
Exactly solvable models for statistical machine learning: 
A study of over-parametrization  

Florent Krzakala 

Institut Universitaire de France



Empirical Risk Minimisation

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))(Xi ∈ ℝd, yi ∈ ℝ), i = 1,…, n

Ex: linear network

fθ(X) = θ ⋅ XModel:

Loss :ℒ(y, h) L(f(~x), y) = (1� yf(~x))2

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

Square Loss

Logistic loss/Cross-entropy



Empirical Risk Minimisation

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))(Xi ∈ ℝd, yi ∈ ℝ), i = 1,…, n

Loss :ℒ(y, h) L(f(~x), y) = (1� yf(~x))2

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

Square Loss

Logistic loss/Cross-entropy

Model:

Ex: neural networks

fθ(X) = η(0) (W(0)η(1) (W(1)…η(L) (W(L) ⋅ X)))
θ = {W(0), W(1), …, W(L)}



Statistical learning 101

{y(μ), ⃗x (μ)}m
μ=1

Supervised Binary classification
• Dataset, m examples
• Function class f ⃗w ∈ ℱ

∀f ⃗w ∈ ℱ, ϵgen( f ⃗w) − ϵm
train( f ⃗w) ≤ ℜm(ℱ) +

log(1/δ)
m

With probability at least 1-δ, 

Theorem: Uniform convergence
Rademacher complexity

Generalization error Train error

ℜm(ℱ) ≤ C
dVC(ℱ)

m
Rademacher Complexity is bounded  
by VC dimension for some constant C

Classical result



UNDERSTANDING MACHINE LEARNING 
         WORST CASE ANALYSIS IS NOT ENOUGH

Deep learning brought unprecedented empirical/engineering 
progress into many applications, including fundamental sciences.  

Some theory open questions: 
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Deep learning brought unprecedented empirical/engineering 
progress into many applications, including fundamental sciences.  

Some theory open questions: 

From “Reflections after refereeing papers for NIPS”, Leo Breiman, 1995. 
Still not answered! 

UNDERSTANDING MACHINE LEARNING 
         WORST CASE ANALYSIS IS NOT ENOUGH



Physicists like models of data

Instead of worst case analysis, we could instead study models of data

credit: XKCD
[P. Carnevali & S. Patarnello  (1987) 
N. Tishby, E. Levin, & S. Solla (1989) 
E. Gardner, B. Derrida (1989)]


Teacher - Student 

Framework



Can a neural network learn a neural network? 

Generates data X, n samples of p 
dimensional data, e.g. random input 
vectors.  

Generates weights w*, e.g. iid random.        

Generates labels y. 

Teacher-network 

data
X

y
labels

w1

w3

teacher-weights

w2
*

*
*

data
X

y
labels

w1

w3

student-weights

w2

Student-network

Observes X, y 

How does the generalisation error 
depend on the number of samples n?



Statistical mechanics

ℛ (θ, {X, y}) =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))̂θ = argminℛ (θ, {X, y})

PBoltzmann(θ, {X, y}) =
1

Z({X, y})
e−βℛ(θ, {X, y})

Effective Statistical Mechanics problem, with disordered interaction depending on  {X, y}

Need to study the zero-temperature limit of the averaged “free energy” −𝔼 log Z({X, y})



MANY DIRECTIONS EXPLORED IN MY GROUP

Study of energy landscape Dynamics of learning in NN

Kernel vs Neural nets Bias-Variance trade-off

Alternative to back-propagation

Rigorous approach 
 to replica method



Bias-Variance trade-off: 
Reasonable expectations…

error

|bias|
variance

Complexity



Parity-MNIST,	5	layers,	FCN,	
	hinge	loss,	no	regularisation

zero	training		
error

P
#Pa

… versus reality

[Geiger et al. ’18]

See	also	[Geman	et	al.	’92;	Opper	’95;	Neyshabur,	Tomyoka,	Srebro,	2015;	Advani-Saxe	2017;	
Belkin,	Hsu,	Ma,	Soumik,	Mandal	2019;	Nakkiran	et	al.	2019]	

Bias-Variance trade-off: 

error

Complexity



[Nakkiran	et	al.	2019]	

The “Double-Descent”  
[M. Belkin et al ’18]

See	also	[Geman	et	al.	’92;	Opper	’95;	Neyshabur,	Tomyoka,	Srebro,	2015;	Advani-Saxe	2017;	
Belkin,	Hsu,	Ma,	Soumik,	Mandal	2019;	Nakkiran	et	al.	2019]	

… versus reality
Bias-Variance trade-off: 



