plane

Now replace differentiation by integration:

X .p(t) =

∫ t

0
p(z) dz

Y .p(t) = t p(t)

XY .p(t) =

∫ t

0
z p(z) dz (integrate by parts)

= t

∫ t

0
p(z) dz −

∫ t

0

∫ z

0
p(w) dw dz

= YX .p(t)− X 2.p(t).

YX − XY = X 2 defines the Jordan Plane
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The Ah family

More generally, we can consider operators x , y satisfying:

yx − xy = h(x)

for a fixed h ∈ F[x ].

Define the algebra thus generated by Ah:

Ah = F〈x , y〉/ ([y , x ] = h(x))

We can view Ah ⊆ A1 as the subalgebra generated by:

x and y = h(x)
d

dx
.
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Examples

• A0 = F[x , y ] (commutative) polynomial algebra

• A1 = A1(F) Weyl algebra

• Ax = U(L) env. algebra of the 2-dim’l non-abelian Lie algebra
L = Fx ⊕ Fy , [y , x ] = x

• Ax2 Jordan plane – Artin-Schelter regular of dimension 2

• Ax(x+1), etc.

Purpose: To describe this family as a whole.
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Divisibility poset on F[X ] – inclusion poset on Ah

A1

Ax−1 Ax Ax+3

A(x−1)2 A(x−1)x A(x−1)(x+3) Ax(x+3) Ax2 A(x+3)2

A(x−1)3 A(x−1)2x A(x−1)2(x+3) A(x−1)(x+3)2 Ax(x+3)2 A(x−1)x(x+3) A(x−1)x2 Ax3 Ax2(x+3) A(x+3)3

. . . . . . . . . . . . . . .
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Classification of Ore extensions over F[x ]

Thm. (cf. Awami, Van den Bergh, Van Oystaeyen ’88)

If A is an Ore extension over F[x ], then A is isomorphic to:

• quantum plane: yx = qxy for some q ∈ F∗;
• quantum Weyl algebra: yx − qxy = 1 for some
q ∈ F∗;

• one of the algebras Ah for some h = h(x) ∈ F[x ].

Remark: Quantum planes and quantum Weyl algebras are examples
of generalized Weyl algebras and have been extensively studied. From
the homological point of view see the recent paper:

M. Gerstenhaber, A. Giaquinto
On the cohomology of the Weyl algebra, the quantum plane, and the q-Weyl algebra
Journal of Pure and Applied Algebra (2014)

9 / 35



Examples of Generalized Weyl Algebras

GWAs were introduced by Bavula in ’92.

Prototypical examples are:

• (quantum) plane

• (quantum) Weyl algebra

• U(sl2), Uq(sl2)

• Noetherian (generalized) down-up algebras

Thm. (BLO)

{
Ah | h ∈ F[x ]

}⋂{
GWAs over F[x ]

}
iso
=
{

A0,A1

}
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Isomorphism problem

Thm. (BLO) Isomorphism problem

Ah
∼= Ag ⇐⇒ g(x) = νh(αx + β),

for some α, β, ν ∈ F, αν 6= 0.

11 / 35



Automorphisms and invariants of Ah
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Automorphisms of A1

For f ∈ F[x ] ⊆ Ah there is φf ∈ AutF(Ah) defined by

φf (x) = x , φf (y) = y + f (x)

Furthermore,

{φf | f ∈ F[x ]} ∼= (F[x ],+) is a subgroup of AutF(Ah).

In case h ∈ F∗ (Weyl algebra):

σ : A1 → A1, x 7→ −y , y 7→ x gives an automorphism of
A1 of order 4, and

Dixmier ’68 (char(F) = 0), Makar-Limanov ’84 (char(F) > 0):

AutF(A1) is generated by F[x ] and σ.

Remark: A similar result holds for AutF(A0), by Jung (char(F) = 0)
and Van der Kulk (char(F) > 0). 13 / 35



Structure of AutF(Ah), for deg h ≥ 1

Consider the automorphisms:

τα,β(x) = αx + β, τα,β(y) = αdegh−1y .

for (α, β) ∈ P = {(α, β) ∈ F∗ × F | h(αx + β) = α deg hh(x)}.
The following are subgroups of AutF(Ah):

τP := {τα,β | (α, β) ∈ P} and τ1,G = {τ1,ν | (1, ν) ∈ P}.

