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OUTLINE 

 Overview and Motivations 

 Deep Neural Networks (DNNs) and PDEs 

 Learning PDEs: PDE-Net for Inverse Problems 

 Learning to Solve PDEs: A Reinforcement Learning Framework 

 Learning to Solve Parameterized PDEs: A Meta-Learning Approach   

2 

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, … ) 

Learning Learning to solve 



OVERVIEW 

Motivations and Intuitions 



DEEP LEARNING FROM MATHEMATICS 

PERSPECTIVE 

Deep learning has been a great success. 

However, it is also in lack of 

 Theoretical guidance 

 Interpretability and robustness 

Our perspective: control  
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Composite structures can be viewed as dynamics. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: Supervised Learning (SL)、
Reinforcement Learning (RL)、Meta Learning (Meta)  
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𝑑𝑿𝑡 = 𝒇 𝑿𝑡 , 𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 𝑑𝑡 + 𝝈 𝑿𝑡 , 𝑡 𝑑𝑾𝑡 ,    𝑿0= 𝒙， 𝑡 ∈ (0,1] 

Dynamics: 

Training loss: 𝐽 𝒖 = 𝔼 𝒙,𝑦 ∼𝑷  ℓ 𝑔 𝑿1 , 𝑦 +  𝑅 𝑠, 𝑿𝑠, 𝒖 𝑠
1

0

𝑑𝑠 

Typical SL-control 

𝒖 𝑡, 𝑿𝑡 , 𝜽𝑡 =

𝒖 𝑡

𝒖 𝑿𝑡 , 𝜽 

𝒖 𝜽𝑡

 Typical RL-control 

Typical Meta-control 

Other variants:  
• RL-control: 𝒖 𝑿𝑡 , 𝜽𝑡  

• Meta-control: 𝒖 𝜽𝑡 , 𝒁𝑡  with 𝒁𝒕 = 𝑺𝑫𝑬(𝒁𝒕, 𝑿𝒕) 

Solver: 

• BP/PMP 

• DP 

Common: 

Uncommon: 

• E, CMS, 5(1):1–11, 2017. 

• Li et al., JMLR, 18(1), 2017. 

• Haber, Ruthotto, IP, 34(1), 2017. 



PDE-NET: LEARNING PDES FROM 

DATA 
• Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, PDE-Net: 

Learning PDEs from Data, ICML 2018. (arXiv:1710.09668) 

• Zichao Long, Yiping Lu and Bin Dong, PDE-Net 2.0: Learning 
PDEs from Data with A Numeric-Symbolic Hybrid Deep 
Network, Journal of Computational Physics, 399, 108925, 2019 
(arXiv:1812.04426). 



PDE-NET: LEARNING PDES FROM DATA 

 Can we learn principles (e.g. PDEs) from data? 
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Biology 

Meteorology 

Computer Graphics 



PDE-NET: LEARNING PDES FROM DATA 
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 Earlier work 

Other earlier attempts: 

• Bongard & Lipson, PNAS, 

2007 

• Lin, Zhang & Tang, MSR-

TR-2008-189. 

• Liu, Lin, Zhang & Su. 

ECCV 2010.  



PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Dictionary based sparse regression 

 Construct dictionary 

 

 

 Fit variable 𝜉 

 

 

 Sparse regression 

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016 

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017. 

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017. 
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PDE-NET: LEARNING PDES FROM DATA 

Room for improvements 

 Can we go beyond sparse coding framework 

(linear dictionary)?  

—— Bigger model class with less prior knowledge 

 Can we learn discrete forms of differential 

operators and does it help? 

——More accurate estimation of the PDE and 

prediction 
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PDE-NET: LEARNING PDES FROM DATA 

 Can we learn principles (e.g. PDEs) from data? 

 

 

 

 

 Initial attempt:  

 Combining deep learning and numerical PDEs 

 Objectives:  

 Predictive and expressive power (deep learning) 

 Transparency: to reveal hidden physics (numerical 

PDEs) 11 

S. Sato et al., Siggraph 2018 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net 2.0 
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Prior knowledge on 𝐹: 
• Addition and multiplication 

of the terms; 

• Maximum order. 

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑑 Assuming： 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net 2.0 
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𝜂1 

𝜉1 
𝜂2 

𝜉2 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

⋯ 

𝐹(𝑢, 𝑣, 
𝑤, … ) 

W3

⋅ +𝑏3 

W1

⋅ +b1  

W2

⋅ +b2  

identity identity 

More Constraints: 
• Pseudo-upwind 

• Sparsity on moment matrices 

• Sparsity on the symbolic network 

Similar to 𝐸𝑄𝐿/𝐸𝑄𝐿÷: Sahoo, Lampert, and Martius, ICML 2018. 



