Spin textures in Quantum Hall ferromagnets

Benoît Douçot Dima Kovrizhin, Roderich Moessner

November 9, 2020

Quantum Hall effect

$$R_{xx} = (V(3) - V(4)) / I$$

$$R_{xy} = (V(3) - V(5)) / I$$

Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

$$\rho_{xy} = \frac{B}{ne} = \frac{h}{\nu e^2}$$

 \rightarrow Quantized electronic densities:

$$n = \nu \frac{eB}{h}$$

In terms of $\Phi_0 = \frac{h}{e}$: "Flux quantum" $N_{\rm electrons} = \nu \frac{\text{Total magnetic flux}}{\Phi_0}$

Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum Φ_0 , so that the number of states per Landau level =

Total magnetic flux

Φ₀

u is interpreted as the number of occupied Landau levels

Multi-Component Systems (Internal Degrees of Freedom)

Hamiltonian can approximately have high SU(4) symmetry

- Zeeman anisotropy: $SU(2) \rightarrow U(1)$
- Graphene: valley weakly split, $O(a/l_B)$
- Bilayers: charging energy: $SU(2) \rightarrow U(1)$; neglect tunnelling

N internal states (spin, valley, layer indices, e. g. N = 4 for graphene). Integer filling factor *M* with $1 \le M \le N - 1$. Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small *g* factor). This selects a ferromagnetic state

Main question: What happens when $\nu = M + \delta \nu$, $\delta \nu << 1$?

N internal states (spin, valley, layer indices, e. g. N = 4 for graphene). Integer filling factor *M* with $1 \le M \le N - 1$. Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small *g* factor). This selects a ferromagnetic state

Main question: What happens when $\nu = M + \delta \nu$, $\delta \nu \ll 1$?

Ferromagnetic state is replaced by slowly varying textures (e. g. Skyrmions lattices for M = 1).

Sondhi, Karlhede, Kivelson, Rezayi, PRB **47**, 16419, (1993), Brey, Fertig, Côté and MacDonald, PRL **75**, 2562 (1995)

Example of entangled textures (N = 4, M = 1)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)

Work in lowest Landau level with $\nu = M$, $1 \le M \le N - 1$. We choose an *M*-dimensional subspace in \mathbb{C}^N , which corresponds to the *M* occupied internal states. Explicitly, this subspace is generated by the columns of an $N \times M$ matrix *V*.

Consider now a complete basis $\chi^{(\alpha)}(\mathbf{r})$ in the LLL (orbital degree of freedom). A ferromagnetic state is obtained by taking the Slater determinant $|S_V\rangle$ built from single particle states of the form $|\Psi^{(i\alpha)}\rangle$, $(1 \le i \le M)$, given by:

$$\Psi^{(ilpha)}_{a}({\sf r}) = V_{ai}\,\chi^{(lpha)}({\sf r}), \quad 1\leq a\leq N$$

Terminology: The continuous set of *M*-dimensional subspaces in \mathbb{C}^N is a smooth complex manifold of dimension (N - M)M, called the Grassmannian $\operatorname{Gr}(M, N)$.

Slater determinants in the LLL associated to smooth textures (I)

Physical space manifold: $\Sigma = \mathbb{R}^2$ Textures: Smooth maps $\Sigma \to \mathcal{M} = \operatorname{Gr}(\mathcal{M}, \mathcal{N})$ Explicitely: Pick an $\mathcal{N} \times \mathcal{M}$ matrix $V_{ij}(\mathbf{r})$ of maps. This defines a local projector in internal (generalized spin space) $P_V(\mathbf{r}) = V(\mathbf{r})(V^{\dagger}(\mathbf{r})V(\mathbf{r}))^{-1}V^{\dagger}(\mathbf{r}).$

Auxiliary single-particle Hamiltonian:

$$H_{\mathrm{aux},V} = -\mathcal{P}_{LLL} \left(\int d^2 \mathbf{r} \sum_{a,b} P_V(\mathbf{r})_{ab} \Psi_a^{\dagger}(\mathbf{r}) \Psi_b(\mathbf{r}) \right) \mathcal{P}_{LLL}$$

The ground-state of $H_{\text{aux},V}$ is a Slater determinant $|S_V\rangle$.