Learning with  
a simple one-layer network 

1



Teacher-student perceptron

Simplest version


⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX( ⃗x ) = 𝒩(0,1d){
yμ ≡ sign( ⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d  , 

 with  fixed
→ ∞

α = n/d

Physics literature Rigorous proofs

[…, Opper Kinzel ’90, Kleinz, Seung ‘90,  
Opper, Haussler ’91,  Seung Sompolinsky,  Tishby 
’92, Watkin Rau &  Biehl ’93, Opper, Kinzel ’95,…]

[…., Barbier, FK, Macris, Miolane, Zdeborova ’17 
Trampoulidis, Abbasi, Hassbi ’18 
Montanari, Ruan, Sohn, Yan ’20 
Aubin, FK, Lu, Zdeborova ’20, 
Gerbelot, Abbara, FK ‘20….]

1989



Teacher-student perceptron

Physics literature Rigorous proofs

[…, Opper Kinzel ’90, Kleinz, Seung ‘90,  
Opper, Haussler ’91,  Seung Sompolinsky,  Tishby 
’92, Watkin Rau &  Biehl ’93, Opper, Kinzel ’95,…]

[…., Barbier, FK, Macris, Miolane, Zdeborova ’17 
Trampoulidis, Abbasi, Hassbi ’18 
Montanari, Ruan, Sohn, Yan ’20 
Aubin, FK, Lu, Zdeborova ’20, 
Gerbelot, Abbara, FK ‘20….]

1989

data
X

y
labels

w*
weights

data
weights

data
X

y
labels

w
weights

data
weights

Teacher Student



A rigorous solution

[Aubin, FK, Lu, Zdeborova ’20]



L2 loss 

ℛ(θ, {X, y}) =
1
n

n

∑
i=1

∥yi − θXi∥2
2

̂θ = argminℛ(θ, {X, y})

Simplest version


⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX( ⃗x ) = 𝒩(0,1d){
yμ ≡ sign( ⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d  , 

 with  fixed
→ ∞

α = n/d



L2 loss: what to expect?

α =
n
d

Training error

1

Zero energy  
Solutions No zero energy solution

overparametrized



✓̂ = argmin(||Y �A✓||22)
||Y �A✓||22 = (Y �A✓)T (Y �A✓) = YTY + ✓TATA✓ � 2YTA✓

AT Aθ = ATY

Taking the extremum yields the normal equations:
d x d

d x 1 n x 1

d x n

Unique solution if ATA is full rank  
This requires (at least) n>p  
(no more unknown than datapoints)

̂θ = (AT A)−1ATY

Otherwise, many solutions may exists.  
A popular choice leads  

to the least-norm (in l2 norm) solution:

✓̂ln = AT (AAT )�1Y

Ordinary least square



Least norm solution

α =
n
d1

Zero energy  
Solutions No zero energy solution

X
X

X X

Training error



Least norm solution yields the “double descent”

Rigorous result from [Aubin, FK, Lu, Zdeborova ’20], but first discussed by Manfred Opper in ’95!

Generalisation 
 error



Zero energy  
Solutions No zero energy solution

X
X

X X

Biasing to low l2 norm solutions is good!

Least norm solution yields the “double descent”

This explains the non-monotonic curve



What if I do gradient descent? 

Zero energy  
Solutions

X
X

X X No zero energy solution

Biasing to low l2 norm solutions is good!
This explains the non-monotonic curve



A lesson from representer theorem

Initialising weights close to zero implies  at all times: 
In this case gradient descent converges to the least norm solution

⃗𝒩 = 0

This is an example of “implicit regularisation” 
See also Advani-Saxe ’17, N. Sbrero et al ’18 

If you do gradient descent, is ever never updated!⃗𝒩
Simple mathematical fact:

Rd = span({X}) + null({X})

θ =
n

∑
i=1

βiXi + ⃗𝒩
ℛ =

1
n

n

∑
i=1

ℒ(yi, θ ⋅ xi)



Ridge loss  (now with explicit regularisation)

Simplest version


⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX( ⃗x ) = 𝒩(0,1d){
yμ ≡ sign( ⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d  , 

 with  fixed
→ ∞

α = n/d

ℛ =
1
n

n

∑
i=1

∥yi − θXi∥2
2 + λ∥θ∥2

2

̂θ = argminℛ(θ, {X, y})
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∏=0 Pseudo inv.

∏=0.0001

∏=0.001

∏=0.01
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Bayes

[Aubin, Krzakala, Lu, Zdeborova’20]

Ridge loss  (now with explicit regularisation)



Still far from Bayes!