PDE-NET: LEARNING PDES FROM DATA 

 Constraints on kernels (granting transparency) 

 Moment matrix 

 

 

 We can approximate any differential operator at any 

prescribed order by constraining 𝑀(𝑞) 

 For example: approximation of  
𝜕𝑓

𝜕𝑥
  with a 3 × 3 kernel 

 

 

 

 

 

 

1st order 

learnable 

2st order 

learnable 

1st order 

frozen 
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• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012. 

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017 



PDE-NET: LEARNING PDES FROM DATA 

 Example: Burger’s equation 
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𝜈 = 0.05 

Remainer weights of 𝒖, 𝒗 

Prediction 

Model recovery 



 Example: Burger’s + reaction 

PDE-NET: LEARNING PDES FROM DATA 

16 Model Recovery 



LEARNING TO SOLVE 

CONSERVATION LAWS VIA 

REINFORCEMENT LEARNING 

• Yufei Wang, Ziju Shen, Zichao Long and Bin Dong, Learning to 

Discretize: Solving 1D Scalar Conservation Laws via Deep 

Reinforcement Learning, accepted by CiCP 2020 (arXiv: 

1905.11079). 



NEURAL NETWORKS (NNS) AND NUMERICAL 

PDES – A HIGHLY INCOMPLETE LIST 

 NNs as a new ansatz: 
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017. 

 W. E and B. Yu, CMS, 6(1), 1-12, 2018. 

 J. Han, A. Jentzen, W. E. PNAS, 115(34):8505–8510, 2018. 

 M. Raissi, P. Perdikaris, G. E. Karniadakis. JCP, 378:686–707, 2019. 

 G.-J. Both, S. Choudhury, P. Sens, R. Kusters. arXiv:1904.09406, 2019. 

 C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch. arXiv:1905.04351, 2019. 

 Y. Zhang, G. Bao, X. Ye, H. Zhou, arXiv:1907.08272. 

 D. Pfau, J.S. Spencer, A.G. Matthews, W. M. Foulkes, arXiv:1909.02487. 

 W. Cai and Z. Xu, arXiv:1910.11710 

 Z. Liu, W. Cai, Z.Q.J. Xu, arXiv:2007.11207. 

 NNs integrated with classical solvers 
 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018. 

 J. Magiera, D. Ray, J. S Hesthaven, C. Rohde., JCP, 409, p.109345, 2020. 

 N. Discacciati, J. S. Hesthaven, D. Ray. JCP, p. 109304, 2020. 

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.  

 NNs to approximate complex solution mappings 
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351, 2017. 

 Y. Khoo, L. Ying. SISC, 41(5): A3182-A3201, 2019. 

 Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez. MMS, 17(4):1189-213, 2019. 

 Y. Li, J. Lu, A. Mao. JCP, 409, p.109338, 2020. 



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Reinforcement learning (RL) 

• RL is to learn to make sequential 

decisions by interacting with the 

environments (learn from rewards). 

• Can be modeled as a finite Markov 

Decision Process (MDP): 

19 



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Markov Decision Process 
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From David Silver’s tutorial on RL  



A BRIEF INTRO TO REINFORCEMENT 

LEARNING 

 Goal:  𝑚𝑎𝑥
𝜋

 𝔼𝑎𝑡∼𝜋 ⋅ 𝑠𝑡 ,𝑠𝑡+1∼ℙ(⋅|𝑠𝑡,𝑎𝑡)  𝛾𝑡𝑅𝑎𝑡

𝑠𝑡
𝑡≥0  

 Algorithms 
 Q-Learning (DQN, DDQN) 

 Policy Gradient (PG, PPO, DDPG, etc.)  
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Deep Q-Learning Policy Gradients 

From David Silver’s tutorial on RL  

― Pros: can use off-policy data 

― Cons: cannot handle continuous/stochastic actions 

― Pros: works on continuous/stochastic actions 

― Cons: high variance, can only use on-policy data 



LEARNING TO DISCRETIZE 

 1D scalar conservation laws (CLs): 

 

 Discrete setting: 𝑢𝑗
𝑛 = 𝑢(𝑥𝑗 , 𝑡𝑛),  𝑈𝑗

𝑛 is the approximated solution, 

𝑓𝑗
𝑛 = 𝑓(𝑢𝑗

𝑛), and 𝑓 𝑗
𝑛 is the approximated flux on the grids 

 

