Loops in the fundamental group of $\operatorname{Symp}\left(M^{4}, \omega\right)$ which are not represented by circle actions

Sílvia Anjos
Center for Mathematical Analysis, Geometry and Dynamical Systems Instituto Superior Técnico, Lisbon
Joint work with
Miguel Barata, Martin Pinsonnault and Ana Alexandra Reis

Outline

(1) Introduction
(2) Symplectic forms on rational ruled surfaces
(3) Result on loops in $\pi_{1}\left(\operatorname{Symp}\left(\mathbb{C P}^{2} \# 5 \overline{\mathbb{C P}}^{2}, \omega\right)\right)$
(4) Main steps in the proof
(5) Further Questions

Symplectic manifolds and associated structures

- $\left(M^{2 n}, \omega\right)$ symplectic manifold: smooth manifold $M^{2 n}$ with a non-degenerate closed 2-form ω.
- An almost complex structure J is called ω-tamed if $\omega(v, J v)>0$ for any $v \neq 0$.
- An ω-tamed almost complex structure J is called ω-compatible if $\omega(J u, J v)=\omega(u, v)$. Compatible (ω, J) is a Kähler structure if J is integrable.
\mathcal{J}_{ω} : the nonempty contractible space of ω-tamed (or compatible) almost complex structures. $c_{1}(M, \omega):=c_{1}(M, J)$.
- A symplectic form ω is called monotone if its class $[\omega]=\lambda c_{1}(M, \omega) \in H^{2}(M, \mathbb{Z}), \lambda>0$

Symplectic manifolds and associated structures

- $\left(M^{2 n}, \omega\right)$ symplectic manifold: smooth manifold $M^{2 n}$ with a non-degenerate closed 2-form ω.
- An almost complex structure J is called ω-tamed if $\omega(v, J v)>0$ for any $v \neq 0$.
- An ω-tamed almost complex structure J is called ω-compatible if $\omega(J u, J v)=\omega(u, v)$. Compatible (ω, J) is a Kähler structure if J is integrable.
\mathcal{J}_{ω} : the nonempty contractible space of ω-tamed (or compatible) almost complex structures $c_{1}(M, \omega):=c_{1}(M, J)$.
- A symplectic form ω is called monotone if its class $[\omega]=\lambda c_{1}(M, \omega) \in H^{2}(M, \mathbb{Z}), \lambda>0$.

Symplectic manifolds and associated structures

- $\left(M^{2 n}, \omega\right)$ symplectic manifold: smooth manifold $M^{2 n}$ with a non-degenerate closed 2-form ω.
- An almost complex structure J is called ω-tamed if $\omega(v, J v)>0$ for any $v \neq 0$.
- An ω-tamed almost complex structure J is called ω-compatible if $\omega(J u, J v)=\omega(u, v)$. Compatible (ω, J) is a Kähler structure if J is integrable.
\mathcal{J}_{ω} : the nonempty contractible space of ω-tamed (or compatible) almost complex structures.
$c_{1}(M, \omega):=c_{1}(M, J)$.
- A symplectic form ω is called monotone if its class $[\omega]=\lambda c_{1}(M, \omega) \in H^{2}(M, \mathbb{Z}), \lambda>0$.

Symplectic manifolds and associated structures

- $\left(M^{2 n}, \omega\right)$ symplectic manifold: smooth manifold $M^{2 n}$ with a non-degenerate closed 2-form ω.
- An almost complex structure J is called ω-tamed if $\omega(v, J v)>0$ for any $v \neq 0$.
- An ω-tamed almost complex structure J is called ω-compatible if $\omega(J u, J v)=\omega(u, v)$. Compatible (ω, J) is a Kähler structure if J is integrable.
\mathcal{J}_{ω} : the nonempty contractible space of ω-tamed (or compatible) almost complex structures.

$$
c_{1}(M, \omega):=c_{1}(M, J) .
$$

- A symplectic form ω is called monotone if its class $[\omega]=\lambda c_{1}(M, \omega) \in H^{2}(M, \mathbb{Z}), \lambda>0$.

Symplectomorphism group

- Symplectomorphism group $\operatorname{Symp}(M, \omega)$: subgroup of elements $\phi \in \operatorname{Diff}(M)$ s. t. $\phi^{*} \omega=\omega$.
- $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M, \omega)$ is the subgroup generated by vector fields X_{t} such that $\iota\left(X_{t}\right) \omega=d H_{t}$ is exact.
- If M is simply connected, $\operatorname{Ham}(M, \omega)$ is the identity component of $\operatorname{Symp}(M, \omega)$. In this case, $\operatorname{Symp}(M, \omega)$ equipped with the C^{∞}-topology, is a ∞-dimensional Fréchet Lie group.

Symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms.

Question: to which extent the topology of the symplectomorphism group is determined by compact subgroups arising from Lie group actions?

Symplectomorphism group

- $\operatorname{Symplectomorphism} \operatorname{group} \operatorname{Symp}(M, \omega)$: subgroup of elements $\phi \in \operatorname{Diff}(M)$ s. t. $\phi^{*} \omega=\omega$.
- $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M, \omega)$ is the subgroup generated by vector fields X_{t} such that $\iota\left(X_{t}\right) \omega=d H_{t}$ is exact.
- If M is simply connected, $\operatorname{Ham}(M, \omega)$ is the identity component of $\operatorname{Symp}(M, \omega)$. In this case, $\operatorname{Symp}(M, \omega)$ equipped with the C^{∞}-topology, is a ∞-dimensional Fréchet Lie group.

> Symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms.
> Question: to which extent the topology of the symplectomorphism group is determined by compact subgroups arising from Lie group actions?

Symplectomorphism group

- $\operatorname{Symplectomorphism} \operatorname{group} \operatorname{Symp}(M, \omega)$: subgroup of elements $\phi \in \operatorname{Diff}(M)$ s. t. $\phi^{*} \omega=\omega$.
- $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M, \omega)$ is the subgroup generated by vector fields X_{t} such that $\iota\left(X_{t}\right) \omega=d H_{t}$ is exact.
- If M is simply connected, $\operatorname{Ham}(M, \omega)$ is the identity component of $\operatorname{Symp}(M, \omega)$. In this case, $\operatorname{Symp}(M, \omega)$ equipped with the C^{∞}-topology, is a ∞-dimensional Fréchet Lie group.

> Symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms.
> Question: to which extent the topology of the symplectomorphism group is determined by compact subgroups arising from Lie group actions?

Symplectomorphism group

- $\operatorname{Symplectomorphism} \operatorname{group} \operatorname{Symp}(M, \omega)$: subgroup of elements $\phi \in \operatorname{Diff}(M)$ s. t. $\phi^{*} \omega=\omega$.
- $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M, \omega)$ is the subgroup generated by vector fields X_{t} such that $\iota\left(X_{t}\right) \omega=d H_{t}$ is exact.
- If M is simply connected, $\operatorname{Ham}(M, \omega)$ is the identity component of $\operatorname{Symp}(M, \omega)$. In this case, $\operatorname{Symp}(M, \omega)$ equipped with the C^{∞}-topology, is a ∞-dimensional Fréchet Lie group.

Symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms.

Question: to which extent the topology of the symplectomorphism group is determined by compact subgroups arising from Lie group actions?

Symplectomorphism group

- Symplectomorphism group $\operatorname{Symp}(M, \omega)$: subgroup of elements $\phi \in \operatorname{Diff}(M)$ s. t. $\phi^{*} \omega=\omega$.
- $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M, \omega)$ is the subgroup generated by vector fields X_{t} such that $\iota\left(X_{t}\right) \omega=d H_{t}$ is exact.
- If M is simply connected, $\operatorname{Ham}(M, \omega)$ is the identity component of $\operatorname{Symp}(M, \omega)$. In this case, $\operatorname{Symp}(M, \omega)$ equipped with the C^{∞}-topology, is a ∞-dimensional Fréchet Lie group.

Symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms.

Question: to which extent the topology of the symplectomorphism group is determined by compact subgroups arising from Lie group actions?

Topology of $\operatorname{Symp}(M, \omega)$

 $\operatorname{dim} M=2: \operatorname{Symp}(M, \omega) \simeq \operatorname{Diff}^{+}(M)$. Example: $\operatorname{Symp}\left(S^{2}, \sigma\right) \simeq \operatorname{SO}(3)$. $\operatorname{dim} M=4: \operatorname{Diff}^{\complement}\left(\mathbb{R}^{4}\right)=$??- Gromov('85) computed the full homotopy type of $\operatorname{Symp}^{c}\left(\mathbb{R}^{4}, \omega\right) \simeq *$ $\operatorname{Symp}\left(S^{2} \times S^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{SO}(3) \times \mathrm{SO}(3) \rtimes \mathbb{Z}_{2}$ and $\operatorname{Symp}\left(\mathbb{C P}^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{PU}(3)$
- However the topology of $\operatorname{Symp}\left(M^{4}, \omega\right)$ is complicated in general!
- More results: Almost all in dimension 4. By Abreu-Granja-Kitchloo, Seidel, Pinsonnault, Evans, A-Pinsonnault, A-Eden, Li-Li-Wu, Smirnov-Shevchishin, Sheridan-Smith. Main tool: Pseudoholomorphic curves.

