Anderson Localization in the presence of topologically protected channels

Eslam Khalaf
Harvard University

November 23rd, 2020

Lisbon

Acknowledgment

Pavel Ostrovksy

Max Planck Institute for Solid State Research

Mikhail Skvortsov Landau Institute for theoretical physics

- E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, PRB 2016
- E. Khalaf, P. M. Ostorvsky, PRL 2017
- E. Khalaf, P. M. Ostorvsky, PRB 2017
- E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, in preparation.
- E. Khalaf, PhD Thesis

Anderson Localization

Anderson Localization

- Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham et al. 80)

Anderson Localization

- Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham et al. 80)
- Probability of an electron to travel from one place to another: sum over trajectories

$$
P=\left|\sum_{\text {paths } P} A_{P}\right|^{2}=\sum_{\text {paths } P, P^{\prime}} A_{P} A_{P^{\prime}}^{*}
$$

Anderson Localization

- Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham et al. 80)
- Probability of an electron to travel from one place to another: sum over trajectories

$$
P=\left|\sum_{\text {paths } P} A_{P}\right|^{2}=\sum_{\text {paths } P, P^{\prime}} A_{P} A_{P^{\prime}}^{*}
$$

P^{\prime} is the same as P

P^{\prime} is the time-reverse of P

Topological protection

Topological protection

Quantum Hall effect

 von Klitzing 81

Quantum Hall effect

 von Klitzing 81

Quantum Spin Hall effect
Kane Mele 05, Bernevig et al. 06, K'onig et al 07

Localization + protected channels

Localization + protected channels

Interface between two quantum Hall systems
(Grayson et. al. 07,08)

Localization + protected channels

Interface between two quantum Hall systems
(Grayson et. al. 07,08)

Stack of quantum spin-Hall systems (Koenig et. al. 07)

Localization + protected channels

Interface between two quantum Hall systems
(Grayson et. al. 07,08)

Stack of quantum spin-Hall systems (Koenig et. al. 07)

Weyl semimetal in a magnetic field (Wan et. al. '11, Zyuzin \& Burkov '12, Altland \& Bagrets ' 15 , Huang et. al. '15, Shekhar et. al. ' $15, \ldots$)

Diffusion + Drift

Classical Diffusion
$W(x, t)=\frac{e^{-\frac{x^{2}}{2 D t}}}{2 \sqrt{\pi D t}}$

Anderson localization

$$
W(x, t)=?
$$

Classical Diffusion+Drift

$$
W(x, t)=\frac{e^{-\frac{(x-m v t / N)^{2}}{2 D t}}}{2 \sqrt{\pi D t}}
$$

Transport in quasi-one-dimensional conductors

Transport in quasi-one-dimensional conductors

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger} t$ determine all transport quantities.

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger} t$ determine all transport quantities.
- Conductance $G=G_{0}\left\langle\operatorname{tr} t^{\dagger} t\right\rangle$

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger} t$ determine all transport quantities.
- Conductance $G=G_{0}\left\langle\operatorname{tr} t^{\dagger} t\right\rangle$
- Transmission distribution function $\rho(T)$ (Nazarov '94)

$$
\rho(T)=\left\langle\operatorname{tr} \delta\left(t^{\dagger} t-T\right)\right\rangle, \quad 0 \leq T \leq 1
$$

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger} t$ determine all transport quantities.
- Conductance $G=G_{0}\left\langle\operatorname{tr} t^{\dagger} t\right\rangle$
- Transmission distribution function $\rho(T)$ (Nazarov '94)

$$
\rho(T)=\left\langle\operatorname{tr} \delta\left(t^{\dagger} t-T\right)\right\rangle, \quad 0 \leq T \leq 1
$$

- Contains all information about the moments

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\int_{0}^{1} d T \rho(T) T^{n}
$$

Transport in quasi-one-dimensional conductors

- Quasi-1D wire with $N=n_{L}+n_{R} \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger} t$ determine all transport quantities.
- Conductance $G=G_{0}\left\langle\operatorname{tr} t^{\dagger} t\right\rangle$
- Transmission distribution function $\rho(T)$ (Nazarov '94)

$$
\rho(T)=\left\langle\operatorname{tr} \delta\left(t^{\dagger} t-T\right)\right\rangle, \quad 0 \leq T \leq 1
$$

- Contains all information about the moments

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\int_{0}^{1} d T \rho(T) T^{n}
$$

- Lyapunov exponent $\lambda \geq 0: T=1 / \cosh ^{2} \lambda$
- $\lambda=0$: perfect transmission $(T=1)$
- $\lambda=\infty$: zero transmission $(T=0)$

Effective field theory of disorder

Efetov '83

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

Efetov '83

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

- Green's function as a Gaussian integral

$$
G_{\epsilon, i j}^{R, A}=\left(\epsilon-H_{0}+V \pm i 0\right)_{i j}^{-1}=\frac{\int D \phi D \phi^{*} \psi_{i}^{*} \psi_{j} e^{ \pm i \phi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \phi_{j}}}{\operatorname{det}\left(\epsilon-H_{0}+V \pm i 0\right)}
$$

Efetov '83

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

- Green's function as a Gaussian integral

$$
G_{\epsilon, i j}^{R, A}=\left(\epsilon-H_{0}+V \pm i 0\right)_{i j}^{-1}=\frac{\int D \phi D \phi^{*} \psi_{i}^{*} \psi_{j} e^{ \pm i \phi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \phi_{j}}}{\operatorname{det}\left(\epsilon-H_{0}+V \pm i 0\right)}
$$

