
Loops in the fundamental group of Symp(M4, ω) which
are not represented by circle actions
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Symplectic manifolds and associated structures

(M2n, ω) symplectic manifold: smooth manifold M2n with a non-degenerate
closed 2–form ω.

An almost complex structure J is called ω–tamed if ω(v , Jv) > 0 for any
v 6= 0.

An ω-tamed almost complex structure J is called ω-compatible if
ω(Ju, Jv) = ω(u, v). Compatible (ω, J) is a Kähler structure if J is
integrable.
Jω : the nonempty contractible space of ω-tamed (or compatible) almost
complex structures.
c1(M, ω) := c1(M, J).

A symplectic form ω is called monotone if its class
[ω] = λc1(M, ω) ∈ H2(M,Z), λ > 0.
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Śılvia Anjos (IST) Loops in π1(Symp(M4, ω)) GeoLx, November 17, 2020 3 / 32



Symplectic manifolds and associated structures

(M2n, ω) symplectic manifold: smooth manifold M2n with a non-degenerate
closed 2–form ω.

An almost complex structure J is called ω–tamed if ω(v , Jv) > 0 for any
v 6= 0.

An ω-tamed almost complex structure J is called ω-compatible if
ω(Ju, Jv) = ω(u, v). Compatible (ω, J) is a Kähler structure if J is
integrable.
Jω : the nonempty contractible space of ω-tamed (or compatible) almost
complex structures.
c1(M, ω) := c1(M, J).

A symplectic form ω is called monotone if its class
[ω] = λc1(M, ω) ∈ H2(M,Z), λ > 0.
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Symplectomorphism group

Symplectomorphism group Symp(M, ω): subgroup of elements
φ ∈ Diff(M) s. t. φ∗ω = ω.

Ham(M, ω) ⊂ Symp(M, ω) is the subgroup generated by vector fields Xt such
that ι(Xt )ω = dHt is exact.

If M is simply connected, Ham(M, ω) is the identity component of
Symp(M, ω). In this case, Symp(M, ω) equipped with the C∞–topology, is a
∞–dimensional Fréchet Lie group.

Symplectomorphism groups are thought to be intermediate objects between Lie
groups and full groups of diffeomorphisms.

Question: to which extent the topology of the symplectomorphism group is
determined by compact subgroups arising from Lie group actions?
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Topology of Symp(M, ω)

dim M = 2: Symp(M, ω) ' Diff+(M). Example: Symp(S2, σ) ' SO(3).

dim M = 4: Diffc(R4) =??

Gromov(’85) computed the full homotopy type of Sympc(R4, ω) ' ∗,
Symp(S2 × S2, ωmon) ' SO(3)× SO(3) o Z2 and
Symp(CP2, ωmon) ' PU(3).

However the topology of Symp(M4, ω) is complicated in general!

More results: Almost all in dimension 4. By Abreu–Granja–Kitchloo, Seidel,
Pinsonnault, Evans, A–Pinsonnault, A–Eden, Li–Li–Wu,
Smirnov–Shevchishin, Sheridan–Smith.
Main tool: Pseudoholomorphic curves.
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π1(Symp(M2n, ω))

When M is simply connected, π1(Ham(M, ω)) = π1(Symp(M, ω)).

Applications of π1(Ham(M, ω)) :

Dynamical conjecture: for any compact (M2n, ω), Ham(M, ω) has infinite
diameter with respect to the Hofer metric. [Polterovich, Lalonde, McDuff].

Some proofs use a powerful tool:

Seidel morphism: S : π1(Ham(M, ω))→ QH∗(M) is a homomorphism to the
degree 2n multiplicative units QH2n(M)× of the small quantum homology.

It may determine the full (rational) homotopy type of Symp(M4, ω)
[A–Pinsonnault (2013), A–Eden (2017)].
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The Question

Question[McDuff, Karshon]: To what extent are π1(Ham(M, ω)) and
π1(Symp(M, ω)) generated by symplectic S1 actions ?

Suppose that π1(Symp(M, ω)) is nontrivial. Is it true that some nonzero element
is represented by a loop S1 7→ Symp(M, ω) that is a homomorphism (a circle
action on M)?