Topology of $\operatorname{Symp}(M, \omega)$

$\operatorname{dim} M=2: \operatorname{Symp}(M, \omega) \simeq \operatorname{Diff}^{+}(M)$. Example: $\operatorname{Symp}\left(S^{2}, \sigma\right) \simeq \operatorname{SO}(3)$. $\operatorname{dim} M=4: \operatorname{Diff}^{c}\left(\mathbb{R}^{4}\right)=? ?$

- Gromov('85) computed the full homotopy type of $\operatorname{Symp}^{C}\left(\mathbb{R}^{4}, \omega\right) \simeq *$ $\operatorname{Symp}\left(S^{2} \times S^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{SO}(3) \times \operatorname{SO}(3) \rtimes \mathbb{Z}_{2}$ and $\operatorname{Symp}\left(\mathbb{C P}^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{PU}(3)$
- However the topology of $\operatorname{Symp}\left(M^{4}, \omega\right)$ is complicated in general!
- More results: Almost all in dimension 4. By Abreu-Granja-Kitchloo, Seidel, Pinsonnault, Evans, A-Pinsonnault, A-Eden, Li-Li-Wu, Smirnov-Shevchishin, Sheridan-Smith. Main tool: Pseudoholomorphic curves.

Topology of $\operatorname{Symp}(M, \omega)$

$\operatorname{dim} M=2: \operatorname{Symp}(M, \omega) \simeq \operatorname{Diff}^{+}(M)$. Example: $\operatorname{Symp}\left(S^{2}, \sigma\right) \simeq \operatorname{SO}(3)$. $\operatorname{dim} M=4: \operatorname{Diff}^{C}\left(\mathbb{R}^{4}\right)=? ?$

- Gromov('85) computed the full homotopy type of $\operatorname{Symp}^{c}\left(\mathbb{R}^{4}, \omega\right) \simeq *$, $\operatorname{Symp}\left(S^{2} \times S^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{SO}(3) \times \operatorname{SO}(3) \rtimes \mathbb{Z}_{2}$ and $\operatorname{Symp}\left(\mathbb{C P}^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{PU}(3)$.
- However the topology of $\operatorname{Symp}\left(M^{4}, \omega\right)$ is complicated in general!
- More results: Almost all in dimension 4. By Abreu-Granja-Kitchloo, Seidel, Pinsonnault, Evans, A-Pinsonnault, A-Eden, Li-Li-Wu, Smirnov-Shevchishin, Sheridan-Smith Main tool: Pseudoholomorphic curves.

Topology of $\operatorname{Symp}(M, \omega)$

$\operatorname{dim} M=2: \operatorname{Symp}(M, \omega) \simeq \operatorname{Diff}^{+}(M)$. Example: $\operatorname{Symp}\left(S^{2}, \sigma\right) \simeq \operatorname{SO}(3)$.
$\operatorname{dim} M=4: \operatorname{Diff}^{C}\left(\mathbb{R}^{4}\right)=? ?$

- Gromov('85) computed the full homotopy type of $\operatorname{Symp}^{c}\left(\mathbb{R}^{4}, \omega\right) \simeq *$, $\operatorname{Symp}\left(S^{2} \times S^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{SO}(3) \times \operatorname{SO}(3) \rtimes \mathbb{Z}_{2}$ and $\operatorname{Symp}\left(\mathbb{C P}^{2}, \omega_{\text {mon }}\right) \simeq \operatorname{PU}(3)$.
- However the topology of $\operatorname{Symp}\left(M^{4}, \omega\right)$ is complicated in general!
- More results: Almost all in dimension 4. By Abreu-Granja-Kitchloo, Seidel, Pinsonnault, Evans, A-Pinsonnault, A-Eden, Li-Li-Wu, Smirnov-Shevchishin, Sheridan-Smith.
Main tool: Pseudoholomorphic curves.

$\pi_{1}\left(\operatorname{Symp}\left(M^{2 n}, \omega\right)\right)$

When M is simply connected, $\pi_{1}(\operatorname{Ham}(M, \omega))=\pi_{1}(\operatorname{Symp}(M, \omega))$.
Applications of $\pi_{1}(\operatorname{Ham}(M, \omega))$

- Dynamical conjecture: for any compact $\left(M^{2 n}, \omega\right), \operatorname{Ham}(M, \omega)$ has infinite diameter with respect to the Hofer metric. [Polterovich, Lalonde, McDuff] Some proofs use a powerful tool:

Seidel morphism: $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ is a homomorphism to the degree $2 n$ multiplicative units $\mathrm{QH}_{2 n}(M)^{\times}$of the small quantum homology.

- It may determine the full (rational) homotopy type of $\operatorname{Symp}\left(M^{4}, \omega\right)$ [A-Pinsonnault (2013), A-Eden (2017)].

$\pi_{1}\left(\operatorname{Symp}\left(M^{2 n}, \omega\right)\right)$

When M is simply connected, $\pi_{1}(\operatorname{Ham}(M, \omega))=\pi_{1}(\operatorname{Symp}(M, \omega))$.
Applications of $\pi_{1}(\operatorname{Ham}(M, \omega))$:

- Dynamical conjecture: for any compact $\left(M^{2 n}, \omega\right), \operatorname{Ham}(M, \omega)$ has infinite diameter with respect to the Hofer metric. [Polterovich, Lalonde, McDuff]. Some proofs use a powerful tool: Seidel morphism: $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ is a homomorphism to the degree $2 n$ multiplicative units $\mathrm{QH}_{2 n}(M)^{\times}$of the small quantum homology.
- It may determine the full (rational) homotopy type of $\operatorname{Symp}\left(M^{4}, \omega\right)$ [A-Pinsonnault (2013), A-Eden (2017)]

$\pi_{1}\left(\operatorname{Symp}\left(M^{2 n}, \omega\right)\right)$

When M is simply connected, $\pi_{1}(\operatorname{Ham}(M, \omega))=\pi_{1}(\operatorname{Symp}(M, \omega))$.
Applications of $\pi_{1}(\operatorname{Ham}(M, \omega))$:

- Dynamical conjecture: for any compact $\left(M^{2 n}, \omega\right), \operatorname{Ham}(M, \omega)$ has infinite diameter with respect to the Hofer metric. [Polterovich, Lalonde, McDuff]. Some proofs use a powerful tool: Seidel morphism: $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ is a homomorphism to the degree $2 n$ multiplicative units $\mathrm{QH}_{2 n}(M)^{\times}$of the small quantum homology.
- It may determine the full (rational) homotopy type of $\operatorname{Symp}\left(M^{4}, \omega\right)$ [A-Pinsonnault (2013), A-Eden (2017)]

$\pi_{1}\left(\operatorname{Symp}\left(M^{2 n}, \omega\right)\right)$

When M is simply connected, $\pi_{1}(\operatorname{Ham}(M, \omega))=\pi_{1}(\operatorname{Symp}(M, \omega))$.
Applications of $\pi_{1}(\operatorname{Ham}(M, \omega))$:

- Dynamical conjecture: for any compact $\left(M^{2 n}, \omega\right), \operatorname{Ham}(M, \omega)$ has infinite diameter with respect to the Hofer metric. [Polterovich, Lalonde, McDuff]. Some proofs use a powerful tool:
Seidel morphism: $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ is a homomorphism to the degree $2 n$ multiplicative units $\mathrm{QH}_{2 n}(M)^{\times}$of the small quantum homology.
- It may determine the full (rational) homotopy type of $\operatorname{Symp}\left(M^{4}, \omega\right)$ [A-Pinsonnault (2013), A-Eden (2017)].

The Question

Question[McDuff, Karshon]: To what extent are $\pi_{1}(\operatorname{Ham}(M, \omega))$ and $\pi_{1}(\operatorname{Symp}(M, \omega))$ generated by symplectic S^{1} actions ?

Suppose that $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial. Is it true that some nonzero element is represented by a loop $S^{1} \mapsto \operatorname{Symp}(M, \omega)$ that is a homomorphism (a circle action on M)?

Remark

If G is a compact Lie group then any element of $\pi_{1}(G)$ is represented by a loop that is a homomorphism.

The Question

Question[McDuff, Karshon]: To what extent are $\pi_{1}(\operatorname{Ham}(M, \omega))$ and $\pi_{1}(\operatorname{Symp}(M, \omega))$ generated by symplectic S^{1} actions ?
Suppose that $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial. Is it true that some nonzero element is represented by a loop $S^{1} \mapsto \operatorname{Symp}(M, \omega)$ that is a homomorphism (a circle action on M)?

Remark

If G is a compact Lie group then any element of $\pi_{1}(G)$ is represented by a loop that is a homomorphism.

The Question

Question[McDuff, Karshon]: To what extent are $\pi_{1}(\operatorname{Ham}(M, \omega))$ and $\pi_{1}(\operatorname{Symp}(M, \omega))$ generated by symplectic S^{1} actions ?
Suppose that $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial. Is it true that some nonzero element is represented by a loop $S^{1} \mapsto \operatorname{Symp}(M, \omega)$ that is a homomorphism (a circle action on M)?