- Supersymmetry: supervector field $\psi_{i}=\left(\phi_{i}, \chi_{i}\right)$

$$
G_{\epsilon, i j}^{R, A}=\int D \psi D \psi^{*} \phi_{i}^{*} \phi_{j} e^{ \pm i \psi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \psi_{j}}
$$

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

- Green's function as a Gaussian integral

$$
G_{\epsilon, i j}^{R, A}=\left(\epsilon-H_{0}+V \pm i 0\right)_{i j}^{-1}=\frac{\int D \phi D \phi^{*} \psi_{i}^{*} \psi_{j} e^{ \pm i \phi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \phi_{j}}}{\operatorname{det}\left(\epsilon-H_{0}+V \pm i 0\right)}
$$

- Supersymmetry: supervector field $\psi_{i}=\left(\phi_{i}, \chi_{i}\right)$

$$
G_{\epsilon, i j}^{R, A}=\int D \psi D \psi^{*} \phi_{i}^{*} \phi_{j} e^{ \pm i \psi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \psi_{j}}
$$

- Disorder averaging \rightarrow quartic term $\left(\psi_{i}^{*} \psi_{j}\right)^{2}$

$$
\left\langle e^{i \psi_{i} V_{i j} \psi_{j}}\right\rangle=\int d V e^{-\frac{1}{2 N \tau} V_{i j} V_{j i}+i \psi_{i} V_{i j} \psi_{j}}=e^{-2 N \tau\left(\psi_{i}^{*} \psi_{j}\right)^{2}}
$$

Efetov '83

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

- Green's function as a Gaussian integral

$$
G_{\epsilon, i j}^{R, A}=\left(\epsilon-H_{0}+V \pm i 0\right)_{i j}^{-1}=\frac{\int D \phi D \phi^{*} \psi_{i}^{*} \psi_{j} e^{ \pm i \phi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \phi_{j}}}{\operatorname{det}\left(\epsilon-H_{0}+V \pm i 0\right)}
$$

- Supersymmetry: supervector field $\psi_{i}=\left(\phi_{i}, \chi_{i}\right)$

$$
G_{\epsilon, i j}^{R, A}=\int D \psi D \psi^{*} \phi_{i}^{*} \phi_{j} e^{ \pm i \psi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \psi_{j}}
$$

- Disorder averaging \rightarrow quartic term $\left(\psi_{i}^{*} \psi_{j}\right)^{2}$

$$
\left\langle e^{i \psi_{i} V_{i j} \psi_{j}}\right\rangle=\int d V e^{-\frac{1}{2 N \tau} V_{i j} V_{j i}+i \psi_{i} V_{i j} \psi_{j}}=e^{-2 N \tau\left(\psi_{i}^{*} \psi_{j}\right)^{2}}
$$

- Hubbard-Stratonovich transformation: slowly varying field $Q_{i j} \sim \psi_{i}^{*} \psi_{j}$

$$
Q=\left(\begin{array}{ll}
Q_{B B} & Q_{B F} \\
Q_{F B} & Q_{F F}
\end{array}\right)_{\mathrm{BF}}
$$

Efetov '83

Effective field theory of disorder

- Moments in terms of Green's functions: Kubo formula

$$
\operatorname{tr}\left(t^{\dagger} t\right)^{n}=\operatorname{tr}\left[\hat{v}\left(x_{L}\right) G_{\epsilon}^{R}\left(x_{L}, x_{R}\right) \hat{v}\left(x_{R}\right) G_{\epsilon}^{A}\left(x_{R}, x_{L}\right)\right]^{n}
$$

- Green's function as a Gaussian integral

$$
G_{\epsilon, i j}^{R, A}=\left(\epsilon-H_{0}+V \pm i 0\right)_{i j}^{-1}=\frac{\int D \phi D \phi^{*} \psi_{i}^{*} \psi_{j} e^{ \pm i \phi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \phi_{j}}}{\operatorname{det}\left(\epsilon-H_{0}+V \pm i 0\right)}
$$

- Supersymmetry: supervector field $\psi_{i}=\left(\phi_{i}, \chi_{i}\right)$

$$
G_{\epsilon, i j}^{R, A}=\int D \psi D \psi^{*} \phi_{i}^{*} \phi_{j} e^{ \pm i \psi_{i}^{*}\left(\epsilon-H_{0, i j}+V_{i j} \pm i 0\right) \psi_{j}}
$$

- Disorder averaging \rightarrow quartic term $\left(\psi_{i}^{*} \psi_{j}\right)^{2}$

$$
\left\langle e^{i \psi_{i} V_{i j} \psi_{j}}\right\rangle=\int d V e^{-\frac{1}{2 N \tau} V_{i j} V_{j i}+i \psi_{i} V_{i j} \psi_{j}}=e^{-2 N \tau\left(\psi_{i}^{*} \psi_{j}\right)^{2}}
$$

- Hubbard-Stratonovich transformation: slowly varying field $Q_{i j} \sim \psi_{i}^{*} \psi_{j}$

$$
Q=\left(\begin{array}{ll}
Q_{B B} & Q_{B F} \\
Q_{F B} & Q_{F F}
\end{array}\right)_{\mathrm{BF}}
$$

Efetov '83

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation

Efetov ' 83

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right], \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:

Efetov '83

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}
- Q invariant under $T \rightarrow K T$ with $[K, \Lambda]=0$

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}
- Q invariant under $T \rightarrow K T$ with $[K, \Lambda]=0$
- $Q \in \mathcal{G} / \mathcal{K}$ with $[\mathcal{K}, \Lambda]=0$