Slater determinants in the LLL associated to smooth textures (II)

Main effect of \mathcal{P}_{LLL} : (Moon et al. (1995), Pasquier (2000),...)

$$\begin{array}{rcl} n_{\rm el}({\bf r}) & = & \frac{M}{2\pi l^2} - Q({\bf r}) + O(l^2) \\ N_{\rm el} & = & MN_{\Phi} - Q_{\rm top} & \rightarrow & {\rm CONSTRAINT} \end{array}$$

Energy functional:

$$E_{\rm tot} = E_{\rm loc} + E_{\rm non-loc}$$

$$\begin{split} & E_{\rm loc}: \text{ exchange energy (generalized ferromagnet), given by a} \\ & \text{non-linear } \sigma \text{ model energy functional (next slides).} \\ & E_{\rm non-loc} = \frac{e^2}{8\pi\epsilon} \int d^2\mathbf{r} \int d^2\mathbf{r}' \frac{Q(\mathbf{r})Q(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}. \end{split}$$

Slater determinants in the LLL associated to smooth textures (III)

$$E_{\rm tot} = E_{\rm loc} + E_{\rm non-loc}$$

If filling factor is close to *M*, $E_{\text{non-loc}} \ll E_{\text{loc}}$. To find optimal textures, we can therefore:

- Minimize E_{loc} in the presence of the $N_{\text{el}} = MN_{\Phi} Q_{\text{top}}$ constraint. This leads to a continuous family of degenerate configurations (next slides).
- **2** Lift this degeneracy by minimizing $E_{\text{non-loc}}$ within this degenerate family. Physically, this favors textures in which the topological charge density is as uniform as possible.

Kähler manifolds

 \mathcal{M} complex manifold with local complex coordinates w_i . \mathcal{M} is equipped with an Hermitian metric

$$ds^2 = \sum_{ij} h_{ij} \, dw_i d \, ar w_j$$

such that the corresponding associated (1,1) form

$$\omega = rac{i}{2} \sum_{ij} h_{ij} \, dw_i \wedge d \, ar w_j$$

is closed.

This implies that, locally, the metric derives from a Kähler potential Φ , i.e. that:

$$h_{ij} = \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_j}$$

Grassmannians are Kähler manifolds

Choice of local coordinates on Gr(M, N): Pick a rank $M, N \times M$ matrix V. Then it has at least one non-zero $M \times M$ minor determinant. Assuming this is the first one, we get a dense open subset of Gr(M, N). $V = \begin{pmatrix} V_u \\ V_d \end{pmatrix}$. Multiplying V on the right by V_u^{-1} leads to the same M-dimensional subspace. This changes Vinto

$$\left(\begin{array}{c} I_m \\ W \end{array} \right)$$

where $W = V_d V_u^{-1}$ is an arbitrary $(N - M) \times M$ matrix.

Kähler potential:

$$\Phi(W,W^{\dagger}) = rac{1}{\pi} \mathrm{log} \, \mathrm{det}(I+W^{\dagger}W)$$

Energy functionals for maps to Kähler manifolds

Classical energy functional for a map $(x, y) \rightarrow (w_i)$:

$$E = \frac{g}{2} \int d^2 \mathbf{r} \ h_{ij}(w(\mathbf{r}), \bar{w}(\mathbf{r})) \nabla w_i . \nabla \bar{w}_j$$
$$E = g \int d^2 \mathbf{r} \ h_{ij}(\partial_z w_i \partial_{\bar{z}} \bar{w}_j + \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$$

The topological charge density is defined by:

$$Q = \int d^2 \mathbf{r} \, f^* \omega$$

Explicitely:

$$Q = \int d^2 \mathbf{r} \ h_{ij} (\partial_z w_i \partial_{\bar{z}} \bar{w}_j - \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$$

 $d\omega = 0$ implies that Q does not change to first order under any infinitesimal variation of the map f, so Q depends only on the homotopy class of f. In many interesting situations, Q takes only integer values.

Bogomolnyi inequality and its consequences

$$E = g(A+B)$$
$$Q = A-B$$
$$A = \int d^2 \mathbf{r} \ h_{ij} \partial_z w_i \partial_{\bar{z}} \bar{w}_j \quad B = \int d^2 \mathbf{r} \ h_{ij} \partial_{\bar{z}} w_i \partial_z \bar{w}_j$$

Since $h_{ij} = \bar{h}_{ji}$ is positive definite, A and B are both real and non-negative. Then $A + B \ge |A - B|$, so:

$$E \ge g|Q|$$

Minimal energy configurations with fixed Q: If Q > 0, B = 0, so $\partial_{\bar{z}} w_i = 0$: minimal configurations are holomorphic.

If Q < 0, A = 0, so $\partial_z w_i = 0$: minimal configurations are anti-holomorphic.