Thm. (BLO). Assume deg h ≥ 1.

• F[x ] is a normal subgroup of AutF(Ah), and

AutF(Ah) = F[x ] o τP

• τ1,G is isomorphic to a finite subgroup of (F,+), which is
trivial when char(F) = 0

• F[x ] o τ1,G is a normal subgroup of AutF(Ah)
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If the subgroup F[x ] o τ1,G is proper, there is some (α, β) ∈ P with
α 6= 1. The next result draws conclusions in that case.

Thm. (BLO). Assume h has k distinct roots in F for k ≥ 1.

Case k = 1 Let λ be the unique root of h in F.

• If λ /∈ F, then AutF(Ah) = F[x ].

• If λ ∈ F, then τP ∼= F∗, and AutF(Ah) = F[x ] o F∗.

Case k ≥ 2 τP = τ1,G o 〈τα,β〉, where 〈τα,β〉 is a finite cyclic
group and

AutF(Ah) ∼= (F[x ] o τ1,G) o 〈τα,β〉.
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Invariants of Ah

Let A = AutF(Ah). We determine the invariants under A in Ah:

AA
h = {a ∈ Ah | ω(a) = a ∀ ω ∈ A}.

Thm. (BLO). Suppose A = AutF(Ah). Then

(i) AA
h = F[x ] if A = F[x ].

(ii) AA
h = F if A = F[x ] o F∗ and |F| =∞.

(iii) AA
h = F[t], where t ∈ F[x ] can be taken as follows:

(a) If τP = τ1,G, then t(x) =
∏
ν∈G (x + ν).

(b) If τP = τ1,G o 〈τα,β〉, where α is a primitive `th root of unity,

then t(x) =
∏
ν∈G

(
x + β

α−1 + ν
)`

.

Remark: This could be summarized as follows

dim
(
F[x ]/AA

h

)
= [A : F[x ]]
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Properties P1 and P2

L. Ben Yakoub and M.P. Malliavin ’96 studied the following
properties relative to an algebra R and an automorphism (resp.
derivation) φ of R:

P1 φ extends to any algebra S ⊇ R (& extensions are compatible).

P2 For any ideal I of R, φ induces a map φ on R/I and φ satisfies P1.

Note: P2 =⇒ P1
Any inner automorphism (resp. inner derivation) satisfies P2, but
there are algebras with non-inner automorphisms satisfying P2.

Thm. (BLO)

φ ∈ AutF(Ah) satisfies P1 ⇐⇒ φ = idAh

D ∈ DerF(Ah) satisfies P2 char(F)=0
⇐⇒ D ∈ InderF(Ah)
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Derivations of Ah
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Derivations of the Weyl algebra

Theorem (Dixmier ’66) Derivations of A1, char(F) = 0

In characteristic 0, all derivations of the Weyl algebra are inner.

However, over fields of characteristic p > 0, A1 has two special
derivations Ex and Ey , which are specified by

Ex(x) = yp−1, Ex(y) = 0, and Ey (x) = 0, Ey (y) = xp−1.

Theorem (BLO) Derivations of A1, char(F) = p > 0

• Let Z(A1) = F[xp, yp] be the center of A1. Then

DerF(A1) = Z(A1)Ex ⊕ Z(A1)Ey ⊕ InderF(A1).

• The restriction map Res : DerF(A1)→ DerF(Z(A1))
induces a Lie algebra isomorphism

HH1(A1) = DerF(A1)/InderF(A1) ∼= DerF(F[t1, t2]).
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Locally nilpotent derivations

For g ∈ F[x ], consider the derivation Dg of Ah with

Dg (x) = 0 and Dg (y) = g .

Prop. (BLO)

• [Df ,Dg ] = 0 for all f , g ∈ R.

• G = {Dg | g ∈ R} is an abelian Lie subalgebra of DerF(Ah).

• Dg is locally nilpotent.

• Assume char(F) = 0. Then

φg = exp(Dg ) =
∞∑
n=0

(Dg )n

n!
.