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right], \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}
- Q invariant under $T \rightarrow K T$ with $[K, \Lambda]=0$
- $Q \in \mathcal{G} / \mathcal{K}$ with $[\mathcal{K}, \Lambda]=0$
- Example: action of $S O(3)$ on a unit vector yields $S^{2}=S O(3) / S O(2)$

Efetov '83

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}
- Q invariant under $T \rightarrow K T$ with $[K, \Lambda]=0$
- $Q \in \mathcal{G} / \mathcal{K}$ with $[\mathcal{K}, \Lambda]=0$
- Example: action of $S O(3)$ on a unit vector yields

$$
S^{2}=S O(3) / S O(2)
$$

- Supermanifold $\mathcal{G} / \mathcal{K}$: compact + non-compact connected by grassmans

$$
Q=\left(\begin{array}{ll}
Q_{B B} & Q_{B F} \\
Q_{F B} & Q_{F F}
\end{array}\right)_{\mathrm{BF}}
$$

Efetov '83

Non-linear Sigma model

- $N \gg 1 \rightarrow$ Saddle point approximation
- 1D Supersymmetric non-linear σ model with topological term

$$
\begin{gathered}
S=-\int_{0}^{L} d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}+S_{\mathrm{top}}\right] \\
Q^{2}=1, \quad \xi=N l
\end{gathered}
$$

N : total number of channels, l : mean free path

- Q parametrization: $Q=T^{-1} \Lambda T$:
- T belongs to a Lie (super)group \mathcal{G}
- Q invariant under $T \rightarrow K T$ with $[K, \Lambda]=0$
- $Q \in \mathcal{G} / \mathcal{K}$ with $[\mathcal{K}, \Lambda]=0$
- Example: action of $S O(3)$ on a unit vector yields

$$
S^{2}=S O(3) / S O(2)
$$

- Supermanifold $\mathcal{G} / \mathcal{K}$: compact + non-compact connected by grassmans

$$
Q=\left(\begin{array}{ll}
Q_{B B} & Q_{B F} \\
Q_{F B} & Q_{F F}
\end{array}\right)_{\mathrm{BF}}
$$

Efetov '83

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Spp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- AII, DIII: 0 or 1 protected (helical) channels $\left(\mathbb{Z}_{2}\right)$.

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- AII, DIII: 0 or 1 protected (helical) channels $\left(\mathbb{Z}_{2}\right)$.
- Quantum Hall edge, Weyl semimetal: class A

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- AII, DIII: 0 or 1 protected (helical) channels $\left(\mathbb{Z}_{2}\right)$.
- Quantum Hall edge, Weyl semimetal: class A
- Quantum spin Hall edge: class All

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Symmetry class	Symmetry		NLSM	Spatial dimension		
Cartan label	\mathcal{T}	\mathcal{C}	\mathcal{S}	compact sector	1	2
A	0	0	0	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	1	1	1	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	0	1	0	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	-1	1	1	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	-1	0	0	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	-1	-1	1	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	0	-1	0	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- AII, DIII: 0 or 1 protected (helical) channels $\left(\mathbb{Z}_{2}\right)$.
- Quantum Hall edge, Weyl semimetal: class A
- Quantum spin Hall edge: class All

Altland, Zirnbauer 97, Kitaev 09, Schnyder et al. 09

Unitary class

Unitary class

- Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

Unitary class

- Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

- Boundary conditions at $x=0: \theta_{F}=\theta_{B}=0$

Unitary class

- Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

- Boundary conditions at $x=0: \theta_{F}=\theta_{B}=0$
- Transmission distribution functions

$$
\rho(\lambda)=\left.\frac{2}{\pi} \operatorname{Re} \frac{\partial Z\left[\theta_{F}, \theta_{B}\right]}{\partial \theta_{F}}\right|_{\theta_{F}=i \theta_{B}=\pi-\epsilon-2 i \lambda}
$$

Unitary class

- Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

- Boundary conditions at $x=0: \theta_{F}=\theta_{B}=0$
- Transmission distribution functions

$$
\rho(\lambda)=\left.\frac{2}{\pi} \operatorname{Re} \frac{\partial Z\left[\theta_{F}, \theta_{B}\right]}{\partial \theta_{F}}\right|_{\theta_{F}=i \theta_{B}=\pi-\epsilon-2 i \lambda}
$$

- Topological term: field of a magnetic monopole

$$
S_{\mathrm{top}}=\frac{i m}{2} \int d x(1-\cos \theta) \dot{\phi}, \quad m=n_{L}-n_{R}
$$

Saddle-point approximation $(L \ll \xi)$

Action in the compact sector

$$
S_{F}=\int_{0}^{L} d x\left[\frac{\xi}{4}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+i \frac{m}{2}(1-\cos \theta) \dot{\phi}\right], \quad \xi=\left(n_{R}+n_{L}\right) l=2 \pi \nu D
$$

Saddle-point approximation $(L \ll \xi)$

Action in the compact sector
$S_{F}=\int_{0}^{L} d x\left[\frac{\xi}{4}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+i \frac{m}{2}(1-\cos \theta) \dot{\phi}\right], \quad \xi=\left(n_{R}+n_{L}\right) l=2 \pi \nu D$

