
LEARNING AND LEARNING TO

SOLVE PDES
 Bin Dong (董彬)

• Beijing International Center for Mathematical Research, Peking

University

• Center for Theory of Artificial Intelligence, Institute for Artificial

Intelligence, Peking University

• Laboratory for Biomedical Image Analysis & Laboratory of Deep

Learning Research, Beijing Institute of Big Data Research

OUTLINE

 Overview and Motivations

 Deep Neural Networks (DNNs) and PDEs

 Learning PDEs: PDE-Net for Inverse Problems

 Learning to Solve PDEs: A Reinforcement Learning Framework

 Learning to Solve Parameterized PDEs: A Meta-Learning Approach

2

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, …)

Learning Learning to solve

OVERVIEW

Motivations and Intuitions

DEEP LEARNING FROM MATHEMATICS

PERSPECTIVE

Deep learning has been a great success.

However, it is also in lack of

 Theoretical guidance

 Interpretability and robustness

Our perspective: control

4

Composite structures can be viewed as dynamics.

DEEP LEARNING FROM CONTROL

PERSPECTIVE

 Control Perspective: Supervised Learning (SL)、
Reinforcement Learning (RL)、Meta Learning (Meta)

5

𝑑𝑿𝑡 = 𝒇 𝑿𝑡 , 𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 𝑑𝑡 + 𝝈 𝑿𝑡 , 𝑡 𝑑𝑾𝑡 , 𝑿0= 𝒙， 𝑡 ∈ (0,1]

Dynamics:

Training loss: 𝐽 𝒖 = 𝔼 𝒙,𝑦 ∼𝑷 ℓ 𝑔 𝑿1 , 𝑦 + 𝑅 𝑠, 𝑿𝑠, 𝒖 𝑠
1

0

𝑑𝑠

Typical SL-control

𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 =

𝒖 𝑡

𝒖 𝑿𝑡 , 𝜽

𝒖 𝜽𝑡

 Typical RL-control

Typical Meta-control

Other variants:
• RL-control: 𝒖 𝑿𝑡 , 𝜽𝑡

• Meta-control: 𝒖 𝜽𝑡 , 𝒁𝑡 with 𝒁𝒕 = 𝑺𝑫𝑬(𝒁𝒕, 𝑿𝒕)

Solver:

• BP/PMP

• DP

Common:

Uncommon:

• E, CMS, 5(1):1–11, 2017.

• Li et al., JMLR, 18(1), 2017.

• Haber, Ruthotto, IP, 34(1), 2017.

PDE-NET: LEARNING PDES FROM

DATA
• Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, PDE-Net:

Learning PDEs from Data, ICML 2018. (arXiv:1710.09668)

• Zichao Long, Yiping Lu and Bin Dong, PDE-Net 2.0: Learning
PDEs from Data with A Numeric-Symbolic Hybrid Deep
Network, Journal of Computational Physics, 399, 108925, 2019
(arXiv:1812.04426).

PDE-NET: LEARNING PDES FROM DATA

 Can we learn principles (e.g. PDEs) from data?

7

Biology

Meteorology

Computer Graphics

PDE-NET: LEARNING PDES FROM DATA

8

 Earlier work

Other earlier attempts:

• Bongard & Lipson, PNAS,

2007

• Lin, Zhang & Tang, MSR-

TR-2008-189.

• Liu, Lin, Zhang & Su.

ECCV 2010.

PDE-NET: LEARNING PDES FROM DATA

 Earlier work

 Dictionary based sparse regression

 Construct dictionary

 Fit variable 𝜉

 Sparse regression

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017.

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017.

9

PDE-NET: LEARNING PDES FROM DATA

Room for improvements

 Can we go beyond sparse coding framework

(linear dictionary)?

—— Bigger model class with less prior knowledge

 Can we learn discrete forms of differential

operators and does it help?

——More accurate estimation of the PDE and

prediction

10

PDE-NET: LEARNING PDES FROM DATA

 Can we learn principles (e.g. PDEs) from data?

 Initial attempt:

 Combining deep learning and numerical PDEs

 Objectives:

 Predictive and expressive power (deep learning)

 Transparency: to reveal hidden physics (numerical

PDEs) 11

S. Sato et al., Siggraph 2018

PDE-NET: LEARNING PDES FROM DATA

 PDE-Net 2.0

12

Prior knowledge on 𝐹:
• Addition and multiplication

of the terms;

• Maximum order.