 WENO schemes 

Roe speed: 
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LEARNING TO DISCRETIZE 

 RL-WENO 
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State: 𝒔𝒋 = 𝒇 𝑼𝒋−𝒓−𝟏
𝒏−𝟏 , … , 𝒇 𝑼𝒋+𝒔

𝒏−𝟏 , 𝒂 
𝒋±

𝟏

𝟐

 

Action:  

State transition  



LEARNING TO DISCRETIZE 

 RL-WENO 
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𝒈𝒓 ⋅ = ⋅ ∞ 

Trained by: 𝑓 =
1

2
𝑢2 & WENO-5 & Euler & Δ𝑥, Δ𝑡 = (0.04, 0.002) & 𝑇 = 0.8 



LEARNING TO DISCRETIZE 

 Experimental settings 
 Burger’s equation:  

 

 Three scenarios: 

 Inviscid 

 

 

 

 Forcing 

 

 

 

 

 Viscous: similar as inviscid except 𝜂 = 0.01,0.02,0.04 . 
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LEARNING TO DISCRETIZE 

 Experimental settings 
 Compared methods: 

 5th order WENO (X.-D. Liu, S. Osher, T. Chan, JCP 1994) 

 L3D (Y. Bar-Sinai et al., PNAS, 2019) 

 PINN (M. Raissi, P. Perdikaris, G. Karniadakis, JCP, 378:686–707, 2019) 

 General assessments: 

 

 

 

 

 

 RL-WENO is trained on “Inviscid” unless specified 

 Computation time: 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Overall accuracy:  

 Comparable with WENO-5 

𝑓 𝑢 =
1

2
𝑢2 

Training setting 



LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Near singularities (solution curves) 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Near singularities (accumulated errors) 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. WENO-5:  

 Strategies of weights (𝑤
𝑗±

1

2

𝑟 ) selection 

30 𝑓 
𝑗+

1
2
 

Action  

𝑓 
𝑗−

1
2
 

RL weights 

WENO weights  



LEARNING TO DISCRETIZE 

 Generalization of RL-WENO: 

 To other flux 

 

 

 

 

 Train on “Inviscid” and test on “Forcing” 
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𝑓 𝑢 =
1

16
𝑢4 



LEARNING TO DISCRETIZE 

 Generalization of RL-WENO: 

 Train on “Inviscid” and test on “Viscous” 

 

 

 

 

 Train on “Forcing”, test on “Inviscid” and “Viscous” 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. L3D: 

 Train on “Forcing” and test on “Forcing” 
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LEARNING TO DISCRETIZE 

 RL-WENO v.s. PINN: 

 RL-WENO trained on “Viscous” 

 

34 



LEARNING TO DISCRETIZE 

 Potential of the proposed RL framework 

 Most numerical solvers of conservation law can be 

interpreted naturally as a sequential decision making 

process; 

 The policy 𝜋𝑓 (i.e. agent) considers long-term 

accuracy (non-greedy).  

 RL can gracefully handle non-smooth norms of the 

reward and discrete action space. 

 Learning the policy 𝜋𝑓 in RL framework making the 

method meta-learning-like, i.e. it can learn the 

principles of discretization mimicking human experts. 



LEARNING TO SOLVE 

PRAMETERIZED PDES: A 

META-LEARNING APPROACH 
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta 

Multigrid Networks for Solving Parameterized Partial 

Differential Equations, arXiv:2010.14088, 2020. 



PARAMETERIZED PARTIAL DIFFERENTIAL 

EQUATIONS (PDES) 

 General parameterized PDEs: 

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0 

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0 

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼  

 Others 

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚 

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝 

 Linear steady parameterized PDEs: 

 

 e.g. 

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃) 
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APPLICATIONS THAT REQUIRE EFFICIENT 

SOLVERS FOR PARAMETERIZED PDES 

 Typical parameters of interest 

 Shape parameters 

 Material (properties) parameters 

 Operation parameters (e.g. flight conditions, cruise 

conditions, etc.) 

