Anderson Localization in the presence of topologically protected channels

Eslam Khalaf

Harvard University

November 23rd, 2020

Lisbon

Acknowledgment

Pavel Ostrovksy Max Planck Institute for Solid State Research

Mikhail Skvortsov Landau Institute for theoretical physics

- E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, PRB 2016
- E. Khalaf, P. M. Ostorvsky, PRL 2017
- E. Khalaf, P. M. Ostorvsky, PRB 2017
- E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, in preparation.
- E. Khalaf, PhD Thesis

Anderson Localization

• Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham *et al.* 80)

Anderson Localization

- Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham *et al.* 80)
- Probability of an electron to travel from one place to another: sum over trajectories

$$P = \Big|\sum_{\text{paths }P} A_P\Big|^2 = \sum_{\text{paths }P,P'} A_P A_{P'}^*$$

Anderson Localization

- Absence of diffusion in disorder one or two dimensional systems for any disorder strength and in three dimensional systems for sufficiently strong disorder (Anderson 58, Abraham *et al.* 80)
- Probability of an electron to travel from one place to another: sum over trajectories

Topological protection

Topological protection

Quantum Hall effect von Klitzing 81

Topological protection

Quantum Hall effect von Klitzing 81

Quantum Spin Hall effect Kane Mele 05, Bernevig *et al.* 06, K[']onig *et al* 07

Interface between two quantum Hall systems

(Grayson et. al. 07,08)

Interface between two quantum Hall systems

(Grayson et. al. 07,08)

Stack of quantum spin-Hall systems (Koenig et. al. 07)

Interface between two quantum Hall systems

(Grayson et. al. 07,08)

Stack of quantum spin-Hall systems (Koenig et. al. 07)

Weyl semimetal in a magnetic field (Wan et. al. '11, Zyuzin & Burkov '12, Altland & Bagrets '15, Huang et. al. '15, Shekhar et. al. '15, ...)

$\mathsf{Diffusion} + \mathsf{Drift}$

• Quasi-1D wire with $N = n_L + n_R \gg 1$ channels and length $L \gg l$

- Quasi-1D wire with $N = n_L + n_R \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger}t$ determine all transport quantities.

- Quasi-1D wire with $N = n_L + n_R \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger}t$ determine all transport quantities.
- Conductance $G = G_0 \langle \operatorname{tr} t^{\dagger} t \rangle$

- Quasi-1D wire with $N = n_L + n_R \gg 1$ channels and length $L \gg l$
- Eigenvalues of $t^{\dagger}t$ determine all transport quantities.
- Conductance $G = G_0 \langle \operatorname{tr} t^{\dagger} t \rangle$
- Transmission distribution function ho(T) (Nazarov '94)

$$\rho\left(T\right) = \left\langle \mathrm{tr}\,\delta(t^{\dagger}t-T)\right\rangle, \qquad 0 \leq T \leq 1$$

- Quasi-1D wire with $N=n_L+n_R\gg 1$ channels and length $L\gg l$
- Eigenvalues of $t^{\dagger}t$ determine all transport quantities.
- Conductance $G = G_0 \langle \operatorname{tr} t^{\dagger} t \rangle$
- Transmission distribution function ho(T) (Nazarov '94)

$$\rho\left(T\right) = \left\langle \operatorname{tr} \delta(t^{\dagger}t - T) \right\rangle, \qquad 0 \le T \le 1$$

• Contains all information about the moments

$$\operatorname{tr}(t^{\dagger}t)^{n} = \int_{0}^{1} dT \,\rho(T) T^{n}$$

- Quasi-1D wire with $N=n_L+n_R\gg 1$ channels and length $L\gg l$
- Eigenvalues of $t^{\dagger}t$ determine all transport quantities.
- Conductance $G = G_0 \langle \operatorname{tr} t^{\dagger} t \rangle$
- Transmission distribution function ho(T) (Nazarov '94)

$$\rho\left(T\right) = \left\langle \operatorname{tr} \delta(t^{\dagger}t - T)\right\rangle, \qquad 0 \le T \le 1$$

• Contains all information about the moments

$$\operatorname{tr}(t^{\dagger}t)^{n} = \int_{0}^{1} dT \,\rho(T) T^{n}$$

- Lyapunov exponent $\lambda \ge 0$: $T = 1/\cosh^2 \lambda$
 - $\lambda = 0$: perfect transmission (T = 1)
 - $\lambda = \infty$: zero transmission (T = 0)

• Moments in terms of Green's functions: Kubo formula

 $\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G^{R}_{\epsilon}(x_{L}, x_{R})\hat{v}(x_{R})G^{A}_{\epsilon}(x_{R}, x_{L})]^{n}$

• Moments in terms of Green's functions: Kubo formula

$$\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G_{\epsilon}^{R}(x_{L}, x_{R})\hat{v}(x_{R})G_{\epsilon}^{A}(x_{R}, x_{L})]^{n}$$

• Green's function as a Gaussian integral

$$G_{\epsilon,ij}^{R,A} = (\epsilon - H_0 + V \pm i0)_{ij}^{-1} = \frac{\int D\phi D\phi^* \psi_i^* \psi_j e^{\pm i\phi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\phi_j}}{\det(\epsilon - H_0 + V \pm i0)}$$

• Moments in terms of Green's functions: Kubo formula

$$\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G_{\epsilon}^{R}(x_{L}, x_{R})\hat{v}(x_{R})G_{\epsilon}^{A}(x_{R}, x_{L})]^{n}$$