[Aubin, Krzakala, Lu, Zdeborova’20]

-1/2

-1

Rademacher 
bound

Ridge, λ=0Bayes



Cover you Losses!

L(f(~x), y) = (1� yf(~x))2
Square Loss

Hard margin
L(f(~x), y) = 1(yf(~x) > 1)

Hinge loss

L(f(~x), y) = max(0, 1� yf(~x))

Logistic loss/Cross-entropy

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

f(~x) = ✓ · ~x+ ↵



Which frontier should we choose?

Pushing the boundaries



Pushing the boundaries

Large margin = better generalisation properties!

d



Implicit regularization (again)

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi)) + λ∥θ∥2
2

As λ goes to zero, many losses 

Converges to the max-margin solution!

2006



Ex: l2 LOSS 



Ex: logistic LOSS



Max-margin is good

#datapoints/#dimension

ge
ne

ra
lis

at
io

n 
er

ro
r

Bayes Ridge, λ=0

Max-Margin

α = m/d(with m, d → ∞)

[Aubin, Krzakala, Lu, Zdeborova’20]



Reaching Bayes rates

[Aubin, Krzakala, Lu, Zdeborova’20]

-1/2

-1

Rademacher 
bound

Ridge, λ=0Bayes

Max-Margin



Chasing the Bayes optimal result
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Regularised logistic losses (almost) achieve Bayes optimal results! 
(And specially designed losses do achieve it)

[Aubin, Krzakala, Lu, Zdeborova’20]



Ok, does this explain double-descent?



Ok, does this explain double-descent?

error

Complexity



Ok, does this explain double-descent?

Parity-MNIST,	5	layers,	

zero	

P
#P

[Geiger et al. 

error

Complexity

While such models explains non-monotonicity, and the pick close to the exact 
interpolation threshold,  they do not explain the lack of overfitting

data
X

y
labels

w*
weights

data
weights

data
X

y
labels

w
weights

data
weights

Teacher Student



Learning with  
random feature neural networks 

2





θ ∈ ℝpF 

∈ ℝd×p

Random features neural net

Two-layers neural network with fixed first layer F Architecture:

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

NIPS ‘07



θ ∈ ℝpF 

∈ ℝd×p

Random features neural net

Two-layers neural network with fixed first layer F Architecture:

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

Deep connections with genuine neural networks in the “Lazy regime” 
[Jacot, Gabriel, Hongler ’18; Chizat, Bach ’19; Geiger et al. ’19]



• n vector , drawn randomly from  
• n labels  given by a function   

xi ∈ ℝd 𝒩(0,1d)
yi y0

i = f 0(x ⋅ θ*)

θ ∈ ℝpF 

∈ ℝd×p

Random feature model…
Dataset: 

Two-layers neural network with fixed first layer F Architecture:

ℒ =
1
n

n

∑
i=1

ℓ(yi, y0
i ) + λ∥θ∥2

2
Cost function:

ℓ( . ) =
Logistic loss 
Hinge loss 
Square loss 
…

What is the training error & the generalisation error 
in the high dimensional limit ?(d, p, n) → ∞

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)



Consider the unique fixed point of the following system of equations
Definitions:

Then in the high-dimensional limit:

… and its solution

̂Vs = α
γ κ2

1𝔼ξ,y [𝒵 (y, ω0)
∂ωη(y, ω1)

V ],

̂qs = α
γ κ2

1𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)
2

V 2 ,

m̂s = α
γ κ1𝔼ξ,y [∂ω𝒵 (y, ω0)

(η(y, ω1) − ω1)

V ],

̂Vw = ακ2
⋆𝔼ξ,y [𝒵 (y, ω0)

∂ωη(y, ω1)
V ],

̂qw = ακ2
⋆𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)

2

V 2 ,

Vs = 1
̂Vs

(1 − z gμ(−z)),

qs =
m̂2

s + ̂qs

̂Vs
[1 − 2zgμ(−z) + z2g′ μ(−z)]

−
̂qw

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′ μ(−z)],

ms =
m̂s

̂Vs
(1 − z gμ(−z)),

Vw = γ

λ + ̂Vw
[ 1

γ − 1 + zgμ(−z)],

qw = γ
̂qw

(λ + ̂Vw)2 [ 1
γ − 1 + z2g′ μ(−z)],

+
m̂2

s + ̂qs

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′ μ(−z)],

η(y, ω) = argmin
x∈ℝ [ (x − ω)2

2V + ℓ(y, x)]
𝒵(y, ω) = ∫ dx

2πV 0
e− 1

2V 0 (x − ω)2
δ (y − f 0(x))

where V = κ2
1Vs + κ2

⋆Vw, V 0 = ρ −
M2

Q
, Q = κ2

1qs + κ2
⋆qw, M = κ1ms, ω0 = M/ Qξ, ω1 = Qξ and gμis the Stieltjes transform of FFT