$\rightarrow \theta_{F}$ close to π is classically unreachable

Saddle-point approximation: distribution function

- Distribution function

$$
\rho(\lambda)=\left.\frac{2}{\pi} \operatorname{Re} \frac{\partial Z\left[\theta_{F}, \theta_{B}\right]}{\partial \theta_{F}}\right|_{\theta_{F}=i \theta_{B}=\pi-\epsilon-2 i \lambda}=m \delta(\lambda)+\rho_{\mathrm{ns}}(\lambda),
$$

Saddle-point approximation: distribution function

- Distribution function

$$
\rho(\lambda)=\left.\frac{2}{\pi} \operatorname{Re} \frac{\partial Z\left[\theta_{F}, \theta_{B}\right]}{\partial \theta_{F}}\right|_{\theta_{F}=i \theta_{B}=\pi-\epsilon-2 i \lambda}=m \delta(\lambda)+\rho_{\mathrm{ns}}(\lambda),
$$

$$
\alpha=\frac{m L}{\xi}
$$

EK, Skvortsov and Ostrovsky PRB 16

Saddle-point approximation: distribution function

- Distribution function

$$
\rho(\lambda)=\left.\frac{2}{\pi} \operatorname{Re} \frac{\partial Z\left[\theta_{F}, \theta_{B}\right]}{\partial \theta_{F}}\right|_{\theta_{F}=i \theta_{B}=\pi-\epsilon-2 i \lambda}=m \delta(\lambda)+\rho_{\mathrm{ns}}(\lambda),
$$

$$
\alpha=\frac{m L}{\xi}
$$

- Gap close to unit transmission \Longrightarrow transport from the unprotected channels gets suppressed

EK, Skvortsov and Ostrovsky PRB 16

Soft modes

EK, Skvortsov and Ostrovsky PRB 16

Soft modes

- $\theta_{F} \approx \pi \rightarrow$ many trajectories joining north pole to south pole \rightarrow ground state degeneracy \rightarrow some modes become very soft for $\pi-\theta \ll \sqrt{\frac{L}{\xi}}$

Soft modes

- $\theta_{F} \approx \pi \rightarrow$ many trajectories joining north pole to south pole \rightarrow ground state degeneracy \rightarrow some modes become very soft for $\pi-\theta \ll \sqrt{\frac{L}{\xi}}$
- Projection onto the manifold of soft modes \rightarrow trajectories labelled by polar angle ϕ " equator".

EK, Skvortsov and Ostrovsky PRB 16

Mapping to 0D

EK, Skvortsov and Ostrovsky 16

Mapping to OD

H	"E"	$Q_{F F}$	$d=1$	$d=2$
A	AIII	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	A	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n)$	0	0
BDI	AI	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	D	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	DIII	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	AII	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	CII	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	C	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

EK, Skvortsov and Ostrovsky 16

Mapping to 0D

H	"E"	$Q_{F F}$	$d=1$	$d=2$
A	AIII	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	A	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)$	0	0
BDI	AI	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	D	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	DIII	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	AII	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	CII	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	C	$\mathrm{Sp}(2 n) \times \mathrm{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

1D edge with protected channels \leftrightarrow random matrix with zero eigenvalues

EK, Skvortsov and Ostrovsky 16

Mapping to 0D

H	$" \mathrm{E} "$	$Q_{F F}$	$d=1$	$d=2$
A	AIII	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	A	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)$	0	0
BDI	AI	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	D	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	DIII	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	AII	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	CII	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	C	$\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

1D edge with protected channels \leftrightarrow random matrix with zero eigenvalues Quantum Hall classes A, C and D \leftrightarrow chiral random matices AIII, CII, BDI

EK, Skvortsov and Ostrovsky 16

Mapping to 0D

H	$" \mathrm{E} "$	$Q_{F F}$	$d=1$	$d=2$
A	AIII	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	A	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)$	0	0
BDI	AI	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	D	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	DIII	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	AII	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	CII	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	C	$\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

1D edge with protected channels \leftrightarrow random matrix with zero eigenvalues Quantum Hall classes A, C and D \leftrightarrow chiral random matices AIII, CII, BDI
\mathbb{Z}_{2} classes All and DIII $\quad \leftrightarrow \quad$ Random matrix classes DIII and D

EK, Skvortsov and Ostrovsky 16

Mapping to OD

H	$" \mathrm{E} "$	$Q_{F F}$	$d=1$	$d=2$
A	AIII	$\mathrm{U}(2 n) / \mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	A	$\mathrm{U}(n) \times \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\mathrm{Sp}(4 n) / \mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)$	0	0
BDI	AI	$\mathrm{U}(2 n) / \mathrm{Sp}(2 n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2 n) / \mathrm{U}(n)$	\mathbb{Z}_{2}	\mathbb{Z}
DIII	D	$\mathrm{O}(n) \times \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
AII	DIII	$\mathrm{O}(2 n) / \mathrm{O}(n) \times \mathrm{O}(n)$	0	\mathbb{Z}_{2}
CII	AII	$\mathrm{U}(n) / \mathrm{O}(n)$	\mathbb{Z}	0
C	CII	$\mathrm{Sp}(2 n) / \mathrm{U}(n)$	0	\mathbb{Z}
CI	C	$\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n) / \mathrm{Sp}(2 n)$	0	0

1D edge with protected channels \leftrightarrow random matrix with zero eigenvalues Quantum Hall classes A, C and D \leftrightarrow chiral random matices AIII, CII, BDI
\mathbb{Z}_{2} classes All and DIII \leftrightarrow
Transmission distribution function \leftrightarrow