• Green's function as a Gaussian integral

$$G_{\epsilon,ij}^{R,A} = (\epsilon - H_0 + V \pm i0)_{ij}^{-1} = \frac{\int D\phi D\phi^* \psi_i^* \psi_j e^{\pm i\phi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\phi_j}}{\det(\epsilon - H_0 + V \pm i0)}$$

• Supersymmetry: supervector field $\psi_i = (\phi_i, \chi_i)$

$$G_{\epsilon,ij}^{R,A} = \int D\psi D\psi^* \phi_i^* \phi_j e^{\pm i\psi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\psi_j}$$

• Moments in terms of Green's functions: Kubo formula

$$\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G_{\epsilon}^{R}(x_{L}, x_{R})\hat{v}(x_{R})G_{\epsilon}^{A}(x_{R}, x_{L})]^{n}$$

• Green's function as a Gaussian integral

$$G_{\epsilon,ij}^{R,A} = (\epsilon - H_0 + V \pm i0)_{ij}^{-1} = \frac{\int D\phi D\phi^* \psi_i^* \psi_j e^{\pm i\phi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\phi_j}}{\det(\epsilon - H_0 + V \pm i0)}$$

• Supersymmetry: supervector field $\psi_i = (\phi_i, \chi_i)$

$$G_{\epsilon,ij}^{R,A} = \int D\psi D\psi^* \phi_i^* \phi_j e^{\pm i\psi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\psi_j}$$

• Disorder averaging \rightarrow quartic term $(\psi_i^*\psi_j)^2$

$$\left\langle e^{i\psi_i V_{ij}\psi_j} \right\rangle = \int dV e^{-\frac{1}{2N\tau}V_{ij}V_{ji} + i\psi_i V_{ij}\psi_j} = e^{-2N\tau(\psi_i^*\psi_j)^2}$$

• Moments in terms of Green's functions: Kubo formula

$$\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G^{R}_{\epsilon}(x_{L}, x_{R})\hat{v}(x_{R})G^{A}_{\epsilon}(x_{R}, x_{L})]^{n}$$

• Green's function as a Gaussian integral

$$G_{\epsilon,ij}^{R,A} = (\epsilon - H_0 + V \pm i0)_{ij}^{-1} = \frac{\int D\phi D\phi^* \psi_i^* \psi_j e^{\pm i\phi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\phi_j}}{\det(\epsilon - H_0 + V \pm i0)}$$

• Supersymmetry: supervector field $\psi_i = (\phi_i, \chi_i)$

$$G_{\epsilon,ij}^{R,A} = \int D\psi D\psi^* \phi_i^* \phi_j e^{\pm i\psi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\psi_j}$$

• Disorder averaging \rightarrow quartic term $(\psi_i^*\psi_j)^2$

$$\left\langle e^{i\psi_i V_{ij}\psi_j} \right\rangle = \int dV e^{-\frac{1}{2N\tau}V_{ij}V_{ji} + i\psi_i V_{ij}\psi_j} = e^{-2N\tau(\psi_i^*\psi_j)^2}$$

• Hubbard-Stratonovich transformation: slowly varying field $Q_{ij} \sim \psi_i^* \psi_j$

$$Q = \left(\begin{array}{cc} Q_{BB} & Q_{BF} \\ Q_{FB} & Q_{FF} \end{array}\right)_{\rm BF}$$

• Moments in terms of Green's functions: Kubo formula

$$\operatorname{tr}(t^{\dagger}t)^{n} = \operatorname{tr}[\hat{v}(x_{L})G^{R}_{\epsilon}(x_{L}, x_{R})\hat{v}(x_{R})G^{A}_{\epsilon}(x_{R}, x_{L})]^{n}$$

• Green's function as a Gaussian integral

$$G_{\epsilon,ij}^{R,A} = (\epsilon - H_0 + V \pm i0)_{ij}^{-1} = \frac{\int D\phi D\phi^* \psi_i^* \psi_j e^{\pm i\phi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\phi_j}}{\det(\epsilon - H_0 + V \pm i0)}$$

• Supersymmetry: supervector field $\psi_i = (\phi_i, \chi_i)$

$$G_{\epsilon,ij}^{R,A} = \int D\psi D\psi^* \phi_i^* \phi_j e^{\pm i\psi_i^*(\epsilon - H_{0,ij} + V_{ij} \pm i0)\psi_j}$$

• Disorder averaging \rightarrow quartic term $(\psi_i^*\psi_j)^2$

$$\left\langle e^{i\psi_i V_{ij}\psi_j} \right\rangle = \int dV e^{-\frac{1}{2N\tau}V_{ij}V_{ji} + i\psi_i V_{ij}\psi_j} = e^{-2N\tau(\psi_i^*\psi_j)^2}$$

• Hubbard-Stratonovich transformation: slowly varying field $Q_{ij} \sim \psi_i^* \psi_j$

$$Q = \left(\begin{array}{cc} Q_{BB} & Q_{BF} \\ Q_{FB} & Q_{FF} \end{array}\right)_{\rm BF}$$

 $\bullet~N\gg1\to{\rm Saddle}$ point approximation

 $\bullet~N\gg1\to{\rm Saddle}$ point approximation

 $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

• Q parametrization: $Q = T^{-1}\Lambda T$:

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - T belongs to a Lie (super)group $\mathcal G$

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - T belongs to a Lie (super)group $\mathcal G$
 - Q invariant under $T \to KT$ with $[K, \Lambda] = 0$