 Initial and boundary conditions 

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼 

 Inverse problems 

 Uncertainty quantification 

 Design optimization 

 Optimal control 

 Model predictive control  

Model predictive 

control 



MULTIGRID AND THE MULTIGRID 

NETWORK (MGNET) 

Multigrid method viewed as CNN – a control 

perspective 



DIRECT APPLICATION OF EXISTING 

NUMERICAL SOLVERS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 For example 
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DIRECT APPLICATION OF EXISTING 

NUMERICAL SOLVERS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 This can be improved by manually adjusting 

crucial components in MG: 

 Smoother: damped coefficient of damped Jacobi 

smoother 

 Prolongations 

 Restrictions 

 Can machine learning help? 
41 



MG V.S. CNN (HE & XU, 2019) 

 MG is an iterative scheme 

𝒖𝑡+1 = 𝒖𝑡 + MG 𝒇 − 𝑨𝒖𝑡 , 𝑡 = 0,1, … , 𝑇 

 Here, MG is given by 

To make this an CNN, the 

operators 𝑩, 𝑨, 𝑹, 𝑷, need to be 

expressed as convolutions. 

42 



MG V.S. CNN (HE & XU, 2019) 

 Converting MG to an CNN 

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖  are generated 

by translates of a set of functions 𝜑𝑘 , then 
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[Chen, Dong and Xu, preprint 2020] 



MG V.S. CNN (HE & XU, 2019) 

 Converting MG to an CNN 

 System 𝑨: if the basis functions 𝜙𝑘,𝑗,𝑖  are generated 

by translates of a set of functions 𝜑𝑘 , then 

 

 

 

 Operator 𝑹: convolution with a stride≥ 2 

 Operator 𝑷: deconvolution (upsampling + convolution) 

 Operator 𝑩: replaced by convolution or a small CNN 

 This leads to the multigrid network (MgNet) 
44 

[Chen, Dong and Xu, preprint 2020] 



PDE-MGNET: FOR SOLVING PDES 

 PDE-MgNet 
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PDE-MGNET: FOR SOLVING PDES 

 PDE-MgNet 

 

 We can apply PDE-MgNet to solve parametric 

PDE: 𝑨𝜼𝒖 = 𝒇 

 Two supervised learning strategies: 

 For a given set of 𝜼, train PDE-MgNet 

 For every given 𝜼, train PDE-MgNet (we call this 

PDE-MgNet-𝜼) 

 Drawback: poor generalization! 
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A META-LEARNING APPROACH 

Solving parameterized PDEs as multi-task learning 

• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: 

Meta Multigrid Networks for Solving Parameterized 

Partial Differential Equations, arXiv:2010.14088, 2020. 



MOTIVATION 

 Single task: learning a solver for a given 𝜼 

 Multi-task: learning a solver for a set of 𝜼 

 Key difference from supervised learning strategy: 

 Leveraging common structures hidden in the tasks! 

 Effective approach: Meta-Learning 

 Finding a good initialization for all tasks  

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018) 

 Designing a hypernetwork to infer suitable 

parameters for each task  

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim, 

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 48 



META-MGNET 

 Architecture: 

 

 All components of Meta-MgNet is the same as PDE-MgNet, 

except for the smoother: 
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Meta-NN  
Input: 

• Kernel of the operator 𝑨𝜼 

• Residual 𝒓 

Output: a set of vectors that 

spans a subspace for subspace 

correction 



META-MGNET 

 Learning subspace correction by Meta-NN 𝒢: 

 

 

 

 

 

 

 

 

 Motivation: Krylov subspace 

 

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 , 

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸 

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽 

 Convergence guarantee √ 
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Meta-NN 𝒢𝜃(𝑟, 𝐴𝜂) 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 51 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results: 𝜃 = 0  

52 • Best in-distribution (out-of-distribution as well) generalization 

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting 

common structure through multi-task learning perspective 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  
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EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 2,3  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 1, 10−1, 10−4, 10−5(out-of-distribution transfer for 𝜀) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 54 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results: 𝜃 = 0  
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• Best out-of-distribution transfer 

• Even better than PDE-MgNet-𝜼, indicating the benefit of exploiting 

common structure through multi-task learning perspective 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 𝒰[
1

8
𝜋,

3

8
𝜋], lg

1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0.05𝜋, 0.12𝜋, 0.4𝜋, 0.5𝜋, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (out-of-distribution 

transfer for 𝜃) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 
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EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  
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CONCLUSIONS AND FUTURE DIRECTIONS 

 Deep learning ≈ optimal control 

 Hypernetwork structure leads to good generalization  

 Future work:  

 PDE-Net 

 Real dynamical data 

 Meta-learning for multigrid method 

 Learning prolongations and restrictions 

 Learning on irregular grid with graph neural networks 

 Learning other iterative numerical solving with meta-learning 

 RL approach for conservation laws 

 2D or 3D cases 

 More aggressive policy design 

 Adaptive or moving mesh 
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