Consider physical space to be a two-dimensional manifold Σ

- How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow M$?
- Observation of the topological charge density (Coulomb energy) ?
- Space of maps Σ → M as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional E ?

Holomorphic maps from the sphere to $\mathbb{CP}(N-1)$ (I)

 $S^2 \cong \mathbb{CP}(1) \cong \mathbb{C} \cup \{\infty\}$ so we use one coordinate $z \in \mathbb{C}$. Kähler potential on the sphere: $\Phi = \frac{1}{\pi} \log(1 + |z|^2)$ Volume element: $\omega = \frac{dx \wedge dy}{\pi(1 + |z|^2)^2}$ Holomorphic maps $f : S^2 \to \mathbb{CP}(N-1)$: collections of Npolynomials $P_1(z), ..., P_N(z)$. Topological charge: number of intersection points of $f(S^2)$ with an arbitrary hyperplane in $\mathbb{CP}(N-1)$ = maximal degree d of $P_1(z), ..., P_N(z)$. Topological charge density:

$$Q(z, \overline{z}) = (1 + |z|^2)^2 \partial_z \partial_{\overline{z}} \log(\sum_{i=1}^N |P_i(z)|^2)$$

 $Q(z, \bar{z})$ is constant when:

$$\sum_{i=1}^{N} |P_i(z)|^2 = (1+|z|^2)^d$$

Holomorphic maps from the sphere to $\mathbb{CP}(N-1)$ (II)

Hermitian scalar product on degree *d* polynomials:

$$(P,Q)_d = \frac{d+1}{\pi} \int d^2 \mathbf{r} \; \frac{\overline{P(z)}Q(z)}{(1+|z|^2)^{d+2}}$$

Orthonormal basis: $e_p(z) = \left(\begin{array}{c} d\\ p \end{array}\right)^{1/2} z^p$

General texture of degree d: $P_i(z) = \sum_{i=0}^d A_{ij}e_j(z)$ $Q(z, \bar{z})$ is constant when: $A^{\dagger}A = I_{d+1}$

If $d \ge N$: No solution

If $d \le N - 2$: many solutions, but not all components of the maps are linearly independent.

If d = N - 1: $AA^{\dagger} = I_N = A^{\dagger}A$, so $(P_i, P_j)_d = \delta_{ij}$.

Textures with uniform topological charge density \Leftrightarrow Components form an orthonormal basis.

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (I)

$$\begin{aligned} \theta(z+\gamma) &= e^{\mathbf{a}\gamma z + \mathbf{b}\gamma} \theta(z) \\ (\theta, \theta')_d &= \int d^2 \mathbf{r} \, \exp(-\frac{\pi d|z|^2}{|\gamma_1 \wedge \gamma_2|}) \overline{\theta(z)} \theta'(z) \end{aligned}$$

 $(\theta_i, \theta_j)_d = \delta_{ij}$

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (II)

d = N = 2

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (III)

d = N = 4

Spatial variations of topological charge: Q(r) is always γ_1/d and γ_2/d periodic. Unlike on the sphere, Q(r) is not exactly constant.

At large d the modulation contains mostly the lowest harmonic, and its amplitude decays exponentially with d.

Large *d* behavior for a square lattice:

$$Q(x,y) \simeq \frac{2}{\pi} - 4de^{-\pi d/2} [\cos(2\sqrt{d}x) - 2e^{-\pi d/2} \cos^2(4\sqrt{d}x) + (x \leftrightarrow y)] + \dots$$

Only the triangular lattice seems to yield a true local energy minimum. This has been evidenced by computing eigenfrequencies of small deformation modes.

B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)

Components of a map $f : \Sigma \to \mathbb{CP}(N-1)$ were polynomials on the sphere and θ functions on the torus. Note that polynomials have poles at $z \to \infty$, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ , and choose the components of the maps $s_j(z)$ as global holomorphic sections of L, for $1 \le j \le N$.

Recipe for optimal textures: N = dimension of the space of global holomorphic sections of *L*. Choose components forming an orthonormal basis for a well chosen hermitian product.

Geometric quantization recipe for the hermitian product

ω: volume form associated to constant curvature metric on Σ h^d : hermitian metric on fibers of L^d whose curvature form equals $-d(2\pi i)ω$

$$(s,s')_{L,d} = \int_{\Sigma} h^d(s(x),s'(x))\omega(x)$$

Topological charge form: $\omega_{top} - \omega = \frac{1}{\pi} \partial_z \partial_{\bar{z}} \log B(z, \bar{z})$. $B(z, \bar{z})_{L,d} = \sum_{j=1}^{N} h^d(s_j(z), s_j(z))$

For an orthonormal basis $B(z, \overline{z})$ is the Bergman kernel, whose large *d* asymptotics has been studied a lot in the 90's.