Remark

If G is a compact Lie group then any element of $\pi_{1}(G)$ is represented by a loop that is a homomorphism.

An Answer

Theorem (Kędra)

Let (M, ω) be a symplectic blow-up (in a small ball) of a closed simply connected Kähler surface, which is neither a rational nor a ruled surface up to blow-up. Then (M, ω) admits no symplectic circle action and $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial.

Example (Kędra)
 A concrete example is obtained by taking a $K 3$ surface with any symplectic form

Example (Buse)

On a ruled surface: there is an element $\gamma \in \pi_{1}\left(\operatorname{Ham}\left(\mathbb{R}^{2} \times S^{2}\right)\right)$ for which the Samelson product $[\gamma, \gamma]_{\mathbb{Q}}$ does not vanish

An Answer

Theorem (Kędra)

Let (M, ω) be a symplectic blow-up (in a small ball) of a closed simply connected Kähler surface, which is neither a rational nor a ruled surface up to blow-up. Then (M, ω) admits no symplectic circle action and $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial.

Example (Kędra)

A concrete example is obtained by taking a K3 surface with any symplectic form.

Example (Buse)

On a ruled surface: there is an element $\gamma \in \pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2} \times S^{2}\right)\right)$ for which the Samelson product $[\gamma, \gamma]_{\mathbb{Q}}$ does not vanish

An Answer

Theorem (Kędra)

Let (M, ω) be a symplectic blow-up (in a small ball) of a closed simply connected Kähler surface, which is neither a rational nor a ruled surface up to blow-up. Then (M, ω) admits no symplectic circle action and $\pi_{1}(\operatorname{Symp}(M, \omega))$ is nontrivial.

Example (Kędra)

A concrete example is obtained by taking a K3 surface with any symplectic form.

Example (Buse)

On a ruled surface: there is an element $\gamma \in \pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2} \times S^{2}\right)\right)$ for which the Samelson product $[\gamma, \gamma]_{\mathbb{Q}}$ does not vanish.

Reduced form

$\mathbb{X}_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}}^{2}$

Definition (Reduced symplectic form)

Consider \mathbb{X}_{n} with the standard basis $\left\{L, V_{1}, \ldots, V_{n}\right\}$ of $H_{2}\left(\mathbb{X}_{n} ; \mathbb{Z}\right)$. A symplectic form ω is called reduced if it can be normalized to have area $1, \delta_{1}, \ldots, \delta_{n}$ on the basis L, V_{1}, \ldots, V_{n} such that

$$
1>\delta_{1} \geq \ldots \geq \delta_{n}>0 \quad \text { and } \quad \nu \geq \delta_{i}+\delta_{j}+\delta_{k} .
$$

Fact

- The diffeomorphism class of w only depends on its cohomology class

$$
[\omega]=P D\left(H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}\right)
$$

- Any ω on \mathbb{X}_{n} is diffeomorphic to a reduced one.
- Diffeomornhic symplectic forms have homeomornhic symplectomorphism groups.

Reduced form

$$
\mathbb{X}_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}}^{2}
$$

Definition (Reduced symplectic form)

Consider \mathbb{X}_{n} with the standard basis $\left\{L, V_{1}, \ldots, V_{n}\right\}$ of $H_{2}\left(\mathbb{X}_{n} ; \mathbb{Z}\right)$. A symplectic form ω is called reduced if it can be normalized to have area $1, \delta_{1}, \ldots, \delta_{n}$ on the basis L, V_{1}, \ldots, V_{n} such that

$$
1>\delta_{1} \geq \ldots \geq \delta_{n}>0 \quad \text { and } \quad \nu \geq \delta_{i}+\delta_{j}+\delta_{k} .
$$

Fact
 - The diffeomorphism class of w only depends on its cohomology class $[\omega]=P D\left(H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}\right)$
 - Any ω on \mathbb{X}_{n} is diffeomorphic to a reduced one.
 - Diffeomornhic symplectic forms have homeomornh ic symplectomorphism groups.

Reduced form

$$
\mathbb{X}_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}}^{2}
$$

Definition (Reduced symplectic form)

Consider \mathbb{X}_{n} with the standard basis $\left\{L, V_{1}, \ldots, V_{n}\right\}$ of $H_{2}\left(\mathbb{X}_{n} ; \mathbb{Z}\right)$. A symplectic form ω is called reduced if it can be normalized to have area $1, \delta_{1}, \ldots, \delta_{n}$ on the basis L, V_{1}, \ldots, V_{n} such that

$$
1>\delta_{1} \geq \ldots \geq \delta_{n}>0 \quad \text { and } \quad \nu \geq \delta_{i}+\delta_{j}+\delta_{k}
$$

Fact

- The diffeomorphism class of ω only depends on its cohomology class $[\omega]=P D\left(H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}\right)$
- Any ω on \mathbb{X}_{n} is diffeomorphic to a reduced one.
- Diffeomorphic symplectic forms have homeomorphic symplectomorphism groups.

Reduced form

$$
\mathbb{X}_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}}^{2}
$$

Definition (Reduced symplectic form)

Consider \mathbb{X}_{n} with the standard basis $\left\{L, V_{1}, \ldots, V_{n}\right\}$ of $H_{2}\left(\mathbb{X}_{n} ; \mathbb{Z}\right)$. A symplectic form ω is called reduced if it can be normalized to have area $1, \delta_{1}, \ldots, \delta_{n}$ on the basis L, V_{1}, \ldots, V_{n} such that

$$
1>\delta_{1} \geq \ldots \geq \delta_{n}>0 \quad \text { and } \quad \nu \geq \delta_{i}+\delta_{j}+\delta_{k}
$$

Fact

- The diffeomorphism class of ω only depends on its cohomology class $[\omega]=P D\left(H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}\right)$
- Any ω on \mathbb{X}_{n} is diffeomorphic to a reduced one.
- Diffeomorphic symplectic forms have homeomorphic symplectomorphism groups.

Reduced form

$$
\mathbb{X}_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}}^{2}
$$

Definition (Reduced symplectic form)

Consider \mathbb{X}_{n} with the standard basis $\left\{L, V_{1}, \ldots, V_{n}\right\}$ of $H_{2}\left(\mathbb{X}_{n} ; \mathbb{Z}\right)$. A symplectic form ω is called reduced if it can be normalized to have area $1, \delta_{1}, \ldots, \delta_{n}$ on the basis L, V_{1}, \ldots, V_{n} such that

$$
1>\delta_{1} \geq \ldots \geq \delta_{n}>0 \quad \text { and } \quad \nu \geq \delta_{i}+\delta_{j}+\delta_{k}
$$

Fact

- The diffeomorphism class of ω only depends on its cohomology class $[\omega]=P D\left(H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}\right)$
- Any ω on \mathbb{X}_{n} is diffeomorphic to a reduced one.
- Diffeomorphic symplectic forms have homeomorphic symplectomorphism groups.

Normalized reduced cone

Definition (Normalized reduced cone)

P_{n} is the space of reduced symplectic classes, that is, $P_{n}:=\left\{[\omega]=\left(1 \mid \delta_{1}, \ldots, \delta_{n}\right) \in \mathbb{R}^{n}\right.$, s. t. ω is reduced $\}$.

If $3 \leq n \leq 8$ then P_{n} is a n-dimensional convex polyhedron with $n+1$ vertices, where the monotone class is one of the vertices.

Normalized reduced cone

Definition (Normalized reduced cone)

P_{n} is the space of reduced symplectic classes, that is, $P_{n}:=\left\{[\omega]=\left(1 \mid \delta_{1}, \ldots, \delta_{n}\right) \in \mathbb{R}^{n}\right.$, s. t. ω is reduced $\}$.

If $3 \leq n \leq 8$ then P_{n} is a n-dimensional convex polyhedron with $n+1$ vertices, where the monotone class is one of the vertices.

Equivalence with the $S^{2} \times S^{2}$ model

$M_{\mu, c_{1}, \ldots, c_{n-1}}:=\left(S^{2} \times S^{2} \#(n-1) \overline{\mathbb{C P}}^{2}, \omega_{\mu, c_{1}, \ldots, c_{n-1}}\right)$
is obtained from ($S^{2} \times S^{2}, \mu \sigma \oplus \sigma$), by performing $n-1$ successive blow-ups of capacities c_{1}, \ldots, c_{n-1}, where σ denotes the standard symplectic form on S^{2} that gives area 1 to the sphere and $\mu \geq 1$.