Remark

If G is a compact Lie group then any element of π1(G) is represented by a loop
that is a homomorphism.
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An Answer

Theorem (Kȩdra)

Let (M, ω) be a symplectic blow-up (in a small ball) of a closed simply connected
Kähler surface, which is neither a rational nor a ruled surface up to blow-up. Then
(M, ω) admits no symplectic circle action and π1(Symp(M, ω)) is nontrivial.

Example (Kȩdra)

A concrete example is obtained by taking a K3 surface with any symplectic form.

Example (Buse)

On a ruled surface: there is an element γ ∈ π1(Ham(T2 × S2)) for which the
Samelson product [γ, γ]Q does not vanish.
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Reduced form

Xn := CP2# nCP2

Definition (Reduced symplectic form)

Consider Xn with the standard basis {L,V1, . . . ,Vn} of H2(Xn;Z). A symplectic
form ω is called reduced if it can be normalized to have area 1, δ1, . . . , δn on the
basis L,V1, . . . ,Vn such that

1 > δ1 ≥ . . . ≥ δn > 0 and ν ≥ δi + δj + δk .

Fact
The diffeomorphism class of ω only depends on its cohomology class
[ω] = PD(H − δ1V1 − . . .− δnVn)

Any ω on Xn is diffeomorphic to a reduced one.

Diffeomorphic symplectic forms have homeomorphic symplectomorphism
groups.
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Normalized reduced cone

Definition (Normalized reduced cone)

Pn is the space of reduced symplectic classes, that is,
Pn := {[ω] = (1|δ1, . . . , δn) ∈ Rn, s. t. ω is reduced}.

If 3 ≤ n ≤ 8 then Pn is a n-dimensional convex polyhedron with n + 1 vertices,
where the monotone class is one of the vertices.
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Equivalence with the S2 × S2 model

Mµ,c1,...,cn−1 := (S2 × S2# (n − 1)CP2, ωµ,c1,...,cn−1 )

is obtained from (S2 × S2, µσ ⊕ σ), by performing n − 1 successive blow-ups of
capacities c1, . . . , cn−1, where σ denotes the standard symplectic form on S2 that
gives area 1 to the sphere and µ ≥ 1.

This can be naturally identified with (Xn, ω). If {B,F ,E1, . . . ,En−1} is the
natural basis for H2(S2 × S2# (n − 1)CP2;Z) then the transition on the basis is
explicitly given by

B = L− V2, F = L− V1, E1 = L− V1 − V2, Ei = Vi+1,∀i ≥ 2.

And for parameters satisfying the relations

µ =
1− δ2

1− δ1
, c1 =

1− δ1 − δ2

1− δ1
, and ci =

δi+1

1− δ1
, 2 ≤ i ≤ n − 1.

there exists a symplectomorphism between the two symplectic manifolds encoded
by these parameters such that

H − δ1V1 − . . .− δnVn = µB + F − c1E1 − . . .− cnEn.
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Symplectomorphisms of Mµ,c1,...,cn−1

Symph(Mµ,c1,...,cn ) is the group of symplectomorphisms of Mµ,c1,...,cn acting
trivially in homology.

If n ≤ 3 then Symph(Mµ,c1,...,cn ) is connected [Pinsonnault, Evans, Li-Li-Wu];

If n ≤ 3 then π1(Symph(Mµ,c1,...,cn )) is generated by S1 actions [follows from
Pinsonnault, A-Pinsonnault, A-Eden, Li-Li-Wu];

Symph(Mµ,c1,...,c4 , ωmon) ' Diff+(S2,5), where Diff+(S2,5) is the group of
orientation preserving diffeomorphisms of S2 fixing 5 points [Evans, Seidel].
π0(Diff+(S2,5)) = PB5(S2)/Z2 is the pure braid group of 5 strings on S2

and its fundamental group is trivial.
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Topology of Symph(Mµ,c1,...,c4, ω)

Consider the edge in P5, denoted by MA, starting at the monotone point M,
where µ > 1 and ci = 1

2 .

Note that vertex representing the monotone case corresponds to µ = 1 and
ci = 1

2 .

Theorem (Li-Li-Wu’18)

Along MA, π0(Symph(Mµ,c1,...,c4 , ω)) = π0(Diff+(S2,4)) = PB4(S2)/Z2 and
π0 is trivial for the remaining points in P5.

