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OUTLINE 

 Overview and Motivations 

 Deep Neural Networks (DNNs) and PDEs 

 Learning PDEs: PDE-Net for Inverse Problems 

 Learning to Solve PDEs: A Reinforcement Learning Framework 

 Learning to Solve Parameterized PDEs: A Meta-Learning Approach   

2 

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, … ) 

Learning Learning to solve 



OVERVIEW 

Motivations and Intuitions 



DEEP LEARNING FROM MATHEMATICS 

PERSPECTIVE 

Deep learning has been a great success. 

However, it is also in lack of 

 Theoretical guidance 

 Interpretability and robustness 

Our perspective: control  
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Composite structures can be viewed as dynamics. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: Supervised Learning (SL)、
Reinforcement Learning (RL)、Meta Learning (Meta)  
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𝑑𝑿𝑡 = 𝒇 𝑿𝑡 , 𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 𝑑𝑡 + 𝝈 𝑿𝑡 , 𝑡 𝑑𝑾𝑡 ,    𝑿0= 𝒙， 𝑡 ∈ (0,1] 

Dynamics: 

Training loss: 𝐽 𝒖 = 𝔼 𝒙,𝑦 ∼𝑷  ℓ 𝑔 𝑿1 , 𝑦 +  𝑅 𝑠, 𝑿𝑠, 𝒖 𝑠
1

0

𝑑𝑠 

Typical SL-control 

𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 =

𝒖 𝑡

𝒖 𝑿𝑡 , 𝜽 

𝒖 𝜽𝑡

 Typical RL-control 

Typical Meta-control 

Other variants:  
• RL-control: 𝒖 𝑿𝑡 , 𝜽𝑡  

• Meta-control: 𝒖 𝜽𝑡 , 𝒁𝑡  with 𝒁𝒕 = 𝑺𝑫𝑬(𝒁𝒕, 𝑿𝒕) 

Solver: 

• BP/PMP 

• DP 

Common: 

Uncommon: 

• E, CMS, 5(1):1–11, 2017. 

• Li et al., JMLR, 18(1), 2017. 

• Haber, Ruthotto, IP, 34(1), 2017. 



PDE-NET: LEARNING PDES FROM 

DATA 
• Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, PDE-Net: 

Learning PDEs from Data, ICML 2018. (arXiv:1710.09668) 

• Zichao Long, Yiping Lu and Bin Dong, PDE-Net 2.0: Learning 
PDEs from Data with A Numeric-Symbolic Hybrid Deep 
Network, Journal of Computational Physics, 399, 108925, 2019 
(arXiv:1812.04426). 



PDE-NET: LEARNING PDES FROM DATA 

 Can we learn principles (e.g. PDEs) from data? 
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Biology 

Meteorology 

Computer Graphics 



PDE-NET: LEARNING PDES FROM DATA 
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 Earlier work 

Other earlier attempts: 

• Bongard & Lipson, PNAS, 

2007 

• Lin, Zhang & Tang, MSR-

TR-2008-189. 

• Liu, Lin, Zhang & Su. 

ECCV 2010.  



PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Dictionary based sparse regression 

 Construct dictionary 

 

 

 Fit variable 𝜉 

 

 

 Sparse regression 

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016 

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017. 

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017. 
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PDE-NET: LEARNING PDES FROM DATA 

Room for improvements 

 Can we go beyond sparse coding framework 

(linear dictionary)?  

—— Bigger model class with less prior knowledge 

 Can we learn discrete forms of differential 

operators and does it help? 

——More accurate estimation of the PDE and 

prediction 
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PDE-NET: LEARNING PDES FROM DATA 

 Can we learn principles (e.g. PDEs) from data? 

 

 

 

 

 Initial attempt:  

 Combining deep learning and numerical PDEs 

 Objectives:  

 Predictive and expressive power (deep learning) 

 Transparency: to reveal hidden physics (numerical 

PDEs) 11 

S. Sato et al., Siggraph 2018 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net 2.0 
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Prior knowledge on 𝐹: 
• Addition and multiplication 

of the terms; 

• Maximum order. 

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑑 Assuming： 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net 2.0 
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𝜂1 

𝜉1 
𝜂2 

𝜉2 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

⋯ 

𝐹(𝑢, 𝑣, 
𝑤, … ) 

W3

⋅ +𝑏3 

W1

⋅ +b1  

W2

⋅ +b2  

identity identity 

More Constraints: 
• Pseudo-upwind 

• Sparsity on moment matrices 

• Sparsity on the symbolic network 

Similar to 𝐸𝑄𝐿/𝐸𝑄𝐿÷: Sahoo, Lampert, and Martius, ICML 2018. 