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - T belongs to a Lie (super)group $\mathcal G$
 - Q invariant under $T \to KT$ with $[K, \Lambda] = 0$
 - $Q \in \mathcal{G}/\mathcal{K}$ with $[\mathcal{K},\Lambda] = 0$

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - T belongs to a Lie (super)group $\mathcal G$
 - Q invariant under $T \to KT$ with $[K, \Lambda] = 0$
 - $Q \in \mathcal{G}/\mathcal{K}$ with $[\mathcal{K}, \Lambda] = 0$
 - Example: action of SO(3) on a unit vector yields $S^2 = SO(3)/SO(2)$
Non-linear Sigma model

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - $\bullet \ T$ belongs to a Lie (super)group ${\mathcal G}$
 - Q invariant under $T \to KT$ with $[K, \Lambda] = 0$
 - $Q \in \mathcal{G}/\mathcal{K}$ with $[\mathcal{K}, \Lambda] = 0$
 - Example: action of SO(3) on a unit vector yields $S^2 = SO(3)/SO(2)$
- Supermanifold \mathcal{G}/\mathcal{K} : compact + non-compact connected by grassmans

$$Q = \left(\begin{array}{cc} Q_{BB} & Q_{BF} \\ Q_{FB} & Q_{FF} \end{array}\right)_{\rm BF}$$

Efetov '83

Non-linear Sigma model

- $\bullet~N\gg1\to{\rm Saddle}$ point approximation
- $\bullet~1\mathrm{D}$ Supersymmetric non-linear σ model with topological term

$$S = -\int_0^L dx \operatorname{str} \left[\frac{\xi}{8} (\partial_x Q)^2 + S_{\operatorname{top}} \right],$$
$$Q^2 = 1, \qquad \xi = Nl$$

N: total number of channels, l: mean free path

- Q parametrization: $Q = T^{-1}\Lambda T$:
 - $\bullet \ T$ belongs to a Lie (super)group ${\mathcal G}$
 - Q invariant under $T \to KT$ with $[K, \Lambda] = 0$
 - $Q \in \mathcal{G}/\mathcal{K}$ with $[\mathcal{K}, \Lambda] = 0$
 - Example: action of SO(3) on a unit vector yields $S^2 = SO(3)/SO(2)$
- Supermanifold \mathcal{G}/\mathcal{K} : compact + non-compact connected by grassmans

$$Q = \left(\begin{array}{cc} Q_{BB} & Q_{BF} \\ Q_{FB} & Q_{FF} \end{array}\right)_{\rm BF}$$

Efetov '83

Symmetry class	Sy	mme	try	NLSM	Spat	ial dimension
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
A	0	0	0	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) imes \mathrm{U}(n) / \mathrm{U}(n)$	Z	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)/\operatorname{Sp}(2n)$	0	0

Symmetry class	Sy	mme	try	NLSM	Spat	ial dimension
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
А	0	0	0	$U(2n)/U(n) \times U(n)$	0	Z
AIII	0	0	1	$\mathrm{U}(n) imes \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	$\mathrm{U}(n)/\mathrm{O}(n)$	Z	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)/\operatorname{Sp}(2n)$	0	0

• A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})

Symmetry class	Sy	mme	try	NLSM	Spatial dimension	
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
A	0	0	0	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) imes \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- All, DIII: 0 or 1 protected (helical) channels (\mathbb{Z}_2) .

Symmetry class	Sy	mme	try	NLSM	Spat	ial dimension
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
A	0	0	0	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	0	0	1	$U(n) \times U(n)/U(n)$	Z	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	U(2n)/Sp(2n)	Z	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	U(n)/O(n)	Z	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)/\operatorname{Sp}(2n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- All, DIII: 0 or 1 protected (helical) channels (\mathbb{Z}_2) .
- Quantum Hall edge, Weyl semimetal: class A

Symmetry class	Sy	mme	try	NLSM	Spatial dimension	
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
A	0	0	0	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) imes \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	$\mathrm{U}(n)/\mathrm{O}(n)$	Z	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- All, DIII: 0 or 1 protected (helical) channels (\mathbb{Z}_2) .
- Quantum Hall edge, Weyl semimetal: class A
- Quantum spin Hall edge: class All

Symmetry class	Sy	mme	try	NLSM	Spatial dimension	
Cartan label	$ \mathcal{T} $	\mathcal{C}	${\mathcal S}$	compact sector	1	2
A	0	0	0	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	0	0	1	$\mathrm{U}(n) imes \mathrm{U}(n) / \mathrm{U}(n)$	\mathbb{Z}	0
AI	1	0	1	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	1	1	1	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	0	1	0	O(2n)/U(n)	\mathbb{Z}_2	\mathbb{Z}
DIII	-1	1	1	$O(n) \times O(n) / O(n)$	\mathbb{Z}_2	\mathbb{Z}_2
All	-1	0	0	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	-1	-1	1	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
С	0	-1	0	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	1	-1	1	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

- A, C, D: arbitrary number of protected (chiral) channels (\mathbb{Z})
- All, DIII: 0 or 1 protected (helical) channels (\mathbb{Z}_2) .
- Quantum Hall edge, Weyl semimetal: class A
- Quantum spin Hall edge: class All

• Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

• Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

• Boundary conditions at x = 0: $\theta_F = \theta_B = 0$

• Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

- Boundary conditions at x = 0: $\theta_F = \theta_B = 0$
- Transmission distribution functions

$$\rho\left(\lambda\right) = \frac{2}{\pi} \operatorname{Re} \frac{\partial Z[\theta_F, \theta_B]}{\partial \theta_F} \Big|_{\theta_F = i\theta_B = \pi - \epsilon - 2i\lambda}$$

• Sigma model manifold: compact sector (Sphere) + non-compact sector (Hyperboloid)

- Boundary conditions at x = 0: $\theta_F = \theta_B = 0$
- Transmission distribution functions

$$\rho\left(\lambda\right) = \frac{2}{\pi} \operatorname{Re} \frac{\partial Z[\theta_F, \theta_B]}{\partial \theta_F} \Big|_{\theta_F = i\theta_B = \pi - \epsilon - 2i\lambda}$$

• Topological term: field of a magnetic monopole

$$S_{\text{top}} = \frac{im}{2} \int dx (1 - \cos \theta) \dot{\phi}, \qquad m = n_L - n_R$$

Saddle-point approximation $(L \ll \xi)$

Action in the compact sector

$$S_F = \int_0^L dx \left[\frac{\xi}{4} (\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2) + i \frac{m}{2} (1 - \cos \theta) \dot{\phi} \right], \quad \xi = (n_R + n_L) l = 2\pi \nu D$$

Saddle-point approximation $(L \ll \xi)$

Action in the compact sector

$$S_F = \int_0^L dx \left[\frac{\xi}{4} (\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2) + i \frac{m}{2} (1 - \cos \theta) \dot{\phi} \right], \quad \xi = (n_R + n_L) l = 2\pi \nu D$$

$$m = 0$$
 $m \neq 0$

 $ightarrow heta_F$ close to π is classically unreachable

Saddle-point approximation: distribution function

Distribution function

$$\rho(\lambda) = \frac{2}{\pi} \operatorname{Re} \frac{\partial Z[\theta_F, \theta_B]}{\partial \theta_F} \Big|_{\theta_F = i\theta_B = \pi - \epsilon - 2i\lambda} = m\delta(\lambda) + \rho_{\mathrm{ns}}(\lambda),$$

Saddle-point approximation: distribution function

Distribution function

Saddle-point approximation: distribution function

Distribution function

• Gap close to unit transmission \implies transport from the unprotected channels gets suppressed

Soft modes

• $\theta_F \approx \pi \rightarrow \text{many trajectories joining north pole to south pole} \rightarrow \text{ground}$ state degeneracy \rightarrow some modes become very soft for $\pi - \theta \ll \sqrt{\frac{L}{\xi}}$

- $\theta_F \approx \pi \rightarrow \text{many trajectories joining north pole to south pole} \rightarrow \text{ground}$ state degeneracy \rightarrow some modes become very soft for $\pi - \theta \ll \sqrt{\frac{L}{\xi}}$
- Projection onto the manifold of soft modes \rightarrow trajectories labelled by polar angle ϕ "equator".

H	"E"	Q_{FF}	d=1	d=2
А	AIII	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	Α	$\mathrm{U}(n)\times\mathrm{U}(n)/\mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	AI	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2n)/\mathrm{U}(n)$	\mathbb{Z}_2	\mathbb{Z}
DIII	D	$\mathrm{O}(n) imes \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_2	\mathbb{Z}_2
AII	DIII	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	AII	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
С	CII	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	\mathbf{C}	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

Н	"E"	Q_{FF}	d=1	d=2
А	AIII	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	Α	$\mathrm{U}(n)\times\mathrm{U}(n)/\mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	AI	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	BDI	${ m O}(2n)/{ m U}(n)$	\mathbb{Z}_2	\mathbb{Z}
DIII	D	$\mathrm{O}(n) imes \mathrm{O}(n) / \mathrm{O}(n)$	\mathbb{Z}_2	\mathbb{Z}_2
AII	DIII	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	AII	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
С	CII	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	С	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

1D edge with protected channels $\quad \leftrightarrow \quad$ random matrix with zero eigenvalues

Н	"E"	Q_{FF}	d=1	d=2
Α	AIII	$\mathrm{U}(2n)/\mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	Α	$\mathrm{U}(n)\times\mathrm{U}(n)/\mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	AI	U(2n)/Sp(2n)	\mathbb{Z}	0
D	BDI	${ m O}(2n)/{ m U}(n)$	\mathbb{Z}_2	\mathbb{Z}
DIII	D	$\mathcal{O}(n) \times \mathcal{O}(n) / \mathcal{O}(n)$	\mathbb{Z}_2	\mathbb{Z}_2
AII	DIII	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	AII	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
\mathbf{C}	CII	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	С	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

1D edge with protected channels Quantum Hall classes A, C and D

Н	"E"	Q_{FF}	d=1	d=2
А	AIII	$U(2n)/U(n) \times U(n)$	0	\mathbb{Z}
AIII	Α	$\mathrm{U}(n)\times \mathrm{U}(n)/\mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	AI	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2n)/\mathrm{U}(n)$	\mathbb{Z}_2	\mathbb{Z}
DIII	D	$\mathcal{O}(n) \times \mathcal{O}(n) / \mathcal{O}(n)$	\mathbb{Z}_2	\mathbb{Z}_2
AII	DIII	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	AII	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
\mathbf{C}	CII	$\mathrm{Sp}(2n)/\mathrm{U}(n)$	0	\mathbb{Z}
CI	\mathbf{C}	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