Random matrix classes DIII and D Spectral density

EK, Skvortsov and Ostrovsky 16

Results

$$
\rho_{\mathrm{A}}(\lambda, m)=\frac{\pi \xi u}{2 L}\left[J_{m}^{2}(u)-J_{m+1}(u) J_{m-1}(u)\right]+m \delta(\lambda), \quad u=\frac{\pi \xi \lambda}{L}
$$

Ivanov 01, EK, Skvortsov, Ostrovsky PRB 16

Results

$$
\begin{aligned}
& \rho_{\mathrm{A}}(\lambda, m)=\frac{\pi \xi u}{2 L}\left[J_{m}^{2}(u)-J_{m+1}(u) J_{m-1}(u)\right]+m \delta(\lambda), \quad u=\frac{\pi \xi \lambda}{L} \\
& \rho_{\mathrm{All}}(\lambda, \sigma= \pm)=\frac{\pi \xi u}{2 L}\left[J_{1}^{2}(u)+J_{0}(u) J_{1}^{\prime}(u)\right] \pm \frac{\pi \xi}{2 L} J_{1}(u)+2 \delta_{\sigma,-} \delta(\lambda) \\
& \text { Ivanov 01, EK, Skvortsov, Ostrovsky PRB } 16
\end{aligned}
$$

Exact solution: transfer matrix method

- Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$
\partial_{t} \psi(Q, t)=-\mathcal{H} \psi(Q, t), \quad t=x / \xi, \quad \psi(Q, 0)=\delta(Q, \Lambda)
$$

Rejaei 96, EK, Ostrovsky PRL 17

Exact solution: transfer matrix method

- Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$
\partial_{t} \psi(Q, t)=-\mathcal{H} \psi(Q, t), \quad t=x / \xi, \quad \psi(Q, 0)=\delta(Q, \Lambda)
$$

- NLSM action: particle motion on a curved (super)manifold with a vector potential

$$
\begin{gathered}
S=\int d t\left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta \alpha}+\dot{y}^{\alpha} A_{\alpha}\right] \\
d y^{\alpha} d y^{\beta} g_{\beta \alpha}=-\frac{1}{2} \operatorname{str}(d Q)^{2}, \quad d y^{\alpha} A_{\alpha}=-\frac{m}{2} \operatorname{str} T^{-1} \Lambda d T
\end{gathered}
$$

Exact solution: transfer matrix method

- Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$
\partial_{t} \psi(Q, t)=-\mathcal{H} \psi(Q, t), \quad t=x / \xi, \quad \psi(Q, 0)=\delta(Q, \Lambda)
$$

- NLSM action: particle motion on a curved (super)manifold with a vector potential

$$
\begin{gathered}
S=\int d t\left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta \alpha}+\dot{y}^{\alpha} A_{\alpha}\right] \\
d y^{\alpha} d y^{\beta} g_{\beta \alpha}=-\frac{1}{2} \operatorname{str}(d Q)^{2}, \quad d y^{\alpha} A_{\alpha}=-\frac{m}{2} \operatorname{str} T^{-1} \Lambda d T
\end{gathered}
$$

- Hamiltonian: Laplace-Beltrami operator + vector potential

$$
\mathcal{H}=-\frac{1}{\sqrt{|g|}}\left(\partial_{\alpha}+A_{\alpha}\right) \sqrt{|g|} g^{\alpha \beta}\left(\partial_{\beta}+A_{\beta}\right), \quad|g|=\operatorname{sdet} g
$$

Exact solution: transfer matrix method

- Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$
\partial_{t} \psi(Q, t)=-\mathcal{H} \psi(Q, t), \quad t=x / \xi, \quad \psi(Q, 0)=\delta(Q, \Lambda)
$$

- NLSM action: particle motion on a curved (super)manifold with a vector potential

$$
\begin{gathered}
S=\int d t\left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta \alpha}+\dot{y}^{\alpha} A_{\alpha}\right] \\
d y^{\alpha} d y^{\beta} g_{\beta \alpha}=-\frac{1}{2} \operatorname{str}(d Q)^{2}, \quad d y^{\alpha} A_{\alpha}=-\frac{m}{2} \operatorname{str} T^{-1} \Lambda d T
\end{gathered}
$$

- Hamiltonian: Laplace-Beltrami operator + vector potential

$$
\mathcal{H}=-\frac{1}{\sqrt{|g|}}\left(\partial_{\alpha}+A_{\alpha}\right) \sqrt{|g|} g^{\alpha \beta}\left(\partial_{\beta}+A_{\beta}\right), \quad|g|=\operatorname{sdet} g
$$

- General solution

$$
\psi(Q, t)=\phi_{0}(Q)+\sum_{\nu} \phi_{\nu}(Q) e^{-t \epsilon_{\nu}}, \quad \mathcal{H} \phi_{\nu}=\epsilon_{\nu} \phi_{\nu}
$$

Exact solution: transfer matrix method

- Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$
\partial_{t} \psi(Q, t)=-\mathcal{H} \psi(Q, t), \quad t=x / \xi, \quad \psi(Q, 0)=\delta(Q, \Lambda)
$$

- NLSM action: particle motion on a curved (super)manifold with a vector potential

$$
\begin{gathered}
S=\int d t\left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta \alpha}+\dot{y}^{\alpha} A_{\alpha}\right] \\
d y^{\alpha} d y^{\beta} g_{\beta \alpha}=-\frac{1}{2} \operatorname{str}(d Q)^{2}, \quad d y^{\alpha} A_{\alpha}=-\frac{m}{2} \operatorname{str} T^{-1} \Lambda d T
\end{gathered}
$$

- Hamiltonian: Laplace-Beltrami operator + vector potential

$$
\mathcal{H}=-\frac{1}{\sqrt{|g|}}\left(\partial_{\alpha}+A_{\alpha}\right) \sqrt{|g|} g^{\alpha \beta}\left(\partial_{\beta}+A_{\beta}\right), \quad|g|=\operatorname{sdet} g
$$

- General solution

$$
\psi(Q, t)=\phi_{0}(Q)+\sum_{\nu} \phi_{\nu}(Q) e^{-t \epsilon_{\nu}}, \quad \mathcal{H} \phi_{\nu}=\epsilon_{\nu} \phi_{\nu}
$$

Solution

- Spherically symmetric eigenfunctions: invariant under $Q \rightarrow K^{-1} Q K$ for $[K, \Lambda]=0$

Solution

- Spherically symmetric eigenfunctions: invariant under $Q \rightarrow K^{-1} Q K$ for $[K, \Lambda]=0$
- Canonical coordinates on $\mathcal{G} / \mathcal{K}$:
- Spherical "Cartan" (h, $K) \rightarrow$ spherical symmetry $\phi_{s}(Q)=\phi_{s}(\mathbf{h})$
- Horospheric "Iwasawa" $(\mathbf{a}, N) \rightarrow$ Laplace operator flat in a

Solution

- Spherically symmetric eigenfunctions: invariant under $Q \rightarrow K^{-1} Q K$ for $[K, \Lambda]=0$
- Canonical coordinates on $\mathcal{G} / \mathcal{K}$:
- Spherical "Cartan" $(\mathbf{h}, K) \rightarrow$ spherical symmetry $\phi_{s}(Q)=\phi_{s}(\mathbf{h})$
- Horospheric "Iwasawa" $(\mathbf{a}, N) \rightarrow$ Laplace operator flat in a
- Integral representation of spherical eigenfunctions (Harish-Chandra '58, Zirnbauer '92, Mirlin, Muller-Groeling and Zirnbauer '94)

$$
\phi_{\nu}(\mathbf{h})=\int_{\mathcal{K}} d K e^{i \mathbf{p}_{\nu} \cdot \mathbf{a}(\mathbf{h}, K)}
$$

- Spherically symmetric eigenfunctions: invariant under $Q \rightarrow K^{-1} Q K$ for $[K, \Lambda]=0$
- Canonical coordinates on $\mathcal{G} / \mathcal{K}$:
- Spherical "Cartan" (h, $K) \rightarrow$ spherical symmetry $\phi_{s}(Q)=\phi_{s}(\mathbf{h})$
- Horospheric "Iwasawa" $(\mathbf{a}, N) \rightarrow$ Laplace operator flat in a
- Integral representation of spherical eigenfunctions (Harish-Chandra '58, Zirnbauer '92, Mirlin, Muller-Groeling and Zirnbauer '94)

$$
\phi_{\nu}(\mathbf{h})=\int_{\mathcal{K}} d K e^{i \mathbf{p}_{\nu} \cdot \mathbf{a}(\mathbf{h}, K)}
$$

- Vector potential \rightarrow Hamiltonian only simplifies in a special gauge
- Spherical eigenfunctions: gauge transformation + integration (EK, Skvortsov and Ostrovsky (to appear), EK (PhD thesis))

$$
\phi_{\nu}(\mathbf{h})=\int_{\mathcal{K}} d K e^{i \mathbf{p}_{\nu} \cdot \mathbf{a}(\mathbf{h}, K)}\left[\operatorname{sdet} K_{I}(\mathbf{h}, K)\right]^{m}
$$

valid also without supersymmetry (compact or non-compact nlsm)

Effect of topology: Class A (unitary)

EK and Ostrovsky PRL 2017

Effect of topology: Class A (unitary)

$$
\begin{aligned}
-L / \xi & =50 \\
-L / \xi & =10 \\
-L / \xi & =1 \\
-L / \xi & =0.1
\end{aligned}
$$

EK and Ostrovsky PRL 2017

Effect of topology: Class A (unitary)

$m=2$

$$
\begin{aligned}
L / \xi & =50 \\
-L / \xi & =10 \\
-L / \xi & =1 \\
-L / \xi & =0.1
\end{aligned}
$$

EK and Ostrovsky PRL 2017

Effect of topology: Class A (unitary)

$$
\begin{aligned}
& L / \xi=50 \\
&-L / \xi=10 \\
&-L / \xi=1 \\
&- \\
&-=0.1
\end{aligned}
$$

EK and Ostrovsky PRL 2017

Effect of topology: Class A (unitary)

- Localization length for the unprotected channels $\xi_{m}=\xi /(m+1)$

EK and Ostrovsky PRL 2017

Diffusion + Drift

Classical Diffusion
$W(x, t)=\frac{e^{-\frac{x^{2}}{2 D t}}}{2 \sqrt{\pi D t}}$

Anderson localization

$$
W(x, t)=?
$$

Classical Diffusion+Drift

$$
W(x, t)=\frac{e^{-\frac{(x-m v t / N)^{2}}{2 D t}}}{2 \sqrt{\pi D t}}
$$

Dynamical correlations: Theory

EK and Ostrovsky PRB 2017

Dynamical correlations: Theory

- Sigma model at finite frequency $\omega+i 0 \mapsto i \Omega$

$$
S[Q]=-\int d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}-\frac{\kappa^{2}}{16 \xi} \Lambda Q+S_{\mathrm{top}}\right], \quad \kappa=2 N \sqrt{\Omega \tau_{e}}
$$