PDE-NET: LEARNING PDES FROM DATA 

 Constraints on kernels (granting transparency) 

 Moment matrix 

 

 

 We can approximate any differential operator at any 

prescribed order by constraining 𝑀(𝑞) 

 For example: approximation of  
𝜕𝑓

𝜕𝑥
  with a 3 × 3 kernel 

 

 

 

 

 

 

1st order 

learnable 

2st order 

learnable 

1st order 

frozen 
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• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012. 

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017 



PDE-NET: LEARNING PDES FROM DATA 

 Example: Burger’s equation 

15 

𝜈 = 0.05 

Remainer weights of 𝒖, 𝒗 

Prediction 

Model recovery 



 Example: Burger’s + reaction 

PDE-NET: LEARNING PDES FROM DATA 

16 Model Recovery 



LEARNING TO SOLVE 

CONSERVATION LAWS VIA 

REINFORCEMENT LEARNING 

• Yufei Wang, Ziju Shen, Zichao Long and Bin Dong, Learning to 

Discretize: Solving 1D Scalar Conservation Laws via Deep 

Reinforcement Learning, accepted by CiCP 2020 (arXiv: 

1905.11079). 



NEURAL NETWORKS (NNS) AND NUMERICAL 

PDES – A HIGHLY INCOMPLETE LIST 

 NNs as a new ansatz: 
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017. 

 W. E and B. Yu, CMS, 6(1), 1-12, 2018. 

 J. Han, A. Jentzen, W. E. PNAS, 115(34):8505–8510, 2018. 

 M. Raissi, P. Perdikaris, G. E. Karniadakis. JCP, 378:686–707, 2019. 

 G.-J. Both, S. Choudhury, P. Sens, R. Kusters. arXiv:1904.09406, 2019. 

 C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch. arXiv:1905.04351, 2019. 

 Y. Zhang, G. Bao, X. Ye, H. Zhou, arXiv:1907.08272. 

 D. Pfau, J.S. Spencer, A.G. Matthews, W. M. Foulkes, arXiv:1909.02487. 

 W. Cai and Z. Xu, arXiv:1910.11710 

 Z. Liu, W. Cai, Z.Q.J. Xu, arXiv:2007.11207. 

 NNs integrated with classical solvers 
 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018. 

 J. Magiera, D. Ray, J. S Hesthaven, C. Rohde., JCP, 409, p.109345, 2020. 

 N. Discacciati, J. S. Hesthaven, D. Ray. JCP, p. 109304, 2020. 

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.  

 NNs to approximate complex solution mappings 
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351, 2017. 

 Y. Khoo, L. Ying. SISC, 41(5): A3182-A3201, 2019. 

 Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez. MMS, 17(4):1189-213, 2019. 

 Y. Li, J. Lu, A. Mao. JCP, 409, p.109338, 2020. 



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Reinforcement learning (RL) 

• RL is to learn to make sequential 

decisions by interacting with the 

environments (learn from rewards). 

• Can be modeled as a finite Markov 

Decision Process (MDP): 

19 



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Markov Decision Process 
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From David Silver’s tutorial on RL  



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Goal:  𝑚𝑎𝑥
𝜋

 𝔼𝑎𝑡∼𝜋 ⋅ 𝑠𝑡 ,𝑠𝑡+1∼ℙ(⋅|𝑠𝑡,𝑎𝑡)  𝛾𝑡𝑅𝑎𝑡

𝑠𝑡
𝑡≥0  

 Algorithms 
 Q-Learning (DQN, DDQN) 

 Policy Gradient (PG, PPO, DDPG, etc.)  

21 

Deep Q-Learning Policy Gradients 

From David Silver’s tutorial on RL  

― Pros: can use off-policy data 

― Cons: cannot handle continuous/stochastic actions 

― Pros: works on continuous/stochastic actions 

― Cons: high variance, can only use on-policy data 



LEARNING TO DISCRETIZE 

 1D scalar conservation laws (CLs): 

 

 Discrete setting: 𝑢𝑗
𝑛 = 𝑢(𝑥𝑗 , 𝑡𝑛),  𝑈𝑗

𝑛 is the approximated solution, 

𝑓𝑗
𝑛 = 𝑓(𝑢𝑗

𝑛), and 𝑓 𝑗
𝑛 is the approximated flux on the grids 

 

