
LEARNING AND LEARNING TO

SOLVE PDES
 Bin Dong (董彬)

• Beijing International Center for Mathematical Research, Peking

University

• Center for Theory of Artificial Intelligence, Institute for Artificial

Intelligence, Peking University

• Laboratory for Biomedical Image Analysis & Laboratory of Deep

Learning Research, Beijing Institute of Big Data Research

OUTLINE

 Overview and Motivations

 Deep Neural Networks (DNNs) and PDEs

 Learning PDEs: PDE-Net for Inverse Problems

 Learning to Solve PDEs: A Reinforcement Learning Framework

 Learning to Solve Parameterized PDEs: A Meta-Learning Approach

2

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, …)

Learning Learning to solve

OVERVIEW

Motivations and Intuitions

DEEP LEARNING FROM MATHEMATICS

PERSPECTIVE

Deep learning has been a great success.

However, it is also in lack of

 Theoretical guidance

 Interpretability and robustness

Our perspective: control

4

Composite structures can be viewed as dynamics.

DEEP LEARNING FROM CONTROL

PERSPECTIVE

 Control Perspective: Supervised Learning (SL)、
Reinforcement Learning (RL)、Meta Learning (Meta)

5

𝑑𝑿𝑡 = 𝒇 𝑿𝑡 , 𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 𝑑𝑡 + 𝝈 𝑿𝑡 , 𝑡 𝑑𝑾𝑡 , 𝑿0= 𝒙， 𝑡 ∈ (0,1]

Dynamics:

Training loss: 𝐽 𝒖 = 𝔼 𝒙,𝑦 ∼𝑷 ℓ 𝑔 𝑿1 , 𝑦 + 𝑅 𝑠, 𝑿𝑠, 𝒖 𝑠
1

0

𝑑𝑠

Typical SL-control

𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 =

𝒖 𝑡

𝒖 𝑿𝑡 , 𝜽

𝒖 𝜽𝑡

 Typical RL-control

Typical Meta-control

Other variants:
• RL-control: 𝒖 𝑿𝑡 , 𝜽𝑡

• Meta-control: 𝒖 𝜽𝑡 , 𝒁𝑡 with 𝒁𝒕 = 𝑺𝑫𝑬(𝒁𝒕, 𝑿𝒕)

Solver:

• BP/PMP

• DP

Common:

Uncommon:

• E, CMS, 5(1):1–11, 2017.

• Li et al., JMLR, 18(1), 2017.

• Haber, Ruthotto, IP, 34(1), 2017.

PDE-NET: LEARNING PDES FROM

DATA
• Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, PDE-Net:

Learning PDEs from Data, ICML 2018. (arXiv:1710.09668)

• Zichao Long, Yiping Lu and Bin Dong, PDE-Net 2.0: Learning
PDEs from Data with A Numeric-Symbolic Hybrid Deep
Network, Journal of Computational Physics, 399, 108925, 2019
(arXiv:1812.04426).

PDE-NET: LEARNING PDES FROM DATA

 Can we learn principles (e.g. PDEs) from data?

7

Biology

Meteorology

Computer Graphics

PDE-NET: LEARNING PDES FROM DATA

8

 Earlier work

Other earlier attempts:

• Bongard & Lipson, PNAS,

2007

• Lin, Zhang & Tang, MSR-

TR-2008-189.

• Liu, Lin, Zhang & Su.

ECCV 2010.

PDE-NET: LEARNING PDES FROM DATA

 Earlier work

 Dictionary based sparse regression

 Construct dictionary

 Fit variable 𝜉

 Sparse regression

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017.

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017.

9

PDE-NET: LEARNING PDES FROM DATA

Room for improvements

 Can we go beyond sparse coding framework

(linear dictionary)?

—— Bigger model class with less prior knowledge

 Can we learn discrete forms of differential

operators and does it help?

——More accurate estimation of the PDE and

prediction

10

PDE-NET: LEARNING PDES FROM DATA

 Can we learn principles (e.g. PDEs) from data?

 Initial attempt:

 Combining deep learning and numerical PDEs

 Objectives:

 Predictive and expressive power (deep learning)

 Transparency: to reveal hidden physics (numerical

PDEs) 11

S. Sato et al., Siggraph 2018

PDE-NET: LEARNING PDES FROM DATA

 PDE-Net 2.0

12

Prior knowledge on 𝐹:
• Addition and multiplication

of the terms;

• Maximum order.