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑑 Assuming：

PDE-NET: LEARNING PDES FROM DATA

 PDE-Net 2.0

13

𝜂1

𝜉1
𝜂2

𝜉2

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

⋯

𝐹(𝑢, 𝑣,
𝑤, …)

W3

⋅ +𝑏3

W1

⋅ +b1

W2

⋅ +b2

identity identity

More Constraints:
• Pseudo-upwind

• Sparsity on moment matrices

• Sparsity on the symbolic network

Similar to 𝐸𝑄𝐿/𝐸𝑄𝐿÷: Sahoo, Lampert, and Martius, ICML 2018.

PDE-NET: LEARNING PDES FROM DATA

 Constraints on kernels (granting transparency)

 Moment matrix

 We can approximate any differential operator at any

prescribed order by constraining 𝑀(𝑞)

 For example: approximation of
𝜕𝑓

𝜕𝑥
 with a 3 × 3 kernel

1st order

learnable

2st order

learnable

1st order

frozen

14

• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012.

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

PDE-NET: LEARNING PDES FROM DATA

 Example: Burger’s equation

15

𝜈 = 0.05

Remainer weights of 𝒖, 𝒗

Prediction

Model recovery

 Example: Burger’s + reaction

PDE-NET: LEARNING PDES FROM DATA

16 Model Recovery

LEARNING TO SOLVE

CONSERVATION LAWS VIA

REINFORCEMENT LEARNING

• Yufei Wang, Ziju Shen, Zichao Long and Bin Dong, Learning to

Discretize: Solving 1D Scalar Conservation Laws via Deep

Reinforcement Learning, accepted by CiCP 2020 (arXiv:

1905.11079).

NEURAL NETWORKS (NNS) AND NUMERICAL

PDES – A HIGHLY INCOMPLETE LIST

 NNs as a new ansatz:
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017.

 W. E and B. Yu, CMS, 6(1), 1-12, 2018.

 J. Han, A. Jentzen, W. E. PNAS, 115(34):8505–8510, 2018.

 M. Raissi, P. Perdikaris, G. E. Karniadakis. JCP, 378:686–707, 2019.

 G.-J. Both, S. Choudhury, P. Sens, R. Kusters. arXiv:1904.09406, 2019.

 C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch. arXiv:1905.04351, 2019.

 Y. Zhang, G. Bao, X. Ye, H. Zhou, arXiv:1907.08272.

 D. Pfau, J.S. Spencer, A.G. Matthews, W. M. Foulkes, arXiv:1909.02487.

 W. Cai and Z. Xu, arXiv:1910.11710

 Z. Liu, W. Cai, Z.Q.J. Xu, arXiv:2007.11207.

 NNs integrated with classical solvers
 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018.

 J. Magiera, D. Ray, J. S Hesthaven, C. Rohde., JCP, 409, p.109345, 2020.

 N. Discacciati, J. S. Hesthaven, D. Ray. JCP, p. 109304, 2020.

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.

 NNs to approximate complex solution mappings
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351, 2017.

 Y. Khoo, L. Ying. SISC, 41(5): A3182-A3201, 2019.

 Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez. MMS, 17(4):1189-213, 2019.

 Y. Li, J. Lu, A. Mao. JCP, 409, p.109338, 2020.

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Reinforcement learning (RL)

• RL is to learn to make sequential

decisions by interacting with the

environments (learn from rewards).

• Can be modeled as a finite Markov

Decision Process (MDP):

19

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Markov Decision Process

20

From David Silver’s tutorial on RL

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Goal: 𝑚𝑎𝑥
𝜋

 𝔼𝑎𝑡∼𝜋 ⋅ 𝑠𝑡 ,𝑠𝑡+1∼ℙ(⋅|𝑠𝑡,𝑎𝑡) 𝛾𝑡𝑅𝑎𝑡

𝑠𝑡
𝑡≥0

 Algorithms
 Q-Learning (DQN, DDQN)

 Policy Gradient (PG, PPO, DDPG, etc.)