 WENO schemes 

Roe speed: 

22 



LEARNING TO DISCRETIZE 

 RL-WENO 

23 

State: 𝒔𝒋 = 𝒇 𝑼𝒋−𝒓−𝟏
𝒏−𝟏 , … , 𝒇 𝑼𝒋+𝒔

𝒏−𝟏 , 𝒂 
𝒋±

𝟏

𝟐

 

Action:  

State transition  



LEARNING TO DISCRETIZE 

 RL-WENO 
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𝒈𝒓 ⋅ = ⋅ ∞ 

Trained by: 𝑓 =
1

2
𝑢2 & WENO-5 & Euler & Δ𝑥, Δ𝑡 = (0.04, 0.002) & 𝑇 = 0.8 



LEARNING TO DISCRETIZE 

 Experimental settings 
 Burger’s equation:  

 

 Three scenarios: 

 Inviscid 

 

 

 

 Forcing 

 

 

 

 

 Viscous: similar as inviscid except 𝜂 = 0.01,0.02,0.04 . 
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LEARNING TO DISCRETIZE 

 Experimental settings 
 Compared methods: 

 5th order WENO (X.-D. Liu, S. Osher, T. Chan, JCP 1994) 

 L3D (Y. Bar-Sinai et al., PNAS, 2019) 

 PINN (M. Raissi, P. Perdikaris, G. Karniadakis, JCP, 378:686–707, 2019) 

 General assessments: 

 

 

 

 

 

 RL-WENO is trained on “Inviscid” unless specified 

 Computation time: 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Overall accuracy:  

 Comparable with WENO-5 

𝑓 𝑢 =
1

2
𝑢2 

Training setting 



LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Near singularities (solution curves) 

28 



LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Near singularities (accumulated errors) 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Strategies of weights (𝑤
𝑗±

1

2

𝑟 ) selection 

30 𝑓 
𝑗+

1
2
 

Action  

𝑓 
𝑗−

1
2
 

RL weights 

WENO weights  



LEARNING TO DISCRETIZE 

 Generalization of RL-WENO: 

 To other flux 

 

 

 

 

 Train on “Inviscid” and test on “Forcing” 
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𝑓 𝑢 =
1

16
𝑢4 



LEARNING TO DISCRETIZE 

 Generalization of RL-WENO: 

 Train on “Inviscid” and test on “Viscous” 

 

 

 

 

 Train on “Forcing”, test on “Inviscid” and “Viscous” 

32 



LEARNING TO DISCRETIZE 

 RL-WENO v.s. L3D: 

 Train on “Forcing” and test on “Forcing” 

 

33 



LEARNING TO DISCRETIZE 

 RL-WENO v.s. PINN: 

 RL-WENO trained on “Viscous” 
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LEARNING TO DISCRETIZE 

 Potential of the proposed RL framework 

 Most numerical solvers of conservation law can be 

interpreted naturally as a sequential decision making 

process; 

 The policy 𝜋𝑓 (i.e. agent) considers long-term 

accuracy (non-greedy).  

 RL can gracefully handle non-smooth norms of the 

reward and discrete action space. 

 Learning the policy 𝜋𝑓 in RL framework making the 

method meta-learning-like, i.e. it can learn the 

principles of discretization mimicking human experts. 



LEARNING TO SOLVE 

PRAMETERIZED PDES: A 

META-LEARNING APPROACH 
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta 

Multigrid Networks for Solving Parameterized Partial 

Differential Equations, arXiv:2010.14088, 2020. 



PARAMETERIZED PARTIAL DIFFERENTIAL 

EQUATIONS (PDES) 

 General parameterized PDEs: 

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0 

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0 

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼  

 Others 

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚 

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝 

 Linear steady parameterized PDEs: 

 

 e.g. 

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃) 
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APPLICATIONS THAT REQUIRE EFFICIENT 

SOLVERS FOR PARAMETERIZED PDES 

 Typical parameters of interest 

 Shape parameters 

 Material (properties) parameters 

 Operation parameters (e.g. flight conditions, cruise 

conditions, etc.) 