Holomorphic maps from Σ to $\mathbb{CP}(N-1)$ (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin, Lu,...(1990 to 2000)): $B(z, \bar{z}) = d + a_0(z, \bar{z}) + a_{-1}(z, \bar{z})d^{-1} + a_{-2}(z, \bar{z})d^{-2} + ...,$ such that $a_j(z, \bar{z})$ is a polynomial in the curvature and its covariant derivatives at (z, \bar{z}) .

Interesting consequence: If ω is associated to the constant curvature metric on Σ , the previous family of textures have uniform topological charge, up to corrections which are smaller than any power of 1/d.

"Practical" questions: How to effectively construct such orthonormal bases of sections, when Σ has genus ≥ 2 ? Optimization of the exponentially small corrections in d with respect to the line bundle L?

Consider physical space to be a two-dimensional manifold $\boldsymbol{\Sigma}$

- How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow M$?
- Observation of the topological charge density (Coulomb energy) ?
- Space of maps $\Sigma \longrightarrow \mathcal{M}$ as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional *E* ?

Consider physical space to be a two-dimensional manifold $\boldsymbol{\Sigma}$

- How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow M$?
- Observation of the topological charge density (Coulomb energy) ?
- Space of maps $\Sigma \longrightarrow \mathcal{M}$ as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional *E* ?

Key idea: View classical textures as coherent states.

Kostant (1970), Souriau (1970), Berezin (1974), Rawnsley (1977): to each compact symplectic (Kähler) manifold (\mathcal{M}, ω) , that admits an ample complex line bundle L, we associate:

- A quantum Hilbert space *H_n*: the space of holomorphic sections of the ⊗ⁿL bundle over *M*.
- Pick a hermitian metric h on the fibers of $\otimes^n L$, such that the curvature form of the associated connection is proportional to ω . Then $\langle s_1 | s_2 \rangle = \int_{\mathcal{M}} h(s_1, s_2) \omega^{\dim \mathcal{M}}$.
- The coherent state at x is defined by: $s(x) = \langle \Phi_x | s \rangle s_0(x)$, s_0 being a reference section.

$$\begin{aligned} \operatorname{Symb}(\hat{A})(x) &= \langle \Phi_x | \hat{A} | \Phi_x \rangle / \langle \Phi_x | \Phi_x \rangle \\ \operatorname{Symb}([\hat{A}, \hat{B}]) \xrightarrow[n \to \infty]{} \frac{i}{n} \{ \operatorname{Symb}(\hat{A}), \operatorname{Symb}(\hat{B}) \} \end{aligned}$$

Consider N bosonic modes with $[a_i, a_i^{\dagger}] = \delta_{ij}$ for $0 \le i, j \le N - 1$. Take m positive integer, and consider the finite dimensional subspace of bosonic Fock space, defined by the constraint: $\sum_{i=0}^{N-1} a_i^+ a_i = m.$ Orthonormal basis: $|\vec{n}\rangle = \frac{(\hat{a}_{0}^{+})^{n_{0}} \cdots (\hat{a}_{N-1}^{+})^{n_{N-1}}}{\sqrt{n_{0}! \cdots n_{N-1}!}} |0\rangle, \quad \sum_{i=0}^{N-1} n_{i} = m,$ $n_i > 0.$ Coherent states: $|e_{\bar{v}}\rangle = \sum \frac{ar{v}_1^{n_1} \dots ar{v}_{N-1}^{n_N-1}}{\sqrt{n_0! \dots n_{N-1}!}} |\vec{n}\rangle$ Overlaps: $\langle e_{\overline{v}'} | e_{\overline{v}} \rangle = \frac{(1 + \langle v | v' \rangle)^m}{m!}$ Reproducing kernel: $\mathbf{I} = \frac{(m+N-1)!}{(m+N-1)!} \int \frac{\prod_{j=1}^{N-1} dv_j d\bar{v}_j}{(1+1)!(N)!} \frac{|e_{\bar{v}}\rangle \langle e_{\bar{v}}|}{\sqrt{e_{\bar{v}}|e_{\bar{v}}\rangle}}$

Covariant symbols:
$$\frac