21

Deep Q-Learning Policy Gradients

From David Silver’s tutorial on RL

― Pros: can use off-policy data

― Cons: cannot handle continuous/stochastic actions

― Pros: works on continuous/stochastic actions

― Cons: high variance, can only use on-policy data

LEARNING TO DISCRETIZE

 1D scalar conservation laws (CLs):

 Discrete setting: 𝑢𝑗
𝑛 = 𝑢(𝑥𝑗 , 𝑡𝑛), 𝑈𝑗

𝑛 is the approximated solution,

𝑓𝑗
𝑛 = 𝑓(𝑢𝑗

𝑛), and 𝑓 𝑗
𝑛 is the approximated flux on the grids

 WENO schemes

Roe speed:

22

LEARNING TO DISCRETIZE

 RL-WENO

23

State: 𝒔𝒋 = 𝒇 𝑼𝒋−𝒓−𝟏
𝒏−𝟏 , … , 𝒇 𝑼𝒋+𝒔

𝒏−𝟏 , 𝒂
𝒋±

𝟏

𝟐

Action:

State transition

LEARNING TO DISCRETIZE

 RL-WENO

24

𝒈𝒓 ⋅ = ⋅ ∞

Trained by: 𝑓 =
1

2
𝑢2 & WENO-5 & Euler & Δ𝑥, Δ𝑡 = (0.04, 0.002) & 𝑇 = 0.8

LEARNING TO DISCRETIZE

 Experimental settings
 Burger’s equation:

 Three scenarios:

 Inviscid

 Forcing

 Viscous: similar as inviscid except 𝜂 = 0.01,0.02,0.04 .

25

LEARNING TO DISCRETIZE

 Experimental settings
 Compared methods:

 5th order WENO (X.-D. Liu, S. Osher, T. Chan, JCP 1994)

 L3D (Y. Bar-Sinai et al., PNAS, 2019)

 PINN (M. Raissi, P. Perdikaris, G. Karniadakis, JCP, 378:686–707, 2019)

 General assessments:

 RL-WENO is trained on “Inviscid” unless specified

 Computation time:

26

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Overall accuracy:

 Comparable with WENO-5

𝑓 𝑢 =
1

2
𝑢2

Training setting

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Near singularities (solution curves)

28

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Near singularities (accumulated errors)

29

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Strategies of weights (𝑤
𝑗±

1

2

𝑟) selection

30 𝑓
𝑗+

1
2

Action

𝑓
𝑗−

1
2

RL weights

WENO weights

LEARNING TO DISCRETIZE

 Generalization of RL-WENO:

 To other flux

 Train on “Inviscid” and test on “Forcing”

31

𝑓 𝑢 =
1

16
𝑢4

LEARNING TO DISCRETIZE

 Generalization of RL-WENO:

 Train on “Inviscid” and test on “Viscous”

 Train on “Forcing”, test on “Inviscid” and “Viscous”

32

LEARNING TO DISCRETIZE

 RL-WENO v.s. L3D:

 Train on “Forcing” and test on “Forcing”

33

LEARNING TO DISCRETIZE

 RL-WENO v.s. PINN:

 RL-WENO trained on “Viscous”

34

LEARNING TO DISCRETIZE

 Potential of the proposed RL framework

 Most numerical solvers of conservation law can be

interpreted naturally as a sequential decision making

process;

 The policy 𝜋𝑓 (i.e. agent) considers long-term

accuracy (non-greedy).

 RL can gracefully handle non-smooth norms of the

reward and discrete action space.

 Learning the policy 𝜋𝑓 in RL framework making the

method meta-learning-like, i.e. it can learn the

principles of discretization mimicking human experts.

LEARNING TO SOLVE

PRAMETERIZED PDES: A

META-LEARNING APPROACH
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta

Multigrid Networks for Solving Parameterized Partial

Differential Equations, arXiv:2010.14088, 2020.

PARAMETERIZED PARTIAL DIFFERENTIAL

EQUATIONS (PDES)

 General parameterized PDEs:

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼

 Others

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝

 Linear steady parameterized PDEs:

 e.g.

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃)

37

APPLICATIONS THAT REQUIRE EFFICIENT

SOLVERS FOR PARAMETERIZED PDES

 Typical parameters of interest

 Shape parameters

 Material (properties) parameters

 Operation parameters (e.g. flight conditions, cruise

conditions, etc.)

 Initial and boundary conditions

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼

 Inverse problems

 Uncertainty quantification

 Design optimization

 Optimal control

 Model predictive control

Model predictive

control

MULTIGRID AND THE MULTIGRID

NETWORK (MGNET)

Multigrid method viewed as CNN – a control

perspective

DIRECT APPLICATION OF EXISTING

NUMERICAL SOLVERS

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇

 Multigrid method (MG) has linear complexity

 However, CPU time for MG can go up

significantly when 𝜼 is within certain range

 For example

40

DIRECT APPLICATION OF EXISTING

NUMERICAL SOLVERS

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇

 Multigrid method (MG) has linear complexity

 However, CPU time for MG can go up

significantly when 𝜼 is within certain range

 This can be improved by manually adjusting

crucial components in MG:

 Smoother: damped coefficient of damped Jacobi

smoother

 Prolongations

 Restrictions

 Can machine learning help?
41

MG V.S. CNN (HE & XU, 2019)

 MG is an iterative scheme

𝒖𝑡+1 = 𝒖𝑡 + MG 𝒇 − 𝑨𝒖𝑡 , 𝑡 = 0,1, … , 𝑇

 Here, MG is given by

To make this an CNN, the

operators 𝑩, 𝑨, 𝑹, 𝑷, need to be

expressed as convolutions.