 \leftrightarrow

 \leftrightarrow

1D edge with protected channels Quantum Hall classes A, C and D \mathbb{Z}_2 classes AII and DIII

random matrix with zero eigenvalues

- $\leftrightarrow \quad \text{chiral random matices AIII, CII, BDI}$
 - Random matrix classes DIII and D

Н	"E"	Q_{FF}	d=1	d=2
Α	AIII	$\mathrm{U}(2n)/\mathrm{U}(n) \times \mathrm{U}(n)$	0	\mathbb{Z}
AIII	Α	$\mathrm{U}(n)\times\mathrm{U}(n)/\mathrm{U}(n)$	\mathbb{Z}	0
AI	CI	$\operatorname{Sp}(4n)/\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)$	0	0
BDI	AI	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	\mathbb{Z}	0
D	BDI	$\mathrm{O}(2n)/\mathrm{U}(n)$	\mathbb{Z}_2	\mathbb{Z}
DIII	D	$\mathcal{O}(n) \times \mathcal{O}(n) / \mathcal{O}(n)$	\mathbb{Z}_2	\mathbb{Z}_2
AII	DIII	$O(2n)/O(n) \times O(n)$	0	\mathbb{Z}_2
CII	AII	$\mathrm{U}(n)/\mathrm{O}(n)$	\mathbb{Z}	0
\mathbf{C}	CII	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	0	\mathbb{Z}
CI	\mathbf{C}	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n) / \operatorname{Sp}(2n)$	0	0

 \leftrightarrow

 \leftrightarrow

 \leftrightarrow

 \leftrightarrow

 $\begin{array}{l} \text{1D edge with protected channels} \\ \text{Quantum Hall classes A, C and D} \\ \mathbb{Z}_2 \text{ classes AII and DIII} \\ \text{Transmission distribution function} \end{array}$

random matrix with zero eigenvalues chiral random matices AIII, CII, BDI

Random matrix classes DIII and D Spectral density

Results

Ivanov 01, EK, Skvortsov, Ostrovsky PRB 16

Results

• Transfer matrix method: 1D path integral \rightarrow Schrödinger equation

$$\partial_t \psi(Q,t) = -\mathcal{H}\psi(Q,t), \qquad t = x/\xi, \qquad \psi(Q,0) = \delta(Q,\Lambda)$$

 $\bullet\,$ Transfer matrix method: 1D path integral $\rightarrow\,$ Schrödinger equation

$$\partial_t \psi(Q,t) = -\mathcal{H} \psi(Q,t), \qquad t = x/\xi, \qquad \psi(Q,0) = \delta(Q,\Lambda)$$

 NLSM action: particle motion on a curved (super)manifold with a vector potential

$$S = \int dt \left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta\alpha} + \dot{y}^{\alpha} A_{\alpha} \right]$$
$$dy^{\alpha} dy^{\beta} g_{\beta\alpha} = -\frac{1}{2} \operatorname{str}(dQ)^{2}, \quad dy^{\alpha} A_{\alpha} = -\frac{m}{2} \operatorname{str} T^{-1} \Lambda dT$$

 $\bullet\,$ Transfer matrix method: 1D path integral $\rightarrow\,$ Schrödinger equation

$$\partial_t \psi(Q,t) = -\mathcal{H} \psi(Q,t), \qquad t = x/\xi, \qquad \psi(Q,0) = \delta(Q,\Lambda)$$

 NLSM action: particle motion on a curved (super)manifold with a vector potential

$$S = \int dt \left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta\alpha} + \dot{y}^{\alpha} A_{\alpha} \right]$$
$$dy^{\alpha} dy^{\beta} g_{\beta\alpha} = -\frac{1}{2} \operatorname{str}(dQ)^{2}, \quad dy^{\alpha} A_{\alpha} = -\frac{m}{2} \operatorname{str} T^{-1} \Lambda dT$$

• Hamiltonian: Laplace-Beltrami operator + vector potential

$$\mathcal{H} = -\frac{1}{\sqrt{|g|}} (\partial_{\alpha} + A_{\alpha}) \sqrt{|g|} g^{\alpha\beta} (\partial_{\beta} + A_{\beta}), \qquad |g| = \operatorname{sdet} g$$

 $\bullet\,$ Transfer matrix method: 1D path integral $\rightarrow\,$ Schrödinger equation

$$\partial_t \psi(Q,t) = -\mathcal{H} \psi(Q,t), \qquad t = x/\xi, \qquad \psi(Q,0) = \delta(Q,\Lambda)$$

 NLSM action: particle motion on a curved (super)manifold with a vector potential

$$S = \int dt \left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta\alpha} + \dot{y}^{\alpha} A_{\alpha} \right]$$
$$dy^{\alpha} dy^{\beta} g_{\beta\alpha} = -\frac{1}{2} \operatorname{str}(dQ)^{2}, \quad dy^{\alpha} A_{\alpha} = -\frac{m}{2} \operatorname{str} T^{-1} \Lambda dT$$

• Hamiltonian: Laplace-Beltrami operator + vector potential

$$\mathcal{H} = -\frac{1}{\sqrt{|g|}} (\partial_{\alpha} + A_{\alpha}) \sqrt{|g|} g^{\alpha\beta} (\partial_{\beta} + A_{\beta}), \qquad |g| = \operatorname{sdet} g$$

General solution

$$\psi(Q,t) = \phi_0(Q) + \sum_{\nu} \phi_{\nu}(Q) e^{-t \epsilon_{\nu}}, \qquad \mathcal{H}\phi_{\nu} = \epsilon_{\nu}\phi_{\nu}$$

 $\bullet\,$ Transfer matrix method: 1D path integral $\rightarrow\,$ Schrödinger equation

$$\partial_t \psi(Q,t) = -\mathcal{H} \psi(Q,t), \qquad t = x/\xi, \qquad \psi(Q,0) = \delta(Q,\Lambda)$$

 NLSM action: particle motion on a curved (super)manifold with a vector potential

$$S = \int dt \left[\frac{1}{4} \dot{y}^{\alpha} \dot{y}^{\beta} g_{\beta\alpha} + \dot{y}^{\alpha} A_{\alpha} \right]$$
$$dy^{\alpha} dy^{\beta} g_{\beta\alpha} = -\frac{1}{2} \operatorname{str}(dQ)^{2}, \quad dy^{\alpha} A_{\alpha} = -\frac{m}{2} \operatorname{str} T^{-1} \Lambda dT$$

• Hamiltonian: Laplace-Beltrami operator + vector potential

$$\mathcal{H} = -\frac{1}{\sqrt{|g|}} (\partial_{\alpha} + A_{\alpha}) \sqrt{|g|} g^{\alpha\beta} (\partial_{\beta} + A_{\beta}), \qquad |g| = \operatorname{sdet} g$$

General solution

$$\psi(Q,t) = \phi_0(Q) + \sum_{\nu} \phi_{\nu}(Q) e^{-t \epsilon_{\nu}}, \qquad \mathcal{H}\phi_{\nu} = \epsilon_{\nu}\phi_{\nu}$$

Solution

• Spherically symmetric eigenfunctions: invariant under $Q \to K^{-1}QK$ for $[K,\Lambda]=0$

Solution

- Spherically symmetric eigenfunctions: invariant under $Q \to K^{-1}QK$ for $[K,\Lambda]=0$
- Canonical coordinates on \mathcal{G}/\mathcal{K} :
 - Spherical "Cartan" $(\mathbf{h}, K) \rightarrow$ spherical symmetry $\phi_s(Q) = \phi_s(\mathbf{h})$
 - ullet Horospheric "Iwasawa" $(\mathbf{a},N)
 ightarrow$ Laplace operator flat in \mathbf{a}
Solution

- Spherically symmetric eigenfunctions: invariant under $Q \to K^{-1}QK$ for $[K,\Lambda]=0$
- Canonical coordinates on \mathcal{G}/\mathcal{K} :
 - Spherical "Cartan" $(\mathbf{h}, K) \rightarrow$ spherical symmetry $\phi_s(Q) = \phi_s(\mathbf{h})$
 - ${\ensuremath{\, \bullet }}$ Horospheric "lwasawa" $({\ensuremath{\, a }},N) \to {\ensuremath{\rm Laplace}}$ operator flat in ${\ensuremath{\rm a }}$
- Integral representation of spherical eigenfunctions (Harish-Chandra '58, Zirnbauer '92, Mirlin, Muller-Groeling and Zirnbauer '94)

$$\phi_{\nu}(\mathbf{h}) = \int_{\mathcal{K}} dK \, e^{i\mathbf{p}_{\nu}\cdot\mathbf{a}(\mathbf{h},K)}$$

Solution

- Spherically symmetric eigenfunctions: invariant under $Q \to K^{-1}QK$ for $[K,\Lambda]=0$
- Canonical coordinates on $\mathcal{G}/\mathcal{K}:$
 - Spherical "Cartan" $(\mathbf{h}, K) \rightarrow$ spherical symmetry $\phi_s(Q) = \phi_s(\mathbf{h})$
 - ${\bullet}\,$ Horospheric "lwasawa" $({\bf a},N) \rightarrow$ Laplace operator flat in ${\bf a}\,$
- Integral representation of spherical eigenfunctions (Harish-Chandra '58, Zirnbauer '92, Mirlin, Muller-Groeling and Zirnbauer '94)

$$\phi_{\nu}(\mathbf{h}) = \int_{\mathcal{K}} dK \, e^{i\mathbf{p}_{\nu} \cdot \mathbf{a}(\mathbf{h},K)}$$

- $\bullet~$ Vector potential $\rightarrow~$ Hamiltonian only simplifies in a special gauge
- Spherical eigenfunctions: gauge transformation + integration (EK, Skvortsov and Ostrovsky (to appear), EK (PhD thesis))

$$\phi_{\nu}(\mathbf{h}) = \int_{\mathcal{K}} dK \, e^{i\mathbf{p}_{\nu} \cdot \mathbf{a}(\mathbf{h},K)} [\operatorname{sdet} K_{I}(\mathbf{h},K)]^{m}$$

valid also without supersymmetry (compact or non-compact nlsm)

$$\begin{array}{c} L/\xi = 50 \\ L/\xi = 10 \\ L/\xi = 1 \\ L/\xi = 1 \\ L/\xi = 0.1 \end{array}$$

• Localization length for the unprotected channels $\xi_m = \xi/(m+1)$

$\mathsf{Diffusion} + \mathsf{Drift}$

• Sigma model at finite frequency $\omega + i0 \mapsto i\Omega$

$$S[Q] = -\int dx \, \operatorname{str}\left[\frac{\xi}{8}(\partial_x Q)^2 - \frac{\kappa^2}{16\xi}\Lambda Q + S_{\operatorname{top}}\right], \quad \kappa = 2N\sqrt{\Omega\tau_e}$$

 \bullet Sigma model at finite frequency $\omega + i0 \mapsto i\Omega$

$$S[Q] = -\int dx \, \operatorname{str}\left[\frac{\xi}{8}(\partial_x Q)^2 - \frac{\kappa^2}{16\xi}\Lambda Q + S_{\operatorname{top}}\right], \quad \kappa = 2N\sqrt{\Omega\tau_e}$$

Local correlations

$$\langle M(Q) \rangle = \int \mathcal{D}Q M[Q(x=0)]e^{-S[Q]}$$

• Sigma model at finite frequency $\omega + i0 \mapsto i\Omega$

$$S[Q] = -\int dx \, \operatorname{str}\left[\frac{\xi}{8}(\partial_x Q)^2 - \frac{\kappa^2}{16\xi}\Lambda Q + S_{\operatorname{top}}\right], \quad \kappa = 2N\sqrt{\Omega\tau_e}$$

Local correlations

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]}$$

• Return probability $(l \ll |x_1 - x_2| \ll \xi)$

$$W(t) = \int \frac{d\omega e^{-i\omega t}}{4\pi^2 \nu} \left\langle G_{E+\omega}^R(x_1, x_2) G_E^A(x_2, x_1) \right\rangle \to \frac{\nu}{2\gamma} \int d\omega \, e^{-i\omega t} \langle M(Q) \rangle$$
$$M(Q) = \frac{1}{32\gamma} \operatorname{str}(k\Lambda Q)^2 - \operatorname{str}(kQ)^2.$$

• Sigma model at finite frequency $\omega + i0 \mapsto i\Omega$

$$S[Q] = -\int dx \, \operatorname{str}\left[\frac{\xi}{8}(\partial_x Q)^2 - \frac{\kappa^2}{16\xi}\Lambda Q + S_{\operatorname{top}}\right], \quad \kappa = 2N\sqrt{\Omega\tau_e}$$

Local correlations

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]}$$

• Return probability $(l \ll |x_1 - x_2| \ll \xi)$

$$W(t) = \int \frac{d\omega e^{-i\omega t}}{4\pi^2 \nu} \left\langle G_{E+\omega}^R(x_1, x_2) G_E^A(x_2, x_1) \right\rangle \to \frac{\nu}{2\gamma} \int d\omega \, e^{-i\omega t} \langle M(Q) \rangle$$
$$M(Q) = \frac{1}{32\gamma} \operatorname{str}(k\Lambda Q)^2 - \operatorname{str}(kQ)^2.$$

• Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q)\rangle = \int \mathcal{D}Q \, M[Q(x=0)]e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q)\rangle = \int \mathcal{D}Q \, M[Q(x=0)]e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

 Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning → zero mode very difficult to find in general.

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning → zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning → zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning \rightarrow zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere
 - Potential: height function $V\propto -\kappa^2 \operatorname{tr} \Lambda Q\propto \kappa^2 \cos\theta$

- Transfer matrix Hamiltonian: Laplace operator + vector potential + scalar potential
- Local correlations: only the ground state needed

$$\langle M(Q) \rangle = \int \mathcal{D}Q \, M[Q(x=0)] e^{-S[Q]} = \langle \Psi_0 | M | \Psi_0 \rangle, \qquad \mathcal{H} | \Psi_0 \rangle = 0,$$

- Transfer matrix Hamiltonian at finite frequency has no "natural" geometric meaning → zero mode very difficult to find in general.
- Corresponding problem on compact/non-compact symmetric space unsolvable.
- Example: sphere
 - Potential: height function $V \propto -\kappa^2 \operatorname{tr} \Lambda Q \propto \kappa^2 \cos \theta$
 - Eigenfunction: Coulomb spherical functions (no integral representation, no generalization to more variables)

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\,K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right]$$
$$P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\, K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right] \\P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

Local correlation functions

$$\langle F(Q) \rangle = \int_{\mathcal{G}} dT \, (\operatorname{sdet} T)^{\pm m} F(T^{-1} \Lambda T) \exp\left[-\frac{\kappa}{2} \operatorname{str}(T + T^{-1})\right].$$

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\, K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right]$$
$$P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

Local correlation functions

$$\langle F(Q) \rangle = \int_{\mathcal{G}} dT \, (\operatorname{sdet} T)^{\pm m} F(T^{-1} \Lambda T) \exp\left[-\frac{\kappa}{2} \operatorname{str}(T + T^{-1})\right].$$

• Local correlation functions of a 1D sigma model \leftrightarrow correlations of a 0D sigma model in a different class!

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\, K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right]$$
$$P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

• Local correlation functions

$$\langle F(Q) \rangle = \int_{\mathcal{G}} dT \, (\operatorname{sdet} T)^{\pm m} F(T^{-1} \Lambda T) \exp\left[-\frac{\kappa}{2} \operatorname{str}(T + T^{-1})\right].$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a 0D sigma model in a different class!
- Wigner-Dyson classes A, AI and AII map to group manifold classes AIII, CI and DIII.

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\, K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right] \\P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

• Local correlation functions

$$\langle F(Q) \rangle = \int_{\mathcal{G}} dT \, (\operatorname{sdet} T)^{\pm m} F(T^{-1} \Lambda T) \exp\left[-\frac{\kappa}{2} \operatorname{str}(T + T^{-1})\right].$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a 0D sigma model in a different class!
- Wigner-Dyson classes A, AI and AII map to group manifold classes AIII, CI and DIII.
- Only holds in supersymmetric sigma model.

• Zero mode($Q = T^{-1}\Lambda T$)

$$|\Psi_{0}\rangle = \int_{\mathcal{K}} dK \,(\text{sdet}\, K_{R,A})^{\pm m} \exp\left[-\frac{\kappa}{2} \operatorname{str} P_{\pm} \left(KT + T^{-1}K^{-1}\right)\right] \\P_{\pm} = \frac{1}{2}(1+\Lambda), \qquad K_{R,A} = P_{\pm}KP_{\pm} + P_{\mp}$$

• Local correlation functions

$$\langle F(Q) \rangle = \int_{\mathcal{G}} dT \, (\operatorname{sdet} T)^{\pm m} F(T^{-1} \Lambda T) \exp\left[-\frac{\kappa}{2} \operatorname{str}(T + T^{-1})\right].$$

- Local correlation functions of a 1D sigma model \leftrightarrow correlations of a 0D sigma model in a different class!
- Wigner-Dyson classes A, AI and AII map to group manifold classes AIII, CI and DIII.
- Only holds in supersymmetric sigma model.

Return probability: Exact expressions

• Return probability

$$W(0,t) = \frac{1}{4\xi} F\left(\tau = \frac{t}{2N^2\tau_e}\right)$$

Return probability: Exact expressions

• Return probability

$$W(0,t) = \frac{1}{4\xi} F\left(\tau = \frac{t}{2N^2\tau_e}\right)$$

 \bullet Exact expressions for $F(\tau)$

$$\begin{split} F_m^{\text{unit}}(\tau) &= \frac{2e^{-1/\tau}}{3\tau} \Big[\big((m+2)\tau+2 \big) I_m(1/\tau) + I_{m+1}(1/\tau) \Big] \\ F^{\text{orth}}(\tau) &= 1 + \frac{e^{-1/\tau}}{3\tau} \Big[\big(5\tau+3 \big) I_0(1/\tau) + \big(4\tau+3 \big) I_1(1/\tau) \Big] \\ F_{\text{e/o}}^{\text{symp}}(\tau) &= -1 + \frac{e^{-1/\tau}}{3\tau} \Big[\big(5\tau+3 \big) I_0(1/\tau) + \big(4\tau+3 \big) I_1(1/\tau) \Big] \\ &\pm \frac{e^{-1/2\tau}}{3\tau} \big(2\tau+1 \big) \end{split}$$

Return probability: Exact expressions

• Return probability

$$W(0,t) = \frac{1}{4\xi} F\left(\tau = \frac{t}{2N^2\tau_e}\right)$$

 \bullet Exact expressions for $F(\tau)$

$$\begin{split} F_m^{\text{unit}}(\tau) &= \frac{2e^{-1/\tau}}{3\tau} \Big[\big((m+2)\tau+2 \big) I_m(1/\tau) + I_{m+1}(1/\tau) \Big] \\ F^{\text{orth}}(\tau) &= 1 + \frac{e^{-1/\tau}}{3\tau} \Big[\big(5\tau+3 \big) I_0(1/\tau) + \big(4\tau+3 \big) I_1(1/\tau) \Big] \\ F_{\text{e/o}}^{\text{symp}}(\tau) &= -1 + \frac{e^{-1/\tau}}{3\tau} \Big[\big(5\tau+3 \big) I_0(1/\tau) + \big(4\tau+3 \big) I_1(1/\tau) \Big] \\ &\pm \frac{e^{-1/2\tau}}{3\tau} \big(2\tau+1 \big) \end{split}$$

• All classes approach classical diffusion $\sqrt{\frac{2}{\pi\tau}}$ at short times.

- All classes approach classical diffusion $\sqrt{\frac{2}{\pi\tau}}$ at short times.
- Unitary and symplectic classes saturate to the value 4/3, while orthogonal class saturates to 8/3.

- All classes approach classical diffusion $\sqrt{\frac{2}{\pi\tau}}$ at short times.
- Unitary and symplectic classes saturate to the value 4/3, while orthogonal class saturates to 8/3.
- The saturation value is approached as a power-law: unitary $\sim 1/\tau^3$, orthogonal $\sim 1/\tau^2$ and symplectic $\sim 1/\tau^5$.

Return probability: chiral channels (unitary class)

• $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.
Return probability: chiral channels (unitary class)

- $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.
- The decay is power law $F(\tau) \sim 1/\tau^{2m}$ rather than the exponential obtained from classical drift-diffusion $F(\tau) = \sqrt{\frac{2}{\pi\tau}} e^{-m^2\tau/2}$.

Return probability: chiral channels (unitary class)

- $F(\tau)$ decays to zero for $m \neq 0 \rightarrow$ delocalization.
- The decay is power law $F(\tau) \sim 1/\tau^{2m}$ rather than the exponential obtained from classical drift-diffusion $F(\tau) = \sqrt{\frac{2}{\pi\tau}} e^{-m^2\tau/2}$.
- The wave packet leaves a tail behind due to localization.

• Mathematical reason for the integral representation of the zero mode?

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?
- Level statistics: connection to non-Hermitian systems? (Lee *et al.* PRL 2020)

- Mathematical reason for the integral representation of the zero mode?
- How to understand the long time asymptotics and wave-packet dynamics in the presence of topological channels?
- Level statistics: connection to non-Hermitian systems? (Lee *et al.* PRL 2020)
- Wavefunction statistics: how does the wavefunctions look like in this system?