EK and Ostrovsky PRB 2017

Dynamical correlations: Theory

- Sigma model at finite frequency $\omega+i 0 \mapsto i \Omega$

$$
S[Q]=-\int d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}-\frac{\kappa^{2}}{16 \xi} \Lambda Q+S_{\mathrm{top}}\right], \quad \kappa=2 N \sqrt{\Omega \tau_{e}}
$$

- Local correlations

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}
$$

Dynamical correlations: Theory

- Sigma model at finite frequency $\omega+i 0 \mapsto i \Omega$

$$
S[Q]=-\int d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}-\frac{\kappa^{2}}{16 \xi} \Lambda Q+S_{\mathrm{top}}\right], \quad \kappa=2 N \sqrt{\Omega \tau_{e}}
$$

- Local correlations

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}
$$

- Return probability $\left(l \ll\left|x_{1}-x_{2}\right| \ll \xi\right)$

$$
\begin{gathered}
W(t)=\int \frac{d \omega e^{-i \omega t}}{4 \pi^{2} \nu}\left\langle G_{E+\omega}^{R}\left(x_{1}, x_{2}\right) G_{E}^{A}\left(x_{2}, x_{1}\right)\right\rangle \rightarrow \frac{\nu}{2 \gamma} \int d \omega e^{-i \omega t}\langle M(Q)\rangle \\
M(Q)=\frac{1}{32 \gamma} \operatorname{str}(k \Lambda Q)^{2}-\operatorname{str}(k Q)^{2} .
\end{gathered}
$$

Dynamical correlations: Theory

- Sigma model at finite frequency $\omega+i 0 \mapsto i \Omega$

$$
S[Q]=-\int d x \operatorname{str}\left[\frac{\xi}{8}\left(\partial_{x} Q\right)^{2}-\frac{\kappa^{2}}{16 \xi} \Lambda Q+S_{\mathrm{top}}\right], \quad \kappa=2 N \sqrt{\Omega \tau_{e}}
$$

- Local correlations

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}
$$

- Return probability $\left(l \ll\left|x_{1}-x_{2}\right| \ll \xi\right)$

$$
\begin{gathered}
W(t)=\int \frac{d \omega e^{-i \omega t}}{4 \pi^{2} \nu}\left\langle G_{E+\omega}^{R}\left(x_{1}, x_{2}\right) G_{E}^{A}\left(x_{2}, x_{1}\right)\right\rangle \rightarrow \frac{\nu}{2 \gamma} \int d \omega e^{-i \omega t}\langle M(Q)\rangle \\
M(Q)=\frac{1}{32 \gamma} \operatorname{str}(k \Lambda Q)^{2}-\operatorname{str}(k Q)^{2} .
\end{gathered}
$$

Difficulty in computing dynamical correlations

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere
- Potential: height function $V \propto-\kappa^{2} \operatorname{tr} \Lambda Q \propto \kappa^{2} \cos \theta$

Difficulty in computing dynamical correlations

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$
\langle M(Q)\rangle=\int \mathcal{D} Q M[Q(x=0)] e^{-S[Q]}=\left\langle\Psi_{0}\right| M\left|\Psi_{0}\right\rangle, \quad \mathcal{H}\left|\Psi_{0}\right\rangle=0
$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere
- Potential: height function $V \propto-\kappa^{2} \operatorname{tr} \Lambda Q \propto \kappa^{2} \cos \theta$
- Eigenfunction: Coulomb spherical functions (no integral representation, no generalization to more variables)

Zero mode and local dynamical correlations

EK and Ostrovsky PRB 2017

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

- Local correlation functions

$$
\langle F(Q)\rangle=\int_{\mathcal{G}} d T(\operatorname{sdet} T)^{ \pm m} F\left(T^{-1} \Lambda T\right) \exp \left[-\frac{\kappa}{2} \operatorname{str}\left(T+T^{-1}\right)\right]
$$

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

- Local correlation functions

$$
\langle F(Q)\rangle=\int_{\mathcal{G}} d T(\operatorname{sdet} T)^{ \pm m} F\left(T^{-1} \Lambda T\right) \exp \left[-\frac{\kappa}{2} \operatorname{str}\left(T+T^{-1}\right)\right] .
$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a 0D sigma model in a different class!

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

- Local correlation functions

$$
\langle F(Q)\rangle=\int_{\mathcal{G}} d T(\operatorname{sdet} T)^{ \pm m} F\left(T^{-1} \Lambda T\right) \exp \left[-\frac{\kappa}{2} \operatorname{str}\left(T+T^{-1}\right)\right]
$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a OD sigma model in a different class!
- Wigner-Dyson classes A, AI and All map to group manifold classes AIII, Cl and DIII.

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

- Local correlation functions

$$
\langle F(Q)\rangle=\int_{\mathcal{G}} d T(\operatorname{sdet} T)^{ \pm m} F\left(T^{-1} \Lambda T\right) \exp \left[-\frac{\kappa}{2} \operatorname{str}\left(T+T^{-1}\right)\right]
$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a OD sigma model in a different class!
- Wigner-Dyson classes A, AI and All map to group manifold classes AIII, Cl and DIII.
- Only holds in supersymmetric sigma model.