42

MG V.S. CNN (HE & XU, 2019)

 Converting MG to an CNN

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖 are generated

by translates of a set of functions 𝜑𝑘 , then

43

[Chen, Dong and Xu, preprint 2020]

MG V.S. CNN (HE & XU, 2019)

 Converting MG to an CNN

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖 are generated

by translates of a set of functions 𝜑𝑘 , then

 Operator 𝑹: convolution with a stride≥ 2

 Operator 𝑷: deconvolution (upsampling + convolution)

 Operator 𝑩: replaced by convolution or a small CNN

 This leads to the multigrid network (MgNet)
44

[Chen, Dong and Xu, preprint 2020]

PDE-MGNET: FOR SOLVING PDES

 PDE-MgNet

45

PDE-MGNET: FOR SOLVING PDES

 PDE-MgNet

 We can apply PDE-MgNet to solve parametric

PDE: 𝑨𝜼𝒖 = 𝒇

 Two supervised learning strategies:

 For a given set of 𝜼, train PDE-MgNet

 For every given 𝜼, train PDE-MgNet (we call this

PDE-MgNet-𝜼)

 Drawback: poor generalization!

46

A META-LEARNING APPROACH

Solving parameterized PDEs as multi-task learning

• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet:

Meta Multigrid Networks for Solving Parameterized

Partial Differential Equations, arXiv:2010.14088, 2020.

MOTIVATION

 Single task: learning a solver for a given 𝜼

 Multi-task: learning a solver for a set of 𝜼

 Key difference from supervised learning strategy:

 Leveraging common structures hidden in the tasks!

 Effective approach: Meta-Learning

 Finding a good initialization for all tasks

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018)

 Designing a hypernetwork to infer suitable

parameters for each task

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim,

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 48

META-MGNET

 Architecture:

 All components of Meta-MgNet is the same as PDE-MgNet,

except for the smoother:

49

Meta-NN
Input:

• Kernel of the operator 𝑨𝜼

• Residual 𝒓

Output: a set of vectors that

spans a subspace for subspace

correction

META-MGNET

 Learning subspace correction by Meta-NN 𝒢:

 Motivation: Krylov subspace

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 ,

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽

 Convergence guarantee √

50

Meta-NN 𝒢𝜃(𝑟, 𝐴𝜂)

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm 51

EXPERIMENTS

 2D anisotropic diffusion equation

 Results: 𝜃 = 0

52 • Best in-distribution (out-of-distribution as well) generalization

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting

common structure through multi-task learning perspective

EXPERIMENTS

 2D anisotropic diffusion equation

 Results:

53

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 2,3

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0, 𝜀 = 1, 10−1, 10−4, 10−5(out-of-distribution transfer for 𝜀)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm 54

EXPERIMENTS

 2D anisotropic diffusion equation

 Results: 𝜃 = 0

55

• Best out-of-distribution transfer

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting

common structure through multi-task learning perspective

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 𝒰[
1

8
𝜋,

3

8
𝜋], lg

1

𝜀
∼ 𝒰 0,5

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0.05𝜋, 0.12𝜋, 0.4𝜋, 0.5𝜋, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (out-of-distribution

transfer for 𝜃)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm

56

EXPERIMENTS

 2D anisotropic diffusion equation

 Results:

57

CONCLUSIONS AND FUTURE DIRECTIONS

 Deep learning ≈ optimal control

 Hypernetwork structure leads to good generalization

 Future work:

 PDE-Net

 Real dynamical data

 Meta-learning for multigrid method

 Learning prolongations and restrictions

 Learning on irregular grid with graph neural networks

 Learning other iterative numerical solving with meta-learning

 RL approach for conservation laws

 2D or 3D cases

 More aggressive policy design

 Adaptive or moving mesh

58

THANKS FOR YOUR

ATTENTION!

MY WEBPAGE:

HTTP://BICMR.PKU.EDU.CN/~DONGBIN

http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin