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑑 Assuming：

PDE-NET: LEARNING PDES FROM DATA

 PDE-Net 2.0

13

𝜂1

𝜉1
𝜂2

𝜉2

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

⋯

𝐹(𝑢, 𝑣,
𝑤, …)

W3

⋅ +𝑏3

W1

⋅ +b1

W2

⋅ +b2

identity identity

More Constraints:
• Pseudo-upwind

• Sparsity on moment matrices

• Sparsity on the symbolic network

Similar to 𝐸𝑄𝐿/𝐸𝑄𝐿÷: Sahoo, Lampert, and Martius, ICML 2018.

PDE-NET: LEARNING PDES FROM DATA

 Constraints on kernels (granting transparency)

 Moment matrix

 We can approximate any differential operator at any

prescribed order by constraining 𝑀(𝑞)

 For example: approximation of
𝜕𝑓

𝜕𝑥
 with a 3 × 3 kernel

1st order

learnable

2st order

learnable

1st order

frozen

14

• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012.

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

PDE-NET: LEARNING PDES FROM DATA

 Example: Burger’s equation

15

𝜈 = 0.05

Remainer weights of 𝒖, 𝒗

Prediction

Model recovery

 Example: Burger’s + reaction

PDE-NET: LEARNING PDES FROM DATA

16 Model Recovery

LEARNING TO SOLVE

CONSERVATION LAWS VIA

REINFORCEMENT LEARNING

• Yufei Wang, Ziju Shen, Zichao Long and Bin Dong, Learning to

Discretize: Solving 1D Scalar Conservation Laws via Deep

Reinforcement Learning, accepted by CiCP 2020 (arXiv:

1905.11079).

NEURAL NETWORKS (NNS) AND NUMERICAL

PDES – A HIGHLY INCOMPLETE LIST

 NNs as a new ansatz:
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017.

 W. E and B. Yu, CMS, 6(1), 1-12, 2018.

 J. Han, A. Jentzen, W. E. PNAS, 115(34):8505–8510, 2018.

 M. Raissi, P. Perdikaris, G. E. Karniadakis. JCP, 378:686–707, 2019.

 G.-J. Both, S. Choudhury, P. Sens, R. Kusters. arXiv:1904.09406, 2019.

 C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch. arXiv:1905.04351, 2019.

 Y. Zhang, G. Bao, X. Ye, H. Zhou, arXiv:1907.08272.

 D. Pfau, J.S. Spencer, A.G. Matthews, W. M. Foulkes, arXiv:1909.02487.

 W. Cai and Z. Xu, arXiv:1910.11710

 Z. Liu, W. Cai, Z.Q.J. Xu, arXiv:2007.11207.

 NNs integrated with classical solvers
 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018.

 J. Magiera, D. Ray, J. S Hesthaven, C. Rohde., JCP, 409, p.109345, 2020.

 N. Discacciati, J. S. Hesthaven, D. Ray. JCP, p. 109304, 2020.

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.

 NNs to approximate complex solution mappings
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351, 2017.

 Y. Khoo, L. Ying. SISC, 41(5): A3182-A3201, 2019.

 Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez. MMS, 17(4):1189-213, 2019.

 Y. Li, J. Lu, A. Mao. JCP, 409, p.109338, 2020.

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Reinforcement learning (RL)

• RL is to learn to make sequential

decisions by interacting with the

environments (learn from rewards).

• Can be modeled as a finite Markov

Decision Process (MDP):

19

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Markov Decision Process

20

From David Silver’s tutorial on RL

A BRIEF INTRO TO REINFORCEMENT

LEARNING

 Goal: 𝑚𝑎𝑥
𝜋

 𝔼𝑎𝑡∼𝜋 ⋅ 𝑠𝑡 ,𝑠𝑡+1∼ℙ(⋅|𝑠𝑡,𝑎𝑡) 𝛾𝑡𝑅𝑎𝑡

𝑠𝑡
𝑡≥0

 Algorithms
 Q-Learning (DQN, DDQN)

 Policy Gradient (PG, PPO, DDPG, etc.)

21

Deep Q-Learning Policy Gradients

From David Silver’s tutorial on RL

― Pros: can use off-policy data

― Cons: cannot handle continuous/stochastic actions

― Pros: works on continuous/stochastic actions

― Cons: high variance, can only use on-policy data

LEARNING TO DISCRETIZE

 1D scalar conservation laws (CLs):

 Discrete setting: 𝑢𝑗
𝑛 = 𝑢(𝑥𝑗 , 𝑡𝑛), 𝑈𝑗

𝑛 is the approximated solution,

𝑓𝑗
𝑛 = 𝑓(𝑢𝑗

𝑛), and 𝑓 𝑗
𝑛 is the approximated flux on the grids

 WENO schemes

Roe speed:

22

LEARNING TO DISCRETIZE

 RL-WENO

23

State: 𝒔𝒋 = 𝒇 𝑼𝒋−𝒓−𝟏
𝒏−𝟏 , … , 𝒇 𝑼𝒋+𝒔

𝒏−𝟏 , 𝒂
𝒋±

𝟏

𝟐

Action:

State transition

LEARNING TO DISCRETIZE

 RL-WENO

24

𝒈𝒓 ⋅ = ⋅ ∞

Trained by: 𝑓 =
1

2
𝑢2 & WENO-5 & Euler & Δ𝑥, Δ𝑡 = (0.04, 0.002) & 𝑇 = 0.8

LEARNING TO DISCRETIZE

 Experimental settings
 Burger’s equation:

 Three scenarios:

 Inviscid

 Forcing

 Viscous: similar as inviscid except 𝜂 = 0.01,0.02,0.04 .

25

LEARNING TO DISCRETIZE

 Experimental settings
 Compared methods:

 5th order WENO (X.-D. Liu, S. Osher, T. Chan, JCP 1994)

 L3D (Y. Bar-Sinai et al., PNAS, 2019)

 PINN (M. Raissi, P. Perdikaris, G. Karniadakis, JCP, 378:686–707, 2019)

 General assessments:

 RL-WENO is trained on “Inviscid” unless specified

 Computation time:

26

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Overall accuracy:

 Comparable with WENO-5

𝑓 𝑢 =
1

2
𝑢2

Training setting

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Near singularities (solution curves)

28

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Near singularities (accumulated errors)

29

LEARNING TO DISCRETIZE

 RL-WENO v.s. WENO-5:

 Strategies of weights (𝑤
𝑗±

1

2

𝑟) selection

30 𝑓
𝑗+

1
2

Action

𝑓
𝑗−

1
2

RL weights

WENO weights

LEARNING TO DISCRETIZE

 Generalization of RL-WENO:

 To other flux

 Train on “Inviscid” and test on “Forcing”

31

𝑓 𝑢 =
1

16
𝑢4

LEARNING TO DISCRETIZE

 Generalization of RL-WENO:

 Train on “Inviscid” and test on “Viscous”

 Train on “Forcing”, test on “Inviscid” and “Viscous”

32

LEARNING TO DISCRETIZE

 RL-WENO v.s. L3D:

 Train on “Forcing” and test on “Forcing”

33

LEARNING TO DISCRETIZE

 RL-WENO v.s. PINN:

 RL-WENO trained on “Viscous”

34

LEARNING TO DISCRETIZE

 Potential of the proposed RL framework

 Most numerical solvers of conservation law can be

interpreted naturally as a sequential decision making

process;

 The policy 𝜋𝑓 (i.e. agent) considers long-term

accuracy (non-greedy).

 RL can gracefully handle non-smooth norms of the

reward and discrete action space.

 Learning the policy 𝜋𝑓 in RL framework making the

method meta-learning-like, i.e. it can learn the

principles of discretization mimicking human experts.

LEARNING TO SOLVE

PRAMETERIZED PDES: A

META-LEARNING APPROACH
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta

Multigrid Networks for Solving Parameterized Partial

Differential Equations, arXiv:2010.14088, 2020.

PARAMETERIZED PARTIAL DIFFERENTIAL

EQUATIONS (PDES)

 General parameterized PDEs:

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼

 Others

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝

 Linear steady parameterized PDEs:

 e.g.

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃)

37

APPLICATIONS THAT REQUIRE EFFICIENT

SOLVERS FOR PARAMETERIZED PDES

 Typical parameters of interest

 Shape parameters

 Material (properties) parameters

 Operation parameters (e.g. flight conditions, cruise

conditions, etc.)

 Initial and boundary conditions

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼

 Inverse problems

 Uncertainty quantification

 Design optimization

 Optimal control

 Model predictive control

Model predictive

control

MULTIGRID AND THE MULTIGRID

NETWORK (MGNET)

Multigrid method viewed as CNN – a control

perspective

DIRECT APPLICATION OF EXISTING

NUMERICAL SOLVERS

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇

 Multigrid method (MG) has linear complexity

 However, CPU time for MG can go up

significantly when 𝜼 is within certain range

 For example

40

DIRECT APPLICATION OF EXISTING

NUMERICAL SOLVERS

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇

 Multigrid method (MG) has linear complexity

 However, CPU time for MG can go up

significantly when 𝜼 is within certain range

 This can be improved by manually adjusting

crucial components in MG:

 Smoother: damped coefficient of damped Jacobi

smoother

 Prolongations

 Restrictions

 Can machine learning help?
41

MG V.S. CNN (HE & XU, 2019)

 MG is an iterative scheme

𝒖𝑡+1 = 𝒖𝑡 + MG 𝒇 − 𝑨𝒖𝑡 , 𝑡 = 0,1, … , 𝑇

 Here, MG is given by

To make this an CNN, the

operators 𝑩, 𝑨, 𝑹, 𝑷, need to be

expressed as convolutions.

42

MG V.S. CNN (HE & XU, 2019)

 Converting MG to an CNN

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖 are generated

by translates of a set of functions 𝜑𝑘 , then

43

[Chen, Dong and Xu, preprint 2020]

MG V.S. CNN (HE & XU, 2019)

 Converting MG to an CNN

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖 are generated

by translates of a set of functions 𝜑𝑘 , then

 Operator 𝑹: convolution with a stride≥ 2

 Operator 𝑷: deconvolution (upsampling + convolution)

 Operator 𝑩: replaced by convolution or a small CNN

 This leads to the multigrid network (MgNet)
44

[Chen, Dong and Xu, preprint 2020]

PDE-MGNET: FOR SOLVING PDES

 PDE-MgNet

45

PDE-MGNET: FOR SOLVING PDES

 PDE-MgNet

 We can apply PDE-MgNet to solve parametric

PDE: 𝑨𝜼𝒖 = 𝒇

 Two supervised learning strategies:

 For a given set of 𝜼, train PDE-MgNet

 For every given 𝜼, train PDE-MgNet (we call this

PDE-MgNet-𝜼)

 Drawback: poor generalization!

46

A META-LEARNING APPROACH

Solving parameterized PDEs as multi-task learning

• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet:

Meta Multigrid Networks for Solving Parameterized

Partial Differential Equations, arXiv:2010.14088, 2020.

MOTIVATION

 Single task: learning a solver for a given 𝜼

 Multi-task: learning a solver for a set of 𝜼

 Key difference from supervised learning strategy:

 Leveraging common structures hidden in the tasks!

 Effective approach: Meta-Learning

 Finding a good initialization for all tasks

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018)

 Designing a hypernetwork to infer suitable

parameters for each task

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim,

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 48

META-MGNET

 Architecture:

 All components of Meta-MgNet is the same as PDE-MgNet,

except for the smoother:

49

Meta-NN
Input:

• Kernel of the operator 𝑨𝜼

• Residual 𝒓

Output: a set of vectors that

spans a subspace for subspace

correction

META-MGNET

 Learning subspace correction by Meta-NN 𝒢:

 Motivation: Krylov subspace

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 ,

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽

 Convergence guarantee √

50

Meta-NN 𝒢𝜃(𝑟, 𝐴𝜂)

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm 51

EXPERIMENTS

 2D anisotropic diffusion equation

 Results: 𝜃 = 0

52 • Best in-distribution (out-of-distribution as well) generalization

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting

common structure through multi-task learning perspective

EXPERIMENTS

 2D anisotropic diffusion equation

 Results:

53

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 2,3

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0, 𝜀 = 1, 10−1, 10−4, 10−5(out-of-distribution transfer for 𝜀)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm 54

EXPERIMENTS

 2D anisotropic diffusion equation

 Results: 𝜃 = 0

55

• Best out-of-distribution transfer

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting

common structure through multi-task learning perspective

EXPERIMENTS

 2D anisotropic diffusion equation

 Training:

 𝜃 = 𝒰[
1

8
𝜋,

3

8
𝜋], lg

1

𝜀
∼ 𝒰 0,5

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 .

 Testing:

 𝜃 = 0.05𝜋, 0.12𝜋, 0.4𝜋, 0.5𝜋, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (out-of-distribution

transfer for 𝜃)

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1

 select stopping criteria

 Report mean±std of number of iterations and computation

time for each experiment with each compared algorithm

56

EXPERIMENTS

 2D anisotropic diffusion equation

 Results:

57

CONCLUSIONS AND FUTURE DIRECTIONS

 Deep learning ≈ optimal control

 Hypernetwork structure leads to good generalization

 Future work:

 PDE-Net

 Real dynamical data

 Meta-learning for multigrid method

 Learning prolongations and restrictions

 Learning on irregular grid with graph neural networks

 Learning other iterative numerical solving with meta-learning

 RL approach for conservation laws

 2D or 3D cases

 More aggressive policy design

 Adaptive or moving mesh

58

THANKS FOR YOUR

ATTENTION!

MY WEBPAGE:

HTTP://BICMR.PKU.EDU.CN/~DONGBIN

http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin
http://bicmr.pku.edu.cn/~dongbin