This can be naturally identified with $\left(\mathbb{X}_{n}, \omega\right)$. If $\left\{B, F, E_{1}, \ldots, E_{n-1}\right\}$ is the
natural basis for $H_{2}\left(S^{2} \times S^{2} \#(n-1) \mathbb{C P}^{2} ; \mathbb{Z}\right)$ then the transition on the basis is explicitly given by

$$
B=L-V_{2}, \quad F=L-V_{1}, \quad E_{1}=L-V_{1}-V_{2}, \quad E_{i}=V_{i+1}, \forall i \geq 2 .
$$

And for parameters satisfying the relations

there exists a symplectomorphism between the two symplectic manifolds encoded by these parameters such that

$$
H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}=\mu B+F-c_{1} E_{1}-\ldots-c_{n} E_{n} .
$$

Equivalence with the $S^{2} \times S^{2}$ model

$M_{\mu, c_{1}, \ldots, c_{n-1}}:=\left(S^{2} \times S^{2} \#(n-1) \overline{\mathbb{C P}}^{2}, \omega_{\mu, c_{1}, \ldots, c_{n-1}}\right)$
is obtained from ($S^{2} \times S^{2}, \mu \sigma \oplus \sigma$), by performing $n-1$ successive blow-ups of capacities c_{1}, \ldots, c_{n-1}, where σ denotes the standard symplectic form on S^{2} that gives area 1 to the sphere and $\mu \geq 1$.
This can be naturally identified with $\left(\mathbb{X}_{n}, \omega\right)$. If $\left\{B, F, E_{1}, \ldots, E_{n-1}\right\}$ is the natural basis for $H_{2}\left(S^{2} \times S^{2} \#(n-1) \overline{C P}^{2} ; \mathbb{Z}\right)$ then the transition on the basis is explicitly given by

$$
B=L-V_{2}, \quad F=L-V_{1}, \quad E_{1}=L-V_{1}-V_{2}, \quad E_{i}=V_{i+1}, \forall i \geq 2
$$

And for parameters satisfying the relations
there exists a symplectomorphism between the two symplectic manifolds encoded by these parameters such that

Equivalence with the $S^{2} \times S^{2}$ model

$M_{\mu, c_{1}, \ldots, c_{n-1}}:=\left(S^{2} \times S^{2} \#(n-1) \overline{\mathbb{C P}}^{2}, \omega_{\mu, c_{1}, \ldots, c_{n-1}}\right)$
is obtained from ($S^{2} \times S^{2}, \mu \sigma \oplus \sigma$), by performing $n-1$ successive blow-ups of capacities c_{1}, \ldots, c_{n-1}, where σ denotes the standard symplectic form on S^{2} that gives area 1 to the sphere and $\mu \geq 1$.
This can be naturally identified with $\left(\mathbb{X}_{n}, \omega\right)$. If $\left\{B, F, E_{1}, \ldots, E_{n-1}\right\}$ is the natural basis for $H_{2}\left(S^{2} \times S^{2} \#(n-1) \overline{C P}^{2} ; \mathbb{Z}\right)$ then the transition on the basis is explicitly given by

$$
B=L-V_{2}, \quad F=L-V_{1}, \quad E_{1}=L-V_{1}-V_{2}, \quad E_{i}=V_{i+1}, \forall i \geq 2
$$

And for parameters satisfying the relations

$$
\mu=\frac{1-\delta_{2}}{1-\delta_{1}}, \quad c_{1}=\frac{1-\delta_{1}-\delta_{2}}{1-\delta_{1}}, \quad \text { and } \quad c_{i}=\frac{\delta_{i+1}}{1-\delta_{1}}, \quad 2 \leq i \leq n-1 .
$$

there exists a symplectomorphism between the two symplectic manifolds encoded by these parameters such that

$$
H-\delta_{1} V_{1}-\ldots-\delta_{n} V_{n}=\mu B+F-c_{1} E_{1}-\ldots-c_{n} E_{n}
$$

Symplectomorphisms of $M_{\mu, G_{1}, \ldots, c_{n-1}}$

$\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is the group of symplectomorphisms of $M_{\mu, c_{1}, \ldots, c_{n}}$ acting trivially in homology.

- If $n \leq 3$ then $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is connected [Pinsonnault, Evans, Li-Li-Wu];
- If $n \leq 3$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)\right)$ is generated by S^{1} actions [follows from Pinsonnault, A-Pinsonnault, A-Eden, Li-Li-Wu];
- $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega_{\text {mon }}\right) \simeq \operatorname{Diff}^{+}\left(S^{2}, 5\right)$, where $\operatorname{Diff}^{+}\left(S^{2}, 5\right)$ is the group of orientation preserving diffeomorphisms of S^{2} fixing 5 points [Evans, Seidel]. $\pi_{0}\left(\operatorname{Diff}^{+}\left(S^{2}, 5\right)\right)=P B_{5}\left(S^{2}\right) / \mathbb{Z}^{2}$ is the pure braid group of 5 strings on S^{2} and its fundamental group is trivial.

Symplectomorphisms of $M_{\mu, G_{1}, \ldots, c_{n-1}}$

$\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is the group of symplectomorphisms of $M_{\mu, c_{1}, \ldots, c_{n}}$ acting trivially in homology.

- If $n \leq 3$ then $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is connected [Pinsonnault, Evans, Li-Li-Wu];
- If $n \leq 3$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)\right)$ is generated by S^{1} actions [follows from Pinsonnault, A-Pinsonnault, A-Eden, Li-Li-Wu];
- $\operatorname{Symp}_{n}\left(M_{\ldots}, \ldots, \ldots, \omega_{m o n}\right) \simeq \operatorname{Diff}^{+}\left(S^{2}, 5\right)$, where $\operatorname{Dif}^{+}\left(S^{2}, 5\right)$ is the group of orientation preserving diffeomorphisms of S^{2} fixing 5 points [Evans, Seidel]. $\pi_{0}\left(\right.$ Diff $\left.^{+}\left(S^{2}, 5\right)\right)=P B_{5}\left(S^{2}\right) / \mathbb{Z}^{2}$ is the pure braid group of 5 strings on S^{2} and its fundamental group is trivial.

Symplectomorphisms of $M_{\mu, \mathcal{G}_{1}, \ldots, c_{n-1}}$

$\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is the group of symplectomorphisms of $M_{\mu, c_{1}, \ldots, c_{n}}$ acting trivially in homology.

- If $n \leq 3$ then $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is connected [Pinsonnault, Evans, Li-Li-Wu];
- If $n \leq 3$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)\right)$ is generated by S^{1} actions [follows from Pinsonnault, A-Pinsonnault, A-Eden, Li-Li-Wu];
 and its fundamental group is trivial.

Symplectomorphisms of $M_{\mu, c_{1}, \ldots, c_{n-1}}$

$\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is the group of symplectomorphisms of $M_{\mu, c_{1}, \ldots, c_{n}}$ acting trivially in homology.

- If $n \leq 3$ then $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)$ is connected [Pinsonnault, Evans, Li-Li-Wu];
- If $n \leq 3$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{n}}\right)\right)$ is generated by S^{1} actions [follows from Pinsonnault, A-Pinsonnault, A-Eden, Li-Li-Wu];
- $\operatorname{Symp}_{h}\left(M_{\mu, \mathcal{c}_{1}, \ldots, c_{4}}, \omega_{\text {mon }}\right) \simeq \operatorname{Diff}^{+}\left(S^{2}, 5\right)$, where $\operatorname{Diff}^{+}\left(S^{2}, 5\right)$ is the group of orientation preserving diffeomorphisms of S^{2} fixing 5 points [Evans, Seidel]. $\pi_{0}\left(\operatorname{Diff}^{+}\left(S^{2}, 5\right)\right)=P B_{5}\left(S^{2}\right) / \mathbb{Z}^{2}$ is the pure braid group of 5 strings on S^{2} and its fundamental group is trivial.

Topology of $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)$

Consider the edge in P_{5}, denoted by $M A$, starting at the monotone point M, where $\mu>1$ and $c_{i}=\frac{1}{2}$.
Note that vertex representing the monotone case corresponds to $\mu=1$ and $c_{i}=\frac{1}{2}$.

```
Theorem (Li-Li-Wu'18)
- Along MA \(\pi_{0}\left(\operatorname{Symn}_{r}\left(M, M_{1}, \ldots, \omega\right)\right)=\pi_{0}\left(\operatorname{Diff}\left(S^{2}, 4\right)\right)=P B_{4}\left(S^{2}\right) / \mathbb{Z}^{2}\) and
    \(\pi_{0}\) is trivial for the remaining points in \(P_{5}\)
    - \(\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)=\mathbb{Z}^{5}\) along the edge MA.
    - \(\operatorname{rank}\left(\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1} \ldots c_{1}}, \omega\right)\right)\right)=N_{\omega}-5+\operatorname{rank}\left(\pi_{0}\left(S \operatorname{ymp}_{h}\left(M_{\mu, c_{1}} \ldots c_{4}, \omega\right)\right)\right)\)
    where \(N_{\omega}\) is the number of symplectic -2 spheres classes and the rank of \(\pi_{0}\)
    means the rank of its abelianization.
```


Topology of $\operatorname{Symp}_{h}\left(M_{\mu, \mathcal{C}_{1}, \ldots, c_{4}}, \omega\right)$

Consider the edge in P_{5}, denoted by $M A$, starting at the monotone point M, where $\mu>1$ and $c_{i}=\frac{1}{2}$.
Note that vertex representing the monotone case corresponds to $\mu=1$ and $c_{i}=\frac{1}{2}$.

Theorem (Li-Li-Wu'18)

- Along MA, $\pi_{0}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)=\pi_{0}\left(\operatorname{Diff}^{+}\left(S^{2}, 4\right)\right)=P B_{4}\left(S^{2}\right) / \mathbb{Z}^{2}$ and π_{0} is trivial for the remaining points in P_{5}.
- $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)=\mathbb{Z}^{5}$ along the edge MA.
- $\operatorname{rank}\left(\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)\right)=N_{\omega}-5+\operatorname{rank}\left(\pi_{0}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)\right)$, where N_{ω} is the number of symplectic -2 spheres classes and the rank of π_{0} means the rank of its abelianization.