 Initial and boundary conditions 

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼 

 Inverse problems 

 Uncertainty quantification 

 Design optimization 

 Optimal control 

 Model predictive control  

Model predictive 

control 



MULTIGRID AND THE MULTIGRID 

NETWORK (MGNET) 

Multigrid method viewed as CNN – a control 

perspective 



DIRECT APPLICATION OF EXISTING 

NUMERICAL SOLVERS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 For example 
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DIRECT APPLICATION OF EXISTING 

NUMERICAL SOLVERS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 This can be improved by manually adjusting 

crucial components in MG: 

 Smoother: damped coefficient of damped Jacobi 

smoother 

 Prolongations 

 Restrictions 

 Can machine learning help? 
41 



MG V.S. CNN (HE & XU, 2019) 

 MG is an iterative scheme 

𝒖𝑡+1 = 𝒖𝑡 + MG 𝒇 − 𝑨𝒖𝑡 , 𝑡 = 0,1, … , 𝑇 

 Here, MG is given by 

To make this an CNN, the 

operators 𝑩, 𝑨, 𝑹, 𝑷, need to be 

expressed as convolutions. 

42 



MG V.S. CNN (HE & XU, 2019) 

 Converting MG to an CNN 

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖  are generated 

by translates of a set of functions 𝜑𝑘 , then 
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[Chen, Dong and Xu, preprint 2020] 



MG V.S. CNN (HE & XU, 2019) 

 Converting MG to an CNN 

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖  are generated 

by translates of a set of functions 𝜑𝑘 , then 

 

 

 

 Operator 𝑹: convolution with a stride≥ 2 

 Operator 𝑷: deconvolution (upsampling + convolution) 

 Operator 𝑩: replaced by convolution or a small CNN 

 This leads to the multigrid network (MgNet) 
44 

[Chen, Dong and Xu, preprint 2020] 



PDE-MGNET: FOR SOLVING PDES 

 PDE-MgNet 

45 



PDE-MGNET: FOR SOLVING PDES 

 PDE-MgNet 

 

 We can apply PDE-MgNet to solve parametric 

PDE: 𝑨𝜼𝒖 = 𝒇 

 Two supervised learning strategies: 

 For a given set of 𝜼, train PDE-MgNet 

 For every given 𝜼, train PDE-MgNet (we call this 

PDE-MgNet-𝜼) 

 Drawback: poor generalization! 

46 



A META-LEARNING APPROACH 

Solving parameterized PDEs as multi-task learning 

• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: 

Meta Multigrid Networks for Solving Parameterized 

Partial Differential Equations, arXiv:2010.14088, 2020. 



MOTIVATION 

 Single task: learning a solver for a given 𝜼 

 Multi-task: learning a solver for a set of 𝜼 

 Key difference from supervised learning strategy: 

 Leveraging common structures hidden in the tasks! 

 Effective approach: Meta-Learning 

 Finding a good initialization for all tasks  

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018) 

 Designing a hypernetwork to infer suitable 

parameters for each task  

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim, 

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 48 



META-MGNET 

 Architecture: 

 

 All components of Meta-MgNet is the same as PDE-MgNet, 

except for the smoother: 

49 

Meta-NN  
Input: 

• Kernel of the operator 𝑨𝜼 

• Residual 𝒓 

Output: a set of vectors that 

spans a subspace for subspace 

correction 



META-MGNET 

 Learning subspace correction by Meta-NN 𝒢: 

 

 

 

 

 

 

 

 

 Motivation: Krylov subspace 

 

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 , 

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸 

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽 

 Convergence guarantee √ 

50 

Meta-NN 𝒢𝜃(𝑟, 𝐴𝜂) 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 51 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results: 𝜃 = 0  

52 • Best in-distribution (out-of-distribution as well) generalization 

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting 

common structure through multi-task learning perspective 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  

53 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 2,3  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 1, 10−1, 10−4, 10−5(out-of-distribution transfer for 𝜀) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 54 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results: 𝜃 = 0  

55 

• Best out-of-distribution transfer 

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting 

common structure through multi-task learning perspective 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 𝒰[
1

8
𝜋,

3

8
𝜋], lg

1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0.05𝜋, 0.12𝜋, 0.4𝜋, 0.5𝜋, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (out-of-distribution 

transfer for 𝜃) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 
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EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  
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CONCLUSIONS AND FUTURE DIRECTIONS 

 Deep learning ≈ optimal control 

 Hypernetwork structure leads to good generalization  

 Future work:  

 PDE-Net 

 Real dynamical data 

 Meta-learning for multigrid method 

 Learning prolongations and restrictions 

 Learning on irregular grid with graph neural networks 

 Learning other iterative numerical solving with meta-learning 

 RL approach for conservation laws 

 2D or 3D cases 

 More aggressive policy design 

 Adaptive or moving mesh 
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