
Anderson Localization in the presence of
topologically protected channels

Eslam Khalaf

Harvard University

November 23rd, 2020

Lisbon

Eslam Khalaf Transport in the presence of topologically protected channels 1 / 27



Acknowledgment

Pavel Ostrovksy
Max Planck Institute for Solid State

Research

Mikhail Skvortsov
Landau Institute for theoretical

physics

E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, PRB 2016

E. Khalaf, P. M. Ostorvsky, PRL 2017

E. Khalaf, P. M. Ostorvsky, PRB 2017

E. Khalaf, M. A. Skvortsov, and P. M. Ostrovsky, in preparation.

E. Khalaf, PhD Thesis

Eslam Khalaf Transport in the presence of topologically protected channels 2 / 27



Anderson Localization

Absence of diffusion in disorder one or two dimensional systems for any
disorder strength and in three dimensional systems for sufficiently strong
disorder (Anderson 58, Abraham et al. 80)

Probability of an electron to travel from one place to another: sum over
trajectories

P =
∣∣∣ ∑
paths P

AP

∣∣∣2 =
∑

paths P,P ′

APA
∗
P ′

P ′ is the same as P P ′ is the time-reverse of P
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Topological protection

Quantum Hall effect
von Klitzing 81

Quantum Spin Hall effect
Kane Mele 05, Bernevig et al. 06, Ḱ’onig et al 07
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Localization + protected channels

Interface between two
quantum Hall systems

(Grayson et. al. 07,08)

Stack of quantum spin-Hall
systems (Koenig et. al. 07)

Weyl semimetal in a magnetic field (Wan et. al. ‘11, Zyuzin & Burkov

‘12, Altland & Bagrets ‘15, Huang et. al. ‘15, Shekhar et. al. ‘15, . . . )
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Diffusion + Drift

Classical Diffusion

W (x, t) = e−
x2

2Dt

2
√
πDt

Quantum 
interference

Anderson localization
W (x, t) =?

Chiral
channels

Chiral
channels

Classical Diffusion+Drift

W (x, t) = e−
(x−mvt/N)2

2Dt

2
√
πDt

Quantum 
interference

?
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Transport in quasi-one-dimensional conductors

L R

Quasi-1D wire with N = nL + nR � 1 channels and length L� l

Eigenvalues of t†t determine all transport quantities.
Conductance G = G0

〈
tr t†t

〉
Transmission distribution function ρ(T ) (Nazarov ‘94)

ρ (T ) =
〈
tr δ(t†t− T )

〉
, 0 ≤ T ≤ 1

Contains all information about the moments

tr(t†t)n =

∫ 1

0

dT ρ(T )Tn

Lyapunov exponent λ ≥ 0: T = 1/ cosh2 λ
λ = 0: perfect transmission (T = 1)
λ =∞: zero transmission (T = 0)
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Effective field theory of disorder

Moments in terms of Green’s functions: Kubo formula

tr(t†t)n = tr[v̂(xL)GRε (xL, xR)v̂(xR)GAε (xR, xL)]n

Green’s function as a Gaussian integral

GR,Aε,ij = (ε−H0 + V ± i0)−1ij =

∫
DφDφ∗ψ∗i ψje

±iφ∗i (ε−H0,ij+Vij±i0)φj

det(ε−H0 + V ± i0)

Supersymmetry: supervector field ψi = (φi, χi)

GR,Aε,ij =

∫
DψDψ∗φ∗iφje

±iψ∗i (ε−H0,ij+Vij±i0)ψj

Disorder averaging → quartic term (ψ∗i ψj)
2

〈
eiψiVijψj

〉
=

∫
dV e−

1
2Nτ VijVji+iψiVijψj = e−2Nτ(ψ

∗
i ψj)

2

Hubbard-Stratonovich transformation: slowly varying field Qij ∼ ψ∗i ψj

Q =

(
QBB QBF
QFB QFF

)
BF

Efetov ‘83
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Non-linear Sigma model

N � 1 → Saddle point approximation

1D Supersymmetric non-linear σ model with topological term

S = −
∫ L

0

dx str

[
ξ

8
(∂xQ)2 + Stop

]
,

Q2 = 1, ξ = Nl

N : total number of channels, l: mean free path

Q parametrization: Q = T−1ΛT :

T belongs to a Lie (super)group G
Q invariant under T → KT with [K,Λ] = 0
Q ∈ G/K with [K,Λ] = 0
Example: action of SO(3) on a unit vector yields
S2 = SO(3)/SO(2)

Supermanifold G/K: compact + non-compact connected by grassmans

Q =

(
QBB QBF
QFB QFF

)
BF
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The tenfold way

Symmetry class Symmetry NLSM Spatial dimension
Cartan label T C S compact sector 1 2

A 0 0 0 U(2n)/U(n)×U(n) 0 Z
AIII 0 0 1 U(n)×U(n)/U(n) Z 0

AI 1 0 1 Sp(4n)/Sp(2n)× Sp(2n) 0 0
BDI 1 1 1 U(2n)/Sp(2n) Z 0
D 0 1 0 O(2n)/U(n) Z2 Z
DIII -1 1 1 O(n)×O(n)/O(n) Z2 Z2

AII -1 0 0 O(2n)/O(n)×O(n) 0 Z2

CII -1 -1 1 U(n)/O(n) Z 0
C 0 -1 0 Sp(2n)/U(n) 0 Z
CI 1 -1 1 Sp(2n)× Sp(2n)/Sp(2n) 0 0

A, C, D: arbitrary number of protected (chiral) channels (Z)
AII, DIII: 0 or 1 protected (helical) channels (Z2).

Quantum Hall edge, Weyl semimetal: class A

Quantum spin Hall edge: class AII
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Unitary class

Sigma model manifold: compact sector (Sphere) + non-compact sector
(Hyperboloid)

Boundary conditions at x = 0: θF = θB = 0

Transmission distribution functions

ρ (λ) =
2

π
Re

∂Z[θF , θB ]

∂θF

∣∣∣
θF=iθB=π−ε−2iλ

Topological term: field of a magnetic monopole

Stop =
im

2

∫
dx(1− cos θ)φ̇, m = nL − nR
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Saddle-point approximation (L� ξ)

Action in the compact sector

SF =

∫ L

0

dx

[
ξ

4
(θ̇2 + sin2 θφ̇2) + i

m

2
(1− cos θ)φ̇

]
, ξ = (nR+nL)l = 2πνD
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Saddle-point approximation (L� ξ)

Action in the compact sector

SF =

∫ L

0

dx

[
ξ

4
(θ̇2 + sin2 θφ̇2) + i

m

2
(1− cos θ)φ̇

]
, ξ = (nR+nL)l = 2πνD

m = 0 m 6= 0

→ θF close to π is classically unreachable

Eslam Khalaf Transport in the presence of topologically protected channels 12 / 27



Saddle-point approximation: distribution function

Distribution function

ρ (λ) =
2

π
Re

∂Z[θF , θB ]

∂θF

∣∣∣
θF=iθB=π−ε−2iλ

= mδ(λ) + ρns(λ),

Gap close to unit transmission =⇒ transport from the unprotected
channels gets suppressed

EK, Skvortsov and Ostrovsky PRB 16
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Soft modes

θF ≈ π → many trajectories joining north pole to south pole → ground

state degeneracy → some modes become very soft for π − θ �
√

L
ξ

Projection onto the manifold of soft modes → trajectories labelled by
polar angle φ ”equator”.
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Mapping to 0D

1D edge with protected channels ↔ random matrix with zero eigenvalues
Quantum Hall classes A, C and D ↔ chiral random matices AIII, CII, BDI

Z2 classes AII and DIII ↔ Random matrix classes DIII and D
Transmission distribution function ↔ Spectral density
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Results

ρA(λ,m) = πξu
2L

[
J2
m(u)− Jm+1(u)Jm−1(u)

]
+mδ(λ), u = πξλ

L

ρAII(λ, σ = ±) = πξu
2L [J2

1 (u) + J0(u)J ′1(u)]± πξ
2LJ1(u) + 2δσ,−δ(λ)

Ivanov 01, EK, Skvortsov, Ostrovsky PRB 16
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Exact solution: transfer matrix method

Transfer matrix method: 1D path integral → Schrödinger equation

∂tψ(Q, t) = −Hψ(Q, t), t = x/ξ, ψ(Q, 0) = δ(Q,Λ)

NLSM action: particle motion on a curved (super)manifold with a vector
potential

S =

∫
dt

[
1

4
ẏαẏβgβα + ẏαAα

]
dyαdyβgβα = −1

2
str(dQ)2, dyαAα = −m

2
strT−1ΛdT

Hamiltonian: Laplace-Beltrami operator + vector potential

H = − 1√
|g|

(∂α +Aα)
√
|g|gαβ(∂β +Aβ), |g| = sdet g

General solution

ψ(Q, t) = φ0(Q) +
∑
ν

φν(Q) e−t εν , Hφν = ενφν

Rejaei 96, EK, Ostrovsky PRL 17
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Solution

Spherically symmetric eigenfunctions: invariant under Q→ K−1QK for
[K,Λ] = 0

Canonical coordinates on G/K:

Spherical “Cartan” (h,K) → spherical symmetry φs(Q) = φs(h)
Horospheric “Iwasawa” (a, N) → Laplace operator flat in a

Integral representation of spherical eigenfunctions (Harish-Chandra ‘58,

Zirnbauer ‘92, Mirlin, Muller-Groeling and Zirnbauer ‘94)

φν(h) =

∫
K
dK eipν ·a(h,K)

Vector potential → Hamiltonian only simplifies in a special gauge

Spherical eigenfunctions: gauge transformation + integration (EK,
Skvortsov and Ostrovsky ( to appear), EK (PhD thesis))

φν(h) =

∫
K
dK eipν ·a(h,K)[sdetKI(h,K)]m

valid also without supersymmetry (compact or non-compact nlsm)
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Effect of topology: Class A (unitary)

G =

∫ ∞
0

dλ
ρ(λ)

cosh2 λ
∼
∫ ∞
0

dλe−2λρ(λ)

Localization length for the unprotected channels ξm = ξ/(m+ 1)

EK and Ostrovsky PRL 2017
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Diffusion + Drift

Classical Diffusion

W (x, t) = e−
x2

2Dt

2
√
πDt

Quantum 
interference

Anderson localization
W (x, t) =?

Chiral
channels

Chiral
channels

Classical Diffusion+Drift

W (x, t) = e−
(x−mvt/N)2

2Dt

2
√
πDt

Quantum 
interference

?
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Dynamical correlations: Theory

Sigma model at finite frequency ω + i0 7→ iΩ

S[Q] = −
∫
dx str

[
ξ

8
(∂xQ)2 − κ2

16ξ
ΛQ+ Stop

]
, κ = 2N

√
Ωτe

Local correlations

〈M(Q)〉 =

∫
DQM [Q(x = 0)]e−S[Q]

Return probability (l� |x1 − x2| � ξ)

W (t) =

∫
dω e−iωt

4π2ν

〈
GRE+ω(x1, x2)GAE(x2, x1)

〉
→ ν

2γ

∫
dω e−iωt〈M(Q)〉

M(Q) =
1

32γ
str(kΛQ)2 − str(kQ)2.
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Difficulty in computing dynamical correlations

Transfer matrix Hamiltonian: Laplace operator + vector potential +
scalar potential

Local correlations: only the ground state needed

〈M(Q)〉 =

∫
DQM [Q(x = 0)]e−S[Q] = 〈Ψ0|M |Ψ0〉, H|Ψ0〉 = 0,

Transfer matrix Hamiltonian at finite frequency has no “natural”
geometric meaning → zero mode very difficult to find in general.

Corresponding problem on compact/non-compact symmetric space
unsolvable.

Example: sphere

Potential: height function V ∝ −κ2 tr ΛQ ∝ κ2 cos θ
Eigenfunction: Coulomb spherical functions (no integral
representation, no generalization to more variables)
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Zero mode and local dynamical correlations

Zero mode(Q = T−1ΛT )

|Ψ0〉 =

∫
K
dK (sdetKR,A)±m exp

[
−κ

2
strP±

(
KT + T−1K−1

)]
P± =

1

2
(1 + Λ), KR,A = P±KP± + P∓

Local correlation functions

〈F (Q)〉 =

∫
G
dT (sdetT )±mF (T−1ΛT ) exp

[
−κ

2
str
(
T + T−1

)]
.

Local correlation functions of a 1D sigma model ↔ correlations of a 0D
sigma model in a different class!

Wigner-Dyson classes A, AI and AII map to group manifold classes AIII,
CI and DIII.

Only holds in supersymmetric sigma model.

EK and Ostrovsky PRB 2017
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Return probability: Exact expressions

Return probability

W (0, t) =
1

4ξ
F

(
τ =

t

2N2τe

)

Exact expressions for F (τ)

F unit
m (τ) =

2e−1/τ

3τ

[(
(m+ 2)τ + 2

)
Im(1/τ) + Im+1(1/τ)

]
F orth(τ) = 1 +

e−1/τ

3τ

[(
5τ + 3

)
I0(1/τ) +

(
4τ + 3

)
I1(1/τ)

]
F symp
e/o (τ) = −1 +

e−1/τ

3τ

[(
5τ + 3

)
I0(1/τ) +

(
4τ + 3

)
I1(1/τ)

]
± e−1/2τ

3τ

(
2τ + 1

)
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Return probability: Different symmetry classes

0.01 0.05 0.10 0.50 1

1

2

5

10
Orthogonal

Unitary

Symplectic

Classical

All classes approach classical diffusion
√

2
πτ at short times.

Unitary and symplectic classes saturate to the value 4/3, while
orthogonal class saturates to 8/3.

The saturation value is approached as a power-law: unitary ∼ 1/τ3,
orthogonal ∼ 1/τ2 and symplectic ∼ 1/τ5.
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Return probability: chiral channels (unitary class)

F (τ) decays to zero for m 6= 0 → delocalization.

The decay is power law F (τ) ∼ 1/τ2m rather than the exponential

obtained from classical drift-diffusion F (τ) =
√

2
πτ e
−m2τ/2.

The wave packet leaves a tail behind due to localization.
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Open questions

Mathematical reason for the integral representation of the zero mode?

How to understand the long time asymptotics and wave-packet dynamics
in the presence of topological channels?

Level statistics: connection to non-Hermitian systems? (Lee et al. PRL
2020)

Wavefunction statistics: how does the wavefunctions look like in this
system?
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