Main Result

Recall that along the edge $M A: \mu>1$ and $c_{i}=\frac{1}{2}, i=1, \ldots, 4$.

Theorem (A-Barata-Pinsonnault-Reis)

- If $1<\mu \leq \frac{3}{2}$ then along the edge MA there is a loop in $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ which cannot be represented by a circle action.
- If $\mu>\frac{3}{2}$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ is generated by Hamiltonian circle actions.

Conjecture: There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ cannot all be realized by circle actions.

Main Result

Recall that along the edge $M A: \mu>1$ and $c_{i}=\frac{1}{2}, i=1, \ldots, 4$.

Theorem (A-Barata-Pinsonnault-Reis)

- If $1<\mu \leq \frac{3}{2}$ then along the edge MA there is a loop in $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ which cannot be represented by a circle action.
- If $\mu>\frac{3}{2}$ then $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ is generated by Hamiltonian circle actions.

Conjecture: There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ cannot all be realized by circle actions.

Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ)

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, labeled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- $A \mathbb{Z}_{k}$-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k.

Theorem (Karshon)

$$
\{\text { Hamiltonian S¹-spaces }\} \leftrightarrow\{\text { decorated graphs }\}
$$

Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\Phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, la beled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- A \mathbb{Z}_{k}-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k

Theorem (Karshon)

$$
\text { \{ Hamiltonian S1-spaces\} } \leftrightarrow\{\text { decorated graphs\} }
$$

Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\Phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, labeled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- A \mathbb{Z}_{k}-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k

Theorem (Karshon)

\{Hamiltonian S1-spaces\} $\leftrightarrow\{$ decorated graphs\}

Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\Phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, labeled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- $A \mathbb{Z}_{k}$-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k.

Theorem (Karshon)

rHamiltonian S1-spaces\} $\leftrightarrow\{$ decorated graphs\}

Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\Phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, labeled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- A \mathbb{Z}_{k}-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k.

Theorem (Karshon)

 \{Hamiltonian S^{1}-spaces $\} \leftrightarrow\{$ decorated graphs\}
Karshon's classification

- Hamiltonian S^{1}-space (M, ω, Φ) : symplectic manifold with a Hamiltonian circle action and moment map $\Phi: M \rightarrow \mathbb{R}$.
- Critical set of $\Phi=\{$ fixed points $\}$. $n=4$: critical set consists of isolated points and 2-dim submanifolds (only at the extrema of Φ).

Decorated graphs:

- each isolated fixed point $p \rightarrow$ a vertex $\langle p\rangle$, labeled by $\Phi(p)$.
- each two-dimensional invariant surface $S \rightarrow$ a fat vertex $\langle S\rangle$, labeled by $\Phi(S)$, the symplectic area $\omega(S)$, and the genus g of the surface S.
- A \mathbb{Z}_{k}-sphere is a sphere in M on which S^{1} acts with isotropy \mathbb{Z}_{k}. Each \mathbb{Z}_{k}-sphere containing two fixed points p and $q \rightarrow$ an edge connecting the vertices $\langle p\rangle$ and $\langle q\rangle$ labeled by the integer k.

Theorem (Karshon)

\{Hamiltonian S 1-spaces $\} \leftrightarrow\{$ decorated graphs $\}$

The classification keeps track of symplectic blow-ups.
Blowing-up at a point inside an invariant surface at the minimum value of Φ :

- $\Phi(S)+c$
$\Phi(S), \nu, g$
\qquad
$\Phi(S), \nu-c, g$

Blowing-up at an interior fixed point:

The classification keeps track of symplectic blow-ups.
Blowing-up at a point inside an invariant surface at the minimum value of Φ :

- $\Phi(S)+c$
$\longrightarrow \Phi(S), \nu, g$
\qquad
$\longrightarrow \Phi(S), \nu-c, g$

Blowing-up at an interior fixed point:

Classification of compact four dimensional Hamiltonian S^{1}-spaces

Theorem (Karshon)

Every compact four dimensional Hamiltonian S^{1}-space space is obtained by a sequence of S^{1}-equivariant symplectic bow-ups from

- a space with two fixed surfaces and no interior fixed points, or
- $\mathbb{C P}^{2}$ or a Hirzebruch surface, with a symplectic form and a circle action that come from a Kähler form and a toric action.

Classification of compact four dimensional Hamiltonian S^{1}-spaces

Theorem (Karshon)

Every compact four dimensional Hamiltonian S^{1}-space space is obtained by a sequence of S^{1}-equivariant symplectic bow-ups from

- a space with two fixed surfaces and no interior fixed points, or
- $\mathbb{C P}^{2}$ or a Hirzebruch surface, with a symplectic form and a circle action that come from a Kähler form and a toric action.

Example (Along MA in P_{5} where $\mu>1$ and $c_{i}=\frac{1}{2}$)

$0, b$

Extended graphs

- $\operatorname{Symp}_{h}(M, \omega) \rightarrow \operatorname{Symp}(M, \omega) \rightarrow \operatorname{Aut}\left(H_{2}(M, \mathbb{Z})\right)=\operatorname{Aut}_{c_{1},[\omega]}$;
- Along MA, Symp/Symp ${ }_{h} \simeq \mathbb{D}_{4}$, where \mathbb{D}_{4} is the Weyl group of the Dynkin diagram of type \mathbb{D} with 4 vertices;
- To keep track of the action of Symp on homology \rightarrow consider graphs in which can read the homology;
- \{Hamiltonian S^{1}-spaces + basis for $\left.H_{2}\right\} \leftrightarrow\{$ extended graphs $\}$ up to equivariant symplectomorphisms in Symp_{h}.

Extended graphs

- $\operatorname{Symp}_{h}(M, \omega) \rightarrow \operatorname{Symp}(M, \omega) \rightarrow \operatorname{Aut}\left(H_{2}(M, \mathbb{Z})\right)=\operatorname{Aut}_{c_{1},[\omega]}$;
- Along MA, Symp/Symp ${ }_{h} \simeq \mathbb{D}_{4}$, where \mathbb{D}_{4} is the Weyl group of the Dynkin diagram of type \mathbb{D} with 4 vertices;
- To keep track of the action of Symp on homology \rightarrow consider graphs in which can read the homology;
- \{Hamiltonian S^{1}-spaces + basis for $\left.\mathrm{H}_{2}\right\} \leftrightarrow\{$ extended graphs\} up to equivariant symplectomorphisms in Symph.

Extended graphs

- $\operatorname{Symp}_{h}(M, \omega) \rightarrow \operatorname{Symp}(M, \omega) \rightarrow \operatorname{Aut}\left(H_{2}(M, \mathbb{Z})\right)=\operatorname{Aut}_{c_{1},[\omega]}$;
- Along MA, Symp/Symp ${ }_{h} \simeq \mathbb{D}_{4}$, where \mathbb{D}_{4} is the Weyl group of the Dynkin diagram of type \mathbb{D} with 4 vertices;
- To keep track of the action of Symp on homology \rightarrow consider graphs in which can read the homology;
- \{Hamiltonian S^{1}-spaces + basis for $\left.H_{2}\right\} \leftrightarrow\{$ extended graphs $\}$ up to equivariant symplectomorphisms in Symp_{h}.

Extended graphs

- $\operatorname{Symp}_{h}(M, \omega) \rightarrow \operatorname{Symp}(M, \omega) \rightarrow \operatorname{Aut}\left(H_{2}(M, \mathbb{Z})\right)=\operatorname{Aut}_{c_{1},[\omega]} ;$
- Along $M A$, Symp $/ \operatorname{Symp}_{h} \simeq \mathbb{D}_{4}$, where \mathbb{D}_{4} is the Weyl group of the Dynkin diagram of type \mathbb{D} with 4 vertices;
- To keep track of the action of Symp on homology \rightarrow consider graphs in which can read the homology;
- \{Hamiltonian S^{1}-spaces + basis for $\left.H_{2}\right\} \leftrightarrow\{$ extended graphs $\}$ up to equivariant symplectomorphisms in Symp_{h}.

Family of graphs along MA ($\mu>1$ and $c_{i}=\frac{1}{2}$)

Circle action $z_{0, i j}$

$$
B+F-E_{1}-E_{2}-E_{3}-E_{4}
$$

Circle action z_{1}
$i, j, \ell, m \in\{1, \ldots, 4\}$ are all distinct

New family of graphs if $\mu>\frac{3}{2}$

Circle action $z_{0, i j \ell}$

Circle action $z_{1, i}$

List of Hamiltonian S^{1}-spaces along MA

Lemma

The Hamiltonian circle actions on the symplectic manifolds encoded by the edge MA are of 5 types:

- z_{k}, with fixed spheres in classes $B-k F$ and $B+k F-E_{1}-E_{2}-E_{3}-E_{4}$ (exists iff $\mu>k$ and $\mu>2-k$);
- $z_{k, i}$, with fixed spheres in classes $B-k F-E_{i}$ and $B+k F-E_{j}-E_{\ell}-E_{m}$ (exists iff $\mu>k+\frac{1}{2}$ and $\mu>\frac{3}{2}-k$);
- $z_{k, i j}$, with fixed spheres in classes $B-k F-E_{i}-E_{j}$ and $B+k F-E_{\ell}-E_{m}$ (exists iff $\mu>k+1$);
- $z_{k, i j \ell}$, with fixed spheres in classes $B-k F-E_{i}-E_{j}-E_{\ell}$ and $B+k F-E_{m}$ (exists iff $\mu>k+\frac{3}{2}$);
- $z_{k, 1234}$, with fixed spheres in classes $B-k F-E_{1}-E_{2}-E_{3}-E_{4}$ and $B+k F$ (exists iff $\mu>k+2$).