Remark: In characteristic 0, any locally nilpotent derivation of A1 is
conjugate under AutF(A1) to one in G (Dixmier ’68). Similarly for A0

(Rentschler ’68). If deg h ≥ 1 then G = LND(Ah).
20 / 35



Lie structure of HH1(Ah) for char(F) = 0

Let πh =
h

gcd(h, h′)
.

Thm. (BLO)

The Lie algebra HH1(Ah) = DerF(Ah)/InderF(Ah) decomposes
as

HH1(Ah) = Z(HH1(Ah))⊕ [HH1(Ah),HH1(Ah)],

where

• Z(HH1(Ah)) =
{
Drh/πh | deg r < deg πh

}
,

• dimF Z
(
HH1(Ah)

)
= deg πh.
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Lie structure of [HH1(Ah),HH1(Ah)] for char(F) = 0

The Witt algebra W of vector fields on the unit circle (centerless
Virasoro algebra) is defined as

W := spanF{wn | n ≥ −1},

where [wm,wn] = (n −m)wm+n for all m, n ≥ −1.

Let q1, . . . , qk , k ≥ 0, be the prime factors of h with multiplicity ≥ 2.

Consider the ideal of [HH1(Ah),HH1(Ah)]:

J = spanF{adran | r ∈ q1 · · · qkF[x ], n ≥ 0}
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Lie structure of [HH1(Ah),HH1(Ah)] for char(F) = 0

Thm. (BLO)

(i) J is the largest nilpotent ideal of [HH1(Ah),HH1(Ah)] and

[HH1(Ah),HH1(Ah)]/J ∼= W1 ⊕ · · · ⊕Wk,

sum of k simple Lie algebras Wi = (F[x ]/F[x ]qi )⊗W.

(ii) Assume h |π2h (h is cube-free). Then J = 0 and:
◦ if h is square-free, then [HH1(Ah),HH1(Ah)] = 0;

◦ otherwise, [HH1(Ah),HH1(Ah)] is semisimple (cf. above).

(iii) Assume h - π2h. Then J 6= 0, and [HH1(Ah),HH1(Ah)] is
neither nilpotent nor semisimple.
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Special cases, char(F) = 0

Cor. (BLO)

Let D1 ∈ DerF(Ah) be defined by D1(x) = 0 and D1(y) = 1.

A1: DerF(A1) = InderF(A1), so HH1(A1) = (0).

Ax : DerF(Ax) = FD1 ⊕ InderF(Ax), so HH1(Ax) = FD1.

Axn , n ≥ 2: HH1(Axn)/J = FDxn−1 ⊕W,

where W := spanF{wi | i ≥ −1} is the Witt algebra.
The ideal J is nilpotent of index ≤ n − 1. In particular,
J = 0 when n = 2.
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Derivations in prime characteristic

This case is more intricate and we will reveal only a few structural
properties. Let

Res : DerF(Ah)→ DerF(Z(Ah))

be the restriction map and Res : HH1(Ah)→ DerF(Z(Ah)) be the
induced map.

Thm. (BLO)

• im Res = im Res is a free Z(Ah)-submodule of DerF(Z(Ah))
of rank 2, and DerF(Z(Ah)) is the Witt algebra in 2
variables;

• HH1(Ah) is a free Z(Ah)-module ⇐⇒ gcd(h, h′) = 1.
In this case, Res is an isomorphism onto the image.
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Higher cohomology and (twisted) Calabi-Yau
property
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Hochdchild cohomology groups

HH0(A) = Z(A)
HH1(A) = DerF(A)/InderF(A)
HH2(A) = formal deformations of A
HH3(A) = obstructions to formal deformations of A

A formal deformation of an associative algebra A is a F[[~]]-algebra
structure Aµ on A[[~]]:

a ? b = ab + µ1(a, b)~ + µ2(a, b)~2 + µ3(a, b)~3 + · · ·

for all a, b ∈ A, where ab is the product in A.

Thus, we retrieve A on setting ~ = 0.
The idea of algebraic deformation parallels the theory of deformations
of complex analytic structures, initiated by Kodaira and Spencer in

K. Kodaira and D. Spencer, On deformations of complex analytic structures I & II,
Ann. of Math. 67 (1958) 328-466.
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Examples

Let A = F[x , y ]/(y2 − x3). In algebraic terms, this could be
interpreted as setting

y · y = x3

in A.