π1(Symph(Mµ,c1,...,c4 , ω)) = Z5 along the edge MA.

rank(π1(Symph(Mµ,c1,...,c4 , ω))) = Nω−5 + rank(π0(Symph(Mµ,c1,...,c4 , ω))),
where Nω is the number of symplectic -2 spheres classes and the rank of π0
means the rank of its abelianization.
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Main Result

Recall that along the edge MA: µ > 1 and ci = 1
2 , i = 1, . . . ,4.

Theorem (A-Barata-Pinsonnault-Reis)

If 1 < µ ≤ 3
2 then along the edge MA there is a loop in

π1(Symph(Mµ,c1,...,c4 , ω)) which cannot be represented by a circle action.

If µ > 3
2 then π1(Symph(Mµ,c1,...,c4 , ω)) is generated by Hamiltonian circle

actions.

Conjecture: There is a neighbourhood of the monotone point M in the reduced
cone such that the generators of the fundamental group of
π1(Symph(Mµ,c1,...,c4 , ω)) cannot all be realized by circle actions.
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Karshon’s classification

Hamiltonian S1-space (M, ω,Φ): symplectic manifold with a Hamiltonian
circle action and moment map Φ : M → R.

Critical set of Φ = {fixed points}. n = 4: critical set consists of isolated
points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

each isolated fixed point p → a vertex 〈p〉, labeled by Φ(p).

each two-dimensional invariant surface S → a fat vertex 〈S〉, labeled by
Φ(S), the symplectic area ω(S), and the genus g of the surface S.

A Zk -sphere is a sphere in M on which S1 acts with isotropy Zk . Each
Zk -sphere containing two fixed points p and q → an edge connecting the
vertices 〈p〉 and 〈q〉 labeled by the integer k .

Theorem (Karshon)

{Hamiltonian S1-spaces} ↔ {decorated graphs}
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The classification keeps track of symplectic blow-ups.

Blowing-up at a point inside an invariant surface at the minimum value of Φ:

Φ(S), ν, g

Φ(S) + c

Φ(S), ν − c, g

Blowing-up at an interior fixed point:

Φ(p)

m

n

Φ(p) + mc

Φ(p) − nc

m

m + n

n
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Classification of compact four dimensional Hamiltonian
S1-spaces

Theorem (Karshon)

Every compact four dimensional Hamiltonian S1-space space is obtained by a
sequence of S1-equivariant symplectic bow-ups from

a space with two fixed surfaces and no interior fixed points, or

CP2 or a Hirzebruch surface, with a symplectic form and a circle action that
come from a Kähler form and a toric action.

Example (Along MA in P5 where µ > 1 and ci = 1
2)

1, a

1
2

0, b
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Extended graphs

Symph(M, ω)→ Symp(M, ω)→ Aut(H2(M,Z)) = Autc1,[ω];

Along MA, Symp/Symph ' D4, where D4 is the Weyl group of the Dynkin
diagram of type D with 4 vertices;

To keep track of the action of Symp on homology → consider graphs in
which can read the homology;

{Hamiltonian S1-spaces + basis for H2 } ↔ {extended graphs}
up to equivariant symplectomorphisms in Symph.
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Family of graphs along MA (µ > 1 and ci = 1
2)

B − El − Em

1, µ− 1

E`

F − E`

Em

F − Em

1
2

F − Ei

Ei

F − Ej

Ej

0, µ− 1

B − Ei − Ej

Circle action z0,ij

B + F − E1 − E2 − E3 − E4

1, µ− 1

E1

F − E1

E2

F − E2

1
2

E3

F − E3

E4

F − E4

0, µ− 1

B − F

Circle action z1

i , j , `,m ∈ {1, . . . ,4} are all distinct
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New family of graphs if µ > 3
2

B − Em

1, µ−
1
2

Em

F − Em
Ei

F − Ei 1
2

Ej

F − Ej

E`

F − E`

0, µ− 3
2

B − Ei − Ej − E`

Circle action z0,ij`

B + F − Ej − El − Em

1, µ−
1
2

Ej

F − Ej

E`

F − E`

1
2

Em

F − Em

F − Ei

Ei

0, µ−
3
2

B − F − Ei

Circle action z1,i
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List of Hamiltonian S1-spaces along MA

Lemma
The Hamiltonian circle actions on the symplectic manifolds encoded by the edge
MA are of 5 types:

zk , with fixed spheres in classes B − kF and B + kF − E1 − E2 − E3 − E4
(exists iff µ > k and µ > 2− k);

zk,i , with fixed spheres in classes B − kF − Ei and B + kF − Ej − E` − Em
(exists iff µ > k + 1