Remarks

- When $1<\mu \leq \frac{3}{2}$ there exist only four Hamiltonian circle actions: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$. Not enough to justify $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)=\mathbb{Z}_{5}$. The graphs only encode equivariant blow-ups. But there are no "exotic" circle actions by works of Karshon, Kessler and Pinsonnault.
\Rightarrow there exist a loop in π_{1} which is not realized by a circle action.
- The number of Hamiltonian circle actions keeps increasing as the values of μ increase, but the rank of π_{1} remains constant along $M A$ [$\mathrm{Li}-\mathrm{Li}-\mathrm{Wu}$] as μ increases \Rightarrow there can only be at most 5 independent circle actions as elements of the fundamental group.

Remarks

- When $1<\mu \leq \frac{3}{2}$ there exist only four Hamiltonian circle actions: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$. Not enough to justify $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)=\mathbb{Z}_{5}$. The graphs only encode equivariant blow-ups. But there are no "exotic" circle actions by works of Karshon, Kessler and Pinsonnault.
\Rightarrow there exist a loop in π_{1} which is not realized by a circle action.
- The number of Hamiltonian circle actions keeps increasing as the values of μ increase, but the rank of π_{1} remains constant along MA [Li-Li-Wu] as μ increases \Rightarrow there can only be at most 5 independent circle actions as elements of the fundamental group.

A generating set for $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ (if $\left.\mu>\frac{3}{2}\right)$

Claim: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, seen as elements of the fundamental group, form a basis of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ along $M A$, if $\mu>\frac{3}{2}$.

Steps in the proof:

- Obtain relations between the loops $z_{k}, z_{k, i}, z_{k, i j}, z_{k, i j \ell}$ and $z_{k, 1234}$, that come from embedding pairs of loops inside torus actions. Show, in particular, all loops are linear combinations of these 5 actions. Uses Delzant's classification of toric actions and Karshon's classification.
- Compute the Seidel elements of $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, i.e., the image of these 5 loops in $\mathrm{QH}_{4}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$ by the Seidel morphism $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$;
- Show that the 5 Seidel elements generate a free subgroup of dimension 5 of the group of invertible elements in $\mathrm{QH}_{*}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$.

A generating set for $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, G_{1}, \ldots, C_{4}}, \omega\right)\right)$ (if $\left.\mu>\frac{3}{2}\right)$

Claim: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, seen as elements of the fundamental group, form a basis of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ along $M A$, if $\mu>\frac{3}{2}$.

Steps in the proof:

- Obtain relations between the loops $z_{k}, z_{k, i}, z_{k, j}, z_{k, j i \ell}$ and $z_{k, 1234}$, that come from embedding pairs of loops inside torus actions. Show, in particular, all loops are linear combinations of these 5 actions. Uses Delzant's classification of toric actions and Karshon's classification.
- Compute the Seidel elements of $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, i.e., the image of these 5 loops in $\mathrm{QH}_{4}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$ by the Seidel morphism $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$
- Show that the 5 Seidel elements generate a free subgroup of dimension 5 of the group of invertible elements in $\mathrm{QH}_{*}\left(M_{\mu, c_{1} \ldots \ldots, c_{4}}\right)$.

A generating set for $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ (if $\left.\mu>\frac{3}{2}\right)$

Claim: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, seen as elements of the fundamental group, form a basis of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ along $M A$, if $\mu>\frac{3}{2}$.

Steps in the proof:

- Obtain relations between the loops $z_{k}, z_{k, i}, z_{k, i j}, z_{k, i j \ell}$ and $z_{k, 1234}$, that come from embedding pairs of loops inside torus actions. Show, in particular, all loops are linear combinations of these 5 actions. Uses Delzant's classification of toric actions and Karshon's classification.
- Compute the Seidel elements of $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, i.e., the image of these 5 loops in $\mathrm{QH}_{4}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$ by the Seidel morphism $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$;
- Show that the 5 Seidel elements generate a free subgroup of dimension 5 of the group of invertible elements in $\mathrm{QH}_{*}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$.

A generating set for $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ (if $\left.\mu>\frac{3}{2}\right)$

Claim: $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, seen as elements of the fundamental group, form a basis of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ along $M A$, if $\mu>\frac{3}{2}$.

Steps in the proof:

- Obtain relations between the loops $z_{k}, z_{k, i}, z_{k, i j}, z_{k, i j \ell}$ and $z_{k, 1234}$, that come from embedding pairs of loops inside torus actions. Show, in particular, all loops are linear combinations of these 5 actions. Uses Delzant's classification of toric actions and Karshon's classification.
- Compute the Seidel elements of $z_{0,12}, z_{0,13}, z_{0,14}, z_{1}$ and $z_{1,4}$, i.e., the image of these 5 loops in $\mathrm{QH}_{4}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$ by the Seidel morphism $\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$;
- Show that the 5 Seidel elements generate a free subgroup of dimension 5 of the group of invertible elements in $\mathrm{QH}_{*}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$.

Delzant classification

Definition

A Delzant polytope in \mathbb{R}^{n} is a convex polytope such that the n edges meeting at each vertex are given by a basis of \mathbb{Z}^{n}.

Definition

A symplectic toric manifold is a compact connected symplectic manifold
$\left(M^{2 n}, \omega\right)$ equipped with an effective Hamiltonian action of a torus \mathbb{T}^{n} and with a choice of a moment map $\phi: M \rightarrow \mathbb{R}^{n}$

Theorem (Delzant)

Symplectic toric manifolds up to equivariant symplectomorphisms are classified by Delzant polytopes up to transformations of $G L(2, \mathbb{Z})$.
toric manifolds $\} \rightarrow\{$ Delzant polytopes $\}$
$\left(M^{2 n}, \omega, T^{n}, \phi\right) \mapsto \phi(M)$

Delzant classification

Definition

A Delzant polytope in \mathbb{R}^{n} is a convex polytope such that the n edges meeting at each vertex are given by a basis of \mathbb{Z}^{n}.

Definition

A symplectic toric manifold is a compact connected symplectic manifold $\left(M^{2 n}, \omega\right)$ equipped with an effective Hamiltonian action of a torus \mathbb{T}^{n} and with a choice of a moment map $\phi: M \rightarrow \mathbb{R}^{n}$.

Theorem (Delzant)
Symplectic toric manifolds up to equivariant symplectomorphisms are classified by Delzant polytopes up to transformations of $G L(2, \mathbb{Z})$
\{toric manifolds\} \rightarrow \{Delzant polytopes $\}$
$\left(M^{2 n}, \omega, \mathbb{T}^{n}, \phi\right) \mapsto \phi(M)$

Delzant classification

Definition

A Delzant polytope in \mathbb{R}^{n} is a convex polytope such that the n edges meeting at each vertex are given by a basis of \mathbb{Z}^{n}.

Definition

A symplectic toric manifold is a compact connected symplectic manifold $\left(M^{2 n}, \omega\right)$ equipped with an effective Hamiltonian action of a torus \mathbb{T}^{n} and with a choice of a moment map $\phi: M \rightarrow \mathbb{R}^{n}$.

Theorem (Delzant)

Symplectic toric manifolds up to equivariant symplectomorphisms are classified by Delzant polytopes up to transformations of $G L(2, \mathbb{Z})$.

$$
\begin{aligned}
\{\text { toric manifolds }\} & \rightarrow\{\text { Delzant polytopes }\} \\
\qquad\left(M^{2 n}, \omega, \mathbb{T}^{n}, \phi\right) & \mapsto \phi(M) .
\end{aligned}
$$

Example

Consider the two toric actions on $\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, c_{2}}\right) \mathbb{T}_{0}^{2}$ and \mathbb{T}_{1}^{2}

Performing the $S L(2, \mathbb{Z})$ transformation given by the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

in the toric manifolds equipped with $\mathbb{T}_{0}^{2}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ and $\mathbb{T}_{1}^{2}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$

Performing the $S L(2, \mathbb{Z})$ transformation given by the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

in the toric manifolds equipped with $\mathbb{T}_{0}^{2}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ and $\mathbb{T}_{1}^{2}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ one obtains

$\mathbf{x}_{0}, \mathbf{x}_{0}+\mathbf{y}_{0}$

$\mathbf{x}_{1}, \mathbf{x}_{1}+\mathbf{y}_{1}$

Performing the $S L(2, \mathbb{Z})$ transformation given by the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

in the toric manifolds equipped with $\mathbb{T}_{0}^{2}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ and $\mathbb{T}_{1}^{2}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ one obtains

Projecting in the direction perpendicular to the y-axis we obtain the same graph for the two polytopes:

Performing the $S L(2, \mathbb{Z})$ transformation given by the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

in the toric manifolds equipped with $\mathbb{T}_{0}^{2}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ and $\mathbb{T}_{1}^{2}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ one obtains

Projecting in the direction perpendicular to the y-axis we obtain the same graph for the two polytopes: $\mathbf{x}_{0}+\mathbf{y}_{0}=\mathbf{x}_{1}+\mathbf{y}_{1}$.