κ0 = 𝔼 [σ(z)], κ1 ≡ 𝔼 [zσ(z)], κ⋆ ≡ 𝔼 [σ(z)2] − κ2
0 − κ2

1 , and ⃗zμ ∼ 𝒩( ⃗0 , Ip)

ϵgen = 𝔼λ,ν [( f 0(ν) − ̂f(λ))2]
with (ν, λ) ∼ 𝒩 (0

0), ( ρ M⋆

M⋆ Q⋆)

ℒtraining =
λ

2α
q⋆

w + 𝔼ξ,y [𝒵 (y, ω⋆
0 ) ℓ (y, η(y, ω⋆

1 ))]

with ω⋆
0 = M⋆ / Q⋆ξ, ω⋆

1 = Q⋆ξ

[Loureiro, Gerace, FK, Mézard, Zdeborova, ’20]

Agrees with [Louart , Liao , Couillet’18 & Mei-Montanari ’19] who solved a particular case using 
random matrix theory: linear function f0,   & Gaussian random weights F…ℓ(x, y) = ∥x − y∥2

2



Consider the unique fixed point of the following system of equations
Definitions:

Then in the high-dimensional limit:

… and its solution

̂Vs = α
γ κ2

1𝔼ξ,y [𝒵 (y, ω0)
∂ωη(y, ω1)

V ],

̂qs = α
γ κ2

1𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)
2

V 2 ,

m̂s = α
γ κ1𝔼ξ,y [∂ω𝒵 (y, ω0)

(η(y, ω1) − ω1)

V ],

̂Vw = ακ2
⋆𝔼ξ,y [𝒵 (y, ω0)

∂ωη(y, ω1)
V ],

̂qw = ακ2
⋆𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)

2

V 2 ,

Vs = 1
̂Vs

(1 − z gμ(−z)),

qs =
m̂2

s + ̂qs

̂Vs
[1 − 2zgμ(−z) + z2g′ μ(−z)]

−
̂qw

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′ μ(−z)],

ms =
m̂s

̂Vs
(1 − z gμ(−z)),

Vw = γ

λ + ̂Vw
[ 1

γ − 1 + zgμ(−z)],

qw = γ
̂qw

(λ + ̂Vw)2 [ 1
γ − 1 + z2g′ μ(−z)],

+
m̂2

s + ̂qs

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′ μ(−z)],

η(y, ω) = argmin
x∈ℝ [ (x − ω)2

2V + ℓ(y, x)]
𝒵(y, ω) = ∫ dx

2πV 0
e− 1

2V 0 (x − ω)2
δ (y − f 0(x))

where V = κ2
1Vs + κ2

⋆Vw, V 0 = ρ −
M2

Q
, Q = κ2

1qs + κ2
⋆qw, M = κ1ms, ω0 = M/ Qξ, ω1 = Qξ and gμis the Stieltjes transform of FFT

κ0 = 𝔼 [σ(z)], κ1 ≡ 𝔼 [zσ(z)], κ⋆ ≡ 𝔼 [σ(z)2] − κ2
0 − κ2

1 , and ⃗zμ ∼ 𝒩( ⃗0 , Ip)

ϵgen = 𝔼λ,ν [( f 0(ν) − ̂f(λ))2]
with (ν, λ) ∼ 𝒩 (0

0), ( ρ M⋆

M⋆ Q⋆)

ℒtraining =
λ

2α
q⋆

w + 𝔼ξ,y [𝒵 (y, ω⋆
0 ) ℓ (y, η(y, ω⋆

1 ))]

with ω⋆
0 = M⋆ / Q⋆ξ, ω⋆

1 = Q⋆ξ

[Loureiro, Gerace, FK, Mézard, Zdeborova, ICML’20]

… and recently proven in full generality by [Dhifallah, Lu, ’20]



A classification task

λ=10−4λ=10−4

λopt



A classification task

As , in the overparametrized regime,  
Logistic converges to max-margin,    converges to least norm  

λ → 0
ℓ2

Implicit regularisation of gradient descent [Neyshabur,	Tomyoka,	Srebro,	’15]	
[Rosset,	Zhy,	Hastie,	’04]	



Asymptotics accurate even at d=200!
Regression task Classification task

ℓ2 loss logistic loss

First layer: random Gaussian Matrix
First layer: subsampled Fourier matrix



Nips '17

Regularisation & different First Layer



Logistic loss, no regularisation

n/d

p/n



Phase transition of perfect separability

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

separablenon-separable

n
/d

p/n

Gaussian
Orthogonal

Generalize a phase transition discussed  
by [Cover ’65; Gardner ’87; Sur & Candes, ’18] 

Cover Theory ‘65



We now see over-parametrisation does not hurt, but why?