2 and µ > 3
2 − k);

zk,ij , with fixed spheres in classes B − kF − Ei − Ej and B + kF − E` − Em
(exists iff µ > k + 1);

zk,ij`, with fixed spheres in classes B − kF − Ei − Ej − E` and B + kF − Em
(exists iff µ > k + 3

2 );

zk,1234, with fixed spheres in classes B − kF − E1 − E2 − E3 − E4 and
B + kF (exists iff µ > k + 2).
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Remarks

When 1 < µ ≤ 3
2 there exist only four Hamiltonian circle actions:

z0,12, z0,13, z0,14, z1. Not enough to justify π1(Symph(Mµ,c1,...,c4 , ω)) = Z5.
The graphs only encode equivariant blow-ups. But there are no ”exotic”circle
actions by works of Karshon, Kessler and Pinsonnault.
⇒ there exist a loop in π1 which is not realized by a circle action.

The number of Hamiltonian circle actions keeps increasing as the values of µ
increase, but the rank of π1 remains constant along MA [Li-Li-Wu] as µ
increases ⇒ there can only be at most 5 independent circle actions as
elements of the fundamental group.
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A generating set for π1(Symph(Mµ,c1,...,c4, ω)) (if µ > 3
2)

Claim: z0,12, z0,13, z0,14, z1 and z1,4, seen as elements of the fundamental group,
form a basis of π1(Symph(Mµ,c1,...,c4 , ω)) along MA, if µ > 3

2 .

Steps in the proof:

Obtain relations between the loops zk , zk,i , zk,ij , zk,ij` and zk,1234, that come
from embedding pairs of loops inside torus actions. Show, in particular, all
loops are linear combinations of these 5 actions. Uses Delzant’s classification
of toric actions and Karshon’s classification.

Compute the Seidel elements of z0,12, z0,13, z0,14, z1 and z1,4, i.e., the image
of these 5 loops in QH4(Mµ,c1,...,c4 ) by the Seidel morphism
S : π1(Ham(M, ω))→ QH∗(M);

Show that the 5 Seidel elements generate a free subgroup of dimension 5 of
the group of invertible elements in QH∗(Mµ,c1,...,c4 ).
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Delzant classification

Definition

A Delzant polytope in Rn is a convex polytope such that the n edges meeting at
each vertex are given by a basis of Zn.

Definition
A symplectic toric manifold is a compact connected symplectic manifold
(M2n, ω) equipped with an effective Hamiltonian action of a torus Tn and with a
choice of a moment map φ : M → Rn.

Theorem (Delzant)

Symplectic toric manifolds up to equivariant symplectomorphisms are classified by
Delzant polytopes up to transformations of GL(2,Z).

{toric manifolds} → {Delzant polytopes}
(M2n, ω,Tn, φ) 7→ φ(M).
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Śılvia Anjos (IST) Loops in π1(Symp(M4, ω)) GeoLx, November 17, 2020 24 / 32



Example

Consider the two toric actions on Symph(Mµ,c1,c2 ) T2
0 and T2

1

c1 − c2

µ

c1 + c2

c1c2 1

x0, y0

c2

µ

c1

c1 + c2c1 − c2 1

x1, y1
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Performing the SL(2,Z) transformation given by the matrix[
1 0
1 1

]
in the toric manifolds equipped with T2

0 (x0, y0) and T2
1(x1,y1) one obtains

c1

µ + 1

1

c2 c1

µ

c1 + c2

1

x0, x0 + y0

c1

c1 + c2

µ + 1

1

c1 − c2

µ

c1 + c2 1

x1, x1 + y1

µ + 1

µ

1

c1 + c2
c1, c1 − c2

Projecting in the direction perpendicular to the y -axis we obtain the same graph
for the two polytopes:

x0 + y0=x1 + y1

.
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(small) Quantum homology

QH∗(M; Π) = H∗(M,Q)⊗Q Πuniv[q,q−1]

where q is a polynomial variable of degree 2 and Πuniv (Novikov ring) is a
generalised Laurent series ring in a variable of degree 0:

Πuniv :=

{∑
κ∈R

rκtκ
∣∣ rκ ∈ Q, #{κ > c | rκ 6= 0} <∞,∀c ∈ R

}
.