(small) Quantum homology

$$
\mathrm{QH}_{*}(M ; \Pi)=H_{*}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \Pi^{\text {uiviv }}\left[q, q^{-1}\right]
$$

where q is a polynomial variable of degree 2 and $\Pi^{\text {univ }}$ (Novikov ring) is a generalised Laurent series ring in a variable of degree 0 :

$\mathrm{QH}_{*}(M ; \Pi)$ is \mathbb{Z}-graded: $\operatorname{deg}\left(a \otimes q^{d} t^{\kappa}\right)=\operatorname{deg}(a)+2 d$ with $a \in H_{*}(M)$
Quantum intersection product: $a * b \in \mathrm{OH}_{i} ; \operatorname{m}(M)$ where $a \in H_{i}(M)$ and $b \in H_{j}(M)$ depends on some Gromov-Witten invariants.

(small) Quantum homology

$$
\mathrm{QH}_{*}(M ; \Pi)=H_{*}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \Pi^{\text {univ }}\left[q, q^{-1}\right]
$$

where q is a polynomial variable of degree 2 and $\Pi^{\text {univ (}}$ (Novikov ring) is a generalised Laurent series ring in a variable of degree 0 :

$$
\Pi^{\text {univ }}:=\left\{\sum_{\kappa \in \mathbb{R}} r_{\kappa} t^{\kappa} \mid r_{\kappa} \in \mathbb{Q}, \#\left\{\kappa>c \mid r_{\kappa} \neq 0\right\}<\infty, \forall c \in \mathbb{R}\right\} .
$$

$\mathrm{QH}_{*}(M ; \Pi)$ is \mathbb{Z}-graded: $\operatorname{deg}\left(a \otimes q^{d} t^{\kappa}\right)=\operatorname{deg}(a)+2 d$ with $a \in H_{*}(M)$.
Quantum intersection product: $a * b \in \mathrm{OH}_{i ; \operatorname{dim} M}(M ; \Pi)$, where $a \in H_{i}(M)$ and $b \in H_{j}(M)$ depends on some Gromov-Witten invariants.

(small) Quantum homology

$$
\mathrm{QH}_{*}(M ; \Pi)=H_{*}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \Pi^{\text {univ }}\left[q, q^{-1}\right]
$$

where q is a polynomial variable of degree 2 and $\Pi^{\text {univ (}}$ (Novikov ring) is a generalised Laurent series ring in a variable of degree 0 :

$$
\Pi^{\text {univ }}:=\left\{\sum_{\kappa \in \mathbb{R}} r_{\kappa} t^{\kappa} \mid r_{\kappa} \in \mathbb{Q}, \#\left\{\kappa>c \mid r_{\kappa} \neq 0\right\}<\infty, \forall c \in \mathbb{R}\right\} .
$$

$\mathrm{QH}_{*}(M ; \Pi)$ is \mathbb{Z}-graded: $\operatorname{deg}\left(a \otimes q^{d} t^{\kappa}\right)=\operatorname{deg}(a)+2 d$ with $a \in H_{*}(M)$.
Quantum intersection product: $a * b \in \mathrm{QH}_{i+j-\operatorname{dim}} M(M ; \Pi)$, where $a \in H_{i}(M)$ and $b \in H_{j}(M)$ depends on some Gromov-Witten invariants.

(small) Quantum homology

$$
\mathrm{QH}_{*}(M ; \Pi)=H_{*}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \Pi^{\text {univ }}\left[q, q^{-1}\right]
$$

where q is a polynomial variable of degree 2 and $\Pi^{\text {univ (}}$ (Novikov ring) is a generalised Laurent series ring in a variable of degree 0 :

$$
\Pi^{\text {univ }}:=\left\{\sum_{\kappa \in \mathbb{R}} r_{\kappa} t^{\kappa} \mid r_{\kappa} \in \mathbb{Q}, \#\left\{\kappa>c \mid r_{\kappa} \neq 0\right\}<\infty, \forall c \in \mathbb{R}\right\}
$$

$\mathrm{QH}_{*}(M ; \Pi)$ is \mathbb{Z}-graded: $\operatorname{deg}\left(a \otimes q^{d} t^{\kappa}\right)=\operatorname{deg}(a)+2 d$ with $a \in H_{*}(M)$.
Quantum intersection product: $a * b \in \mathrm{QH}_{i+j-\operatorname{dim}} M(M ; \Pi)$, where $a \in H_{i}(M)$ and $b \in H_{j}(M)$ depends on some Gromov-Witten invariants.

$\mathrm{QH}_{*}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)$

Let $b_{i j}=\left(B-E_{i}-E_{j}\right) \otimes q \frac{t^{\frac{1}{2}}}{1-t^{1-\mu}}, f_{i j}=\left(F-E_{i}-E_{j}\right) \otimes q \frac{t^{\frac{1}{2}}}{1-t^{1-\mu}}$ and $e_{i}=E_{i} \otimes q \frac{t^{\frac{1}{2}}}{1-t^{1-\mu}}$.

Theorem (A-Barata-Pinsonnault-Reis)

$$
\mathrm{QH}_{*}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right) \simeq \Pi^{\text {univ }}\left[b_{i j}, f_{i j}, e_{i}\right] /(\text { relations }),
$$

where the relations are the following:

$$
\begin{aligned}
& b_{i j}^{2}=2 b_{i j} f_{i j}+t_{i j}+t_{k \ell}+1, \quad b_{i j} b_{i k}=b_{i j} f_{i j}+f_{j \ell}+1, \quad b_{i j} b_{k \ell}=1, \quad f_{i j} f_{k \ell}=0, \\
& f_{i j} f_{i k}=f_{i j}\left(b_{i j}+1\right), \quad \quad \quad \quad_{i j}^{2}=2 f_{i j}\left(b_{i j}+1\right), \quad f_{i k}\left(b_{i j}+1\right)=0, \quad\left(f_{i j}+f_{k \ell}\right)\left(b_{i j}+1\right)=0, \\
& f_{i j}\left(e_{k}+\frac{t^{1-\mu}}{1-t^{1-\mu}}\right)=0, \quad b_{i j}\left(f_{i j}+e_{i}+\frac{t^{1-\mu}}{1-t^{1-\mu}}\right)=e_{j}+\frac{t^{1-\mu}}{1-t^{1-\mu}}, \quad f_{i j}\left(b_{i j}+e_{i}+\frac{1}{1-t^{1-\mu}}\right)=0, \\
& b_{i j}\left(e_{k}+\frac{t^{1-\mu}}{1-t^{1-\mu}}\right)=f_{k \ell}+e_{\ell}+\frac{t^{1-\mu}}{1-t^{1-\mu}}, \quad e_{i}^{2}=e_{i} e_{j}+t_{i j}+b_{i j} f_{i j}+\left(e_{j}-e_{i}\right) \frac{t^{1-\mu}}{1-t^{1-\mu}} .
\end{aligned}
$$

It follows from the formulas for the quantum product on a rational surface obtained by Crauder-Miranda'95.

Seidel morphism

$\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ "counts" pseudo-holomorphic sections of a bundle $M_{\Lambda} \rightarrow S^{2}$ associated to a loop $\Lambda \subset \operatorname{Ham}(M, \omega)$. M_{Λ} is the total space of the fibration over S^{2} with fiber M which consists of two trivial fibrations over 2-discs, glued along their boundary via Λ.

Theorem (McDuff-Tolman'06)

Let Λ be an Hamiltonian circle action on (M, ω) with moment map Φ_{Λ}. If the maximal fixed point component $F_{\max }$ is semifree and $\left[F_{\max }\right]=A \in H_{*}(M)$ then there are classes $a_{B} \in H_{*}(M) s . t$.
$S(\Lambda)=A \otimes q t^{\phi_{\text {max }}}+\sum_{B \in H_{2}(M: Z)>0} a_{B} \otimes q^{1-a(B) t^{\oplus} \max ^{-w(B)} .}$. - if there exists an almost complex structure J on M so that (M, J) is Fano (all
J-pseudd-holomorphic spheres in M have positive first Chern number) and
the codimension of $F_{\text {max }}$ is 2 then $S(\Lambda)=A \otimes q t^{\phi_{\max }}$. [McDuff-Tolman'06]

- if (M, J) is $N E F\left(c_{1}(B) \geq 0\right.$ for every class $B \in H_{2}(M)$ with a J-holomorphic
sphere representative) \rightarrow there are infinitely many contributions to the Seidel
elements, but can be expressed by closed formulas [A-Leclercq'18].