EK and Ostrovsky PRB 2017

Zero mode and local dynamical correlations

- Zero mode $\left(Q=T^{-1} \Lambda T\right)$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\int_{\mathcal{K}} d K\left(\operatorname{sdet} K_{R, A}\right)^{ \pm m} \exp \left[-\frac{\kappa}{2} \operatorname{str} P_{ \pm}\left(K T+T^{-1} K^{-1}\right)\right] \\
P_{ \pm}=\frac{1}{2}(1+\Lambda), \quad K_{R, A}=P_{ \pm} K P_{ \pm}+P_{\mp}
\end{gathered}
$$

- Local correlation functions

$$
\langle F(Q)\rangle=\int_{\mathcal{G}} d T(\operatorname{sdet} T)^{ \pm m} F\left(T^{-1} \Lambda T\right) \exp \left[-\frac{\kappa}{2} \operatorname{str}\left(T+T^{-1}\right)\right]
$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a OD sigma model in a different class!
- Wigner-Dyson classes A, AI and All map to group manifold classes AIII, Cl and DIII.
- Only holds in supersymmetric sigma model.

EK and Ostrovsky PRB 2017

Return probability: Exact expressions

- Return probability

$$
W(0, t)=\frac{1}{4 \xi} F\left(\tau=\frac{t}{2 N^{2} \tau_{e}}\right)
$$

EK and Ostrovsky PRB 2017

Return probability: Exact expressions

- Return probability

$$
W(0, t)=\frac{1}{4 \xi} F\left(\tau=\frac{t}{2 N^{2} \tau_{e}}\right)
$$

- Exact expressions for $F(\tau)$

$$
\begin{gathered}
F_{m}^{\mathrm{unit}}(\tau)=\frac{2 e^{-1 / \tau}}{3 \tau}\left[((m+2) \tau+2) I_{m}(1 / \tau)+I_{m+1}(1 / \tau)\right] \\
F^{F^{\mathrm{orth}}(\tau)=1+\frac{e^{-1 / \tau}}{3 \tau}\left[(5 \tau+3) I_{0}(1 / \tau)+(4 \tau+3) I_{1}(1 / \tau)\right]} \begin{array}{c}
F_{\mathrm{e} / \mathrm{o}}^{\mathrm{symp}}(\tau)=-1+\frac{e^{-1 / \tau}}{3 \tau}\left[(5 \tau+3) I_{0}(1 / \tau)+(4 \tau+3) I_{1}(1 / \tau)\right] \\
\pm \frac{e^{-1 / 2 \tau}}{3 \tau}(2 \tau+1)
\end{array}
\end{gathered}
$$

EK and Ostrovsky PRB 2017

Return probability: Exact expressions

- Return probability

$$
W(0, t)=\frac{1}{4 \xi} F\left(\tau=\frac{t}{2 N^{2} \tau_{e}}\right)
$$

- Exact expressions for $F(\tau)$

$$
\begin{gathered}
F_{m}^{\mathrm{unit}}(\tau)=\frac{2 e^{-1 / \tau}}{3 \tau}\left[((m+2) \tau+2) I_{m}(1 / \tau)+I_{m+1}(1 / \tau)\right] \\
F^{F^{\mathrm{orth}}(\tau)=1+\frac{e^{-1 / \tau}}{3 \tau}\left[(5 \tau+3) I_{0}(1 / \tau)+(4 \tau+3) I_{1}(1 / \tau)\right]} \begin{array}{c}
F_{\mathrm{e} / \mathrm{o}}^{\mathrm{symp}}(\tau)=-1+\frac{e^{-1 / \tau}}{3 \tau}\left[(5 \tau+3) I_{0}(1 / \tau)+(4 \tau+3) I_{1}(1 / \tau)\right] \\
\pm \frac{e^{-1 / 2 \tau}}{3 \tau}(2 \tau+1)
\end{array}
\end{gathered}
$$

EK and Ostrovsky PRB 2017

Return probability: Different symmetry classes

Return probability: Different symmetry classes

- All classes approach classical diffusion $\sqrt{\frac{2}{\pi \tau}}$ at short times.

Return probability: Different symmetry classes

- All classes approach classical diffusion $\sqrt{\frac{2}{\pi \tau}}$ at short times.
- Unitary and symplectic classes saturate to the value $4 / 3$, while orthogonal class saturates to $8 / 3$.

Return probability: Different symmetry classes

- All classes approach classical diffusion $\sqrt{\frac{2}{\pi \tau}}$ at short times.
- Unitary and symplectic classes saturate to the value $4 / 3$, while orthogonal class saturates to $8 / 3$.
- The saturation value is approached as a power-law: unitary $\sim 1 / \tau^{3}$, orthogonal $\sim 1 / \tau^{2}$ and symplectic $\sim 1 / \tau^{5}$.

Return probability: chiral channels (unitary class)

- $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.

Return probability: chiral channels (unitary class)

- $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.
- The decay is power law $F(\tau) \sim 1 / \tau^{2 m}$ rather than the exponential obtained from classical drift-diffusion $F(\tau)=\sqrt{\frac{2}{\pi \tau}} e^{-m^{2} \tau / 2}$.

Return probability: chiral channels (unitary class)

- $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.
- The decay is power law $F(\tau) \sim 1 / \tau^{2 m}$ rather than the exponential obtained from classical drift-diffusion $F(\tau)=\sqrt{\frac{2}{\pi \tau}} e^{-m^{2} \tau / 2}$.
- The wave packet leaves a tail behind due to localization.

Open questions

- Mathematical reason for the integral representation of the zero mode?

Open questions

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?

Open questions

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?
- Level statistics: connection to non-Hermitian systems? (Lee et al. PRL 2020)

Open questions

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?
- Level statistics: connection to non-Hermitian systems? (Lee et al. PRL 2020)
- Wavefunction statistics: how does the wavefunctions look like in this system?