QH∗(M; Π) is Z–graded: deg(a⊗ qd tκ) = deg(a) + 2d with a ∈ H∗(M).

Quantum intersection product: a ∗ b ∈ QHi+j−dim M(M; Π), where a ∈ Hi (M) and
b ∈ Hj (M) depends on some Gromov-Witten invariants.
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QH∗(Mµ,c1,...,c4)

Let bij = (B − Ei − Ej )⊗ q t
1
2

1−t1−µ , fij = (F − Ei − Ej )⊗ q t
1
2

1−t1−µ and

ei = Ei ⊗ q t
1
2

1−t1−µ .

Theorem (A-Barata-Pinsonnault-Reis)

QH∗(Mµ,c1,...,c4 ) ' Πuniv[bij , fij ,ei ]/(relations),

where the relations are the following:
b2

ij = 2bij fij + fij + fk` + 1, bijbik = bij fij + fj` + 1, bijbk` = 1, fij fk` = 0,
fij fik = fij (bij + 1), f 2

ij = 2fij (bij + 1), fik (bij + 1) = 0, (fij + fk`)(bij + 1) = 0,

fij (ek + t1−µ

1−t1−µ ) = 0, bij (fij +ei +
t1−µ

1−t1−µ ) = ej +
t1−µ

1−t1−µ , fij (bij +ei +
1

1−t1−µ ) = 0,

bij (ek + t1−µ

1−t1−µ ) = fk` + e` + t1−µ

1−t1−µ , e2
i = eiej + fij + bij fij + (ej − ei )

t1−µ

1−t1−µ .

It follows from the formulas for the quantum product on a rational surface
obtained by Crauder-Miranda’95.
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Seidel morphism

S : π1(Ham(M, ω))→ QH∗(M) ”counts”pseudo-holomorphic sections of a bundle
MΛ → S2 associated to a loop Λ ⊂ Ham(M, ω). MΛ is the total space of the
fibration over S2 with fiber M which consists of two trivial fibrations over 2–discs,
glued along their boundary via Λ.

Theorem (McDuff-Tolman’06)

Let Λ be an Hamiltonian circle action on (M, ω) with moment map ΦΛ. If the
maximal fixed point component Fmax is semifree and [Fmax] = A ∈ H∗(M) then
there are classes aB ∈ H∗(M) s. t.
S(Λ) = A⊗ qtΦmax +

∑
B∈HS

2(M;Z)>0 aB ⊗ q1−c1(B)tΦmax−ω(B).

if there exists an almost complex structure J on M so that (M, J) is Fano (all
J–pseudo-holomorphic spheres in M have positive first Chern number) and
the codimension of Fmax is 2 then S(Λ) = A⊗ qtΦmax . [McDuff-Tolman’06]

if (M, J) is NEF (c1(B) ≥ 0 for every class B ∈ H2(M) with a J-holomorphic
sphere representative) → there are infinitely many contributions to the Seidel
elements, but can be expressed by closed formulas [A-Leclercq’18].
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Seidel elements

Seidel elements of a generating set of π1(Symph(Mµ,c1,...,c4 )) if µ > 3
2 :

S(z0,1i ) = bj`, i = 2,3,4 and i , j , ` all distinct;

S(z1) = b12 + f34;

S(z1,4) = (b12 + f34 + e4 + t1−µ

1−t1−µ )tα(1− t1−µ) where α = 1
6(1−2µ) .
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Further questions

Question 1: Are there other points in the reduced cone P5 for which not all the
generators of π1(Symph(Mµ,c1,...,c4 )) can be represented by Hamiltonian circle
actions ?

Conjecture: Yes. There is a neighbourhood of the monotone point M in the
reduced cone such that the generators of the fundamental group of
π1(Symph(Mµ,c1,...,c4 , ω)) cannot all be realized by circle actions.

Main reason: it appears that at least one circle action that has a fixed sphere with
positive area in class B − Ej − Ek − E` or B − F − Ei (µ− cj − ck − c` > 0 or
µ− 1− ci > 0) has to be included in the set of generators. However, this
condition does not necessarily hold for all points in the symplectic cone, in
particular, for points close to the monotone point M (µ = 1 and ci = 1

2 ).

Question 2: Does the loop which cannot be represented by an Hamiltonian circle
action give rise to new elements in higher homotopy groups (via Samelson
products) as in Buse’s example?
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Thank you!
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