Seidel morphism

$\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ "counts" pseudo-holomorphic sections of a bundle $M_{\Lambda} \rightarrow S^{2}$ associated to a loop $\Lambda \subset \operatorname{Ham}(M, \omega)$. M_{Λ} is the total space of the fibration over S^{2} with fiber M which consists of two trivial fibrations over 2-discs, glued along their boundary via Λ.

Theorem (McDuff-Tolman'06)

Let Λ be an Hamiltonian circle action on (M, ω) with moment map Φ_{Λ}. If the maximal fixed point component $F_{\max }$ is semifree and $\left[F_{\max }\right]=A \in H_{*}(M)$ then there are classes $a_{B} \in H_{*}(M)$ s. t.
$\mathcal{S}(\Lambda)=A \otimes q t^{\Phi_{\max }}+\sum_{B \in H_{2}^{S}(M ; \mathbb{Z})>0} a_{B} \otimes q^{1-c_{1}(B)} t^{\Phi_{\max }-\omega(B)}$.

- if there exists an almost complex structure J on M so that (M, J) is Fano (all J-pseudo-holomorphic spheres in M have positive first Chern number) and the codimension of $F_{\max }$ is 2 then $\mathcal{S}(\Lambda)=A \otimes q t^{\Phi_{\max }}$. [McDuff-Tolman'06]
- if (M, J) is NEF $\left(c_{1}(B) \geq 0\right.$ for every class $B \in H_{2}(M)$ with a J-holomorphic
sphere representative) \rightarrow there are infinitely many contributions to the Seidel
elements, but can be expressed by closed formulas [A-Leclercq'18].

Seidel morphism

$\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ "counts" pseudo-holomorphic sections of a bundle $M_{\Lambda} \rightarrow S^{2}$ associated to a loop $\Lambda \subset \operatorname{Ham}(M, \omega)$. M_{Λ} is the total space of the fibration over S^{2} with fiber M which consists of two trivial fibrations over 2-discs, glued along their boundary via Λ.

Theorem (McDuff-Tolman'06)

Let Λ be an Hamiltonian circle action on (M, ω) with moment map Φ_{Λ}. If the maximal fixed point component $F_{\max }$ is semifree and $\left[F_{\max }\right]=A \in H_{*}(M)$ then there are classes $a_{B} \in H_{*}(M)$ s. t.
$\mathcal{S}(\Lambda)=A \otimes q t^{\Phi_{\max }}+\sum_{B \in H_{2}^{s}(M ; \mathbb{Z})>0} a_{B} \otimes q^{1-c_{1}(B)} t^{\Phi_{\max }-\omega(B)}$.

- if there exists an almost complex structure J on M so that (M, J) is Fano (all J-pseudo-holomorphic spheres in M have positive first Chern number) and the codimension of $F_{\max }$ is 2 then $\mathcal{S}(\Lambda)=\boldsymbol{A} \otimes q t^{\Phi_{\max }}$. [McDuff-Tolman'06]
- if (M, J) is $\operatorname{NEF}\left(c_{1}(B) \geq 0\right.$ for every class $B \in H_{2}(M)$ with a J-holomorphic sphere representative) \rightarrow there are infinitely many contributions to the Seidel elements, but can be expressed by closed formulas [A-Leclercq'18]

Seidel morphism

$\mathcal{S}: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathrm{QH}_{*}(M)$ "counts" pseudo-holomorphic sections of a bundle $M_{\Lambda} \rightarrow S^{2}$ associated to a loop $\Lambda \subset \operatorname{Ham}(M, \omega)$. M_{Λ} is the total space of the fibration over S^{2} with fiber M which consists of two trivial fibrations over 2-discs, glued along their boundary via Λ.

Theorem (McDuff-Tolman'06)

Let Λ be an Hamiltonian circle action on (M, ω) with moment map Φ_{Λ}. If the maximal fixed point component $F_{\max }$ is semifree and $\left[F_{\max }\right]=A \in H_{*}(M)$ then there are classes $a_{B} \in H_{*}(M)$ s. t.
$\mathcal{S}(\Lambda)=A \otimes q t^{\Phi_{\max }}+\sum_{B \in H_{2}^{S}(M ; \mathbb{Z})>0} a_{B} \otimes q^{1-c_{1}(B)} t^{\Phi_{\max }-\omega(B)}$.

- if there exists an almost complex structure J on M so that (M, J) is Fano (all J-pseudo-holomorphic spheres in M have positive first Chern number) and the codimension of $F_{\text {max }}$ is 2 then $\mathcal{S}(\Lambda)=A \otimes q t^{\Phi_{\text {max }}}$. [McDuff-Tolman'06]
- if (M, J) is NEF $\left(c_{1}(B) \geq 0\right.$ for every class $B \in H_{2}(M)$ with a J-holomorphic sphere representative) \rightarrow there are infinitely many contributions to the Seidel elements, but can be expressed by closed formulas [A-Leclercq'18].

Seidel elements

Seidel elements of a generating set of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)\right)$ if $\mu>\frac{3}{2}$:

- $\mathcal{S}\left(z_{0,1 i}\right)=b_{j \ell}, \quad i=2,3,4$ and i, j, ℓ all distinct;
- $\mathcal{S}\left(z_{1}\right)=b_{12}+f_{34} ;$
- $\mathcal{S}\left(z_{1,4}\right)=\left(b_{12}+f_{34}+e_{4}+\frac{t^{1-\mu}}{1-t^{1-\mu}}\right) t^{\alpha}\left(1-t^{1-\mu}\right)$ where $\alpha=\frac{1}{6(1-2 \mu)}$.

Further questions

Question 1: Are there other points in the reduced cone P_{5} for which not all the generators of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)\right)$ can be represented by Hamiltonian circle actions ?

Conjecture: Yes. There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu}, c_{1}, \ldots, c_{4}, \omega\right)\right)$ cannot all be realized by circle actions.
Main reason: it appears that at least one circle action that has a fixed sphere with positive area in class $B-E_{j}-E_{k}-E_{\ell}$ or $B-F-E_{i}\left(\mu-c_{j}-c_{k}-c_{\ell}>0\right.$ or $\mu-1-c_{i}>0$) has to be included in the set of generators. However, this condition does not necessarily hold for all points in the symplectic cone, in particular, for points close to the monotone point $M\left(\mu=1\right.$ and $\left.c_{i}=\frac{1}{2}\right)$
Question 2: Does the loop which cannot be represented by an Hamiltonian circle action give rise to new elements in higher homotopy groups (via Samelson products) as in Buse's example?

Further questions

Question 1: Are there other points in the reduced cone P_{5} for which not all the generators of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)\right)$ can be represented by Hamiltonian circle actions ?

Conjecture: Yes. There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ cannot all be realized by circle actions.

Main reason: it appears that at least one circle action that has a fixed sphere with positive area in class $B-E_{j}-E_{k}-E_{\ell}$ or $B-F-E_{i}\left(\mu-c_{j}-c_{k}-c_{\ell}>0\right.$ or $\mu-1-c_{i}>0$) has to be included in the set of generators. However, this condition does not necessarily hold for all points in the symplectic cone, in particular, for points close to the monotone point $M\left(\mu=1\right.$ and $\left.c_{i}=\frac{1}{2}\right)$.

Question 2: Does the loon which cannot be represented by an Hamiltonian circle action give rise to new elements in higher homotopy groups (via Samelson products) as in Buse's example?

Further questions

Question 1: Are there other points in the reduced cone P_{5} for which not all the generators of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)\right)$ can be represented by Hamiltonian circle actions ?

Conjecture: Yes. There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ cannot all be realized by circle actions.
Main reason: it appears that at least one circle action that has a fixed sphere with positive area in class $B-E_{j}-E_{k}-E_{\ell}$ or $B-F-E_{i}\left(\mu-c_{j}-c_{k}-c_{\ell}>0\right.$ or $\mu-1-c_{i}>0$) has to be included in the set of generators. However, this condition does not necessarily hold for all points in the symplectic cone, in particular, for points close to the monotone point M ($\mu=1$ and $c_{i}=\frac{1}{2}$).

Question 2: Does the loop which cannot be represented by an Hamiltonian circle action give rise to new elements in higher homotopy groups (via Samelson products) as in Buse's example?

Further questions

Question 1: Are there other points in the reduced cone P_{5} for which not all the generators of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}\right)\right)$ can be represented by Hamiltonian circle actions ?

Conjecture: Yes. There is a neighbourhood of the monotone point M in the reduced cone such that the generators of the fundamental group of $\pi_{1}\left(\operatorname{Symp}_{h}\left(M_{\mu, c_{1}, \ldots, c_{4}}, \omega\right)\right)$ cannot all be realized by circle actions.
Main reason: it appears that at least one circle action that has a fixed sphere with positive area in class $B-E_{j}-E_{k}-E_{\ell}$ or $B-F-E_{i}\left(\mu-c_{j}-c_{k}-c_{\ell}>0\right.$ or $\mu-1-c_{i}>0$) has to be included in the set of generators. However, this condition does not necessarily hold for all points in the symplectic cone, in particular, for points close to the monotone point $M\left(\mu=1\right.$ and $\left.c_{i}=\frac{1}{2}\right)$.
Question 2: Does the loop which cannot be represented by an Hamiltonian circle action give rise to new elements in higher homotopy groups (via Samelson products) as in Buse's example?

Thank you!