Now consider At = F[x , y , t]/(y2 − x3 − x2t), seen as a deformation
of A; so

y ? y = x3 + (x2)t
in At . It is in fact a formal deformation of A.
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Deformations and Hochdchild cohomology

Theorem

• If HH2(A) = 0 then A is rigid (all deformations are trivial).

• If HH3(A) = 0 then any 2-cocycle of A can be lifted to an
associative deformation of A.

Examples

• FG is rigid for G a finite group with |G | 6= 0 in F
(Maschke’s theorem).

• U(g) is rigid for g a finite-dimensional complex semisimple
Lie algebra (Weyl’s theorem).

• The Weyl algebra A1 is rigid if char(F) = 0 (Sridharan).
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Calabi-Yau algebras

V. Ginzburg, Calabi-Yau algebras, arXiv:math/0612139.
Motivation: Geometry of Calabi-Yau manifolds and mirror symmetry.

Definition We say A is a ν-twisted Calabi-Yau algebra of di-
mension d ≥ 0 if

• A is homologically smooth, i.e., it admits a f.g. projective
resolution of finite length, as a bimodule over itself;

•

ExtAe (A,Ae) =

{
0, if i 6= d

Aν if i = d ,

where Ae = A⊗ Aop and ν ∈ AutF(A).
The automorphism ν is unique up to inner automorphisms
and is called the Nakayama automorphism of A.
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Twisted Poincaré duality – Van den Bergh duality

By
M. Van den Bergh, A relation between Hochschild homology and cohomology for
Gorenstein rings, Proceedings AMS (1998); Erratum, (2002).

if A is a ν-twisted Calabi-Yau algebra of dimension d then there is a
twisted Poincaré duality between homology and cohomology:

HHd−i(A)
∼=−→ HHi(A,Aν)

In particular:

HHd(A)
∼=−→ HH0(A,Aν) = A/ [A,Aν ] .
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The Nakayama automorphism for Ah

Can we determine the full cohomology ring HH∗(Ah)? Yes.

Thm.

• The algebras Ah are twisted Calabi-Yau of dimension 2.

Follows from
L.-Y. Liu, S.-Q. Wang and Q.-S. Wu, Twisted Calabi-Yau property of Ore
extensions, Journal of Noncommutative Geometry (2014).

• The Nakayama automorhism ν of Ah is given by

ν(x) = x , ν(y) = y + h′(x).

Follows from private communication with Q.-S. Wu.
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The cohomology ring HH∗(Ah)

Cor.

•

HH0(Ah) = Z(Ah) =

{
F, if char(F) = 0;

F[xp, zp], if char(F) = p > 0.

• HH1(Ah) = DerF(Ah)/InderF(Ah) has been determined in
the previous slides.

• HH2(Ah) ∼= Ah/ [Ah,A
ν
h] = Ah/ {ab − bν(a) | a, b ∈ Ah}.

• HHn(Ah) = 0 for all n ≥ 3; in particular, all Hochschild
2-cocycles can be integrated to full deformations of Ah.

In particular, we retrieve Sridharan’s result and further that:
the Weyl algebra A1 is rigid ⇐⇒ char(F) = 0.
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Deformations related to Ah

Thus it remains to determine Ah/ [Ah,A
ν
h] and describe all formal

deformations of Ah.

Two other points of view:

• Use the ideas of J. Goodman and U. Krhmer (cf. also M.
Suárez-Alvarez) to obtain an untwisted (i.e., Calabi-Yau) extension
of Ah.

• Can the deformations of Ah be seen as deformations of a
polynomial algebra?
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Generalization of Moyal product

Example: A = F[x , y ] commutative polynomial ring, char(F) = 0.

Let φ = ∂y , ψ = h(x)∂x . Then

a ? b =
∑
n≥0

φn(a)ψn(b)

n!
~n

defines an associative product on A[[~]] with:

x ? x = x2, y ? y = y2,

y ? x = yx + h(x)~, x ? y = xy .

So
y ? x − x ? y = h(x)~.

Setting ~ = 1 we retrieve all members of the family Ah as
deformations of the commutative polynomial algebra A = F[x , y ].
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