Bias-Variance reloaded…



• n vector , drawn randomly from  
• n labels  given by a function   

xi ∈ ℝd 𝒩(0,1d)
yi y0

i = f 0(x ⋅ θ*)

θ ∈ ℝpF 

∈ ℝd×p

Dataset: 

Two-layers neural network with fixed first layer F Architecture:

ℒ =
1
n

n

∑
i=1

∥yi − y0
i ∥2

2 + λ∥θ∥2
2

Cost function:
Square loss

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)



Generalization  
Error



Bias 
(Unavoidable error)

Generalization  
Error



Initialization: 
Choice of the  

random features

Sampling 
(Finite training set)

Noise  
labels

Bias 
(Unavoidable error)

Generalization  
Error



All these terms can be computed exactly using random metric theory & statistical physics methods 
(See paper)



Bias decreases and has a phase transition at interpolation

Noise & Initialitation variances diverges at the peak…
… but decay later on (self-averaging!)

Interpolation peak

error

Complexity



Over-parametrization here helps because of self-averaging effect for large networks!

In a nutshell: the networks learn “many time” the same sub-network plus fluctuations,  
and averaging these networks leads to reduced variance

See also: [Geiger, et al, ’19, Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, ’19, 
Ascoli, Sagun, Biroli ’20, Lin & Dobriban ’20, Adlam, Pennington ’20]





Reducing the variances by ensembling

Averaging many two-layer networks  
with different random features should reduce the variance!

[See also Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, ’19]



Stochastic Gradient Descent 

3



Study of energy landscape Dynamics of learning in NN

Kernel vs Neural nets Bias-Variance trade-off

Alternative to back-propagation

Rigorous approach 
 to replica method

MANY DIRECTIONS EXPLORED IN MY GROUP



Two-layers teacher-student problem

...

x

w

g1

g2

g3

g4 v

�

The teacher generates a dataset…

Additive  
output noise

yµ ⌘ �(xµ, ✓⇤) + �⇣µ
<latexit sha1_base64="nT2Y9YFSHISf4cE5Vh9+HiFLItQ="></latexit>

Output

Label

… and the student learns from it

Trained by SGD on the quadratic error:

K hidden units

...

x

w⇤

g2

g1

v⇤
�

M hidden units

v*

w* w
v

ϕ(x, θ*) =
M

∑
m

v*v σ ( w*mx

d ) E(θ, x) =
1
2

(ϕ(x, θ) − y)2

d → ∞
Large dimensional vector

M, K = O(1)
Finite-size hidden layer 

Inputs                are i.i.d. Gaussiansxμ ∈ ℝd

σ1

σ2

σ1

σ2

σ3

σ4



On-line gradient descent, one sample at a time…



… our rigorous proof just took 25 years (NeurIPS ’19)



ODEs are accurate even for small dimension 

=time/d
d~800



Implicit regularisation of SGD

(b)

Teacher Student

Which neurons learn which neurons an example with M=2, K=5:

All neurons find relevants features, 
and the second later average them! 

(As in the previous section)

http://github.com/sgoldt/pyscm

No overfitting even when K>M ! 
(Student larger than teacher) 



f(x) = sign(x) , g(x) = g̃(x) = erf(x/ 2), M = 5,K = 3, η = 0.005

SGD learns more complicated functions over time 
(Aka “the specialisation phenomenon”)
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f(x) = sign(x) , g(x) = g̃(x) = erf(x/ 2), M = 5,K = 7, η = 0.005
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SGD learns more complicated functions over time 
(Aka “the specialisation phenomenon”)



Conclusions

Some examples of exactly solvable models of statistical machine learning 
(Using rigorous and non-rigorous methods from statistical mechanics) 

These models shed lights on many interesting phenomena 

•Worst case versus typical  

• Implicit regularisation (small l2 norm solutions, large margin)

•Divergence of the generalisation at the interpolation peak

•Large 2-layer networks display some “self-averaging” effects:                                     

Over-paramerization helps in reducing the variance

•Complete & explicit Bias-Variance decompositions 

architecture

algorithm

da
ta



Many thanks to the team(s)….

SMiLe
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http://florentkrakala.com


We want you in Switzerland!

I just created the IdePHICS lab. in EPFL  
We are looking for talented postdocs & students, send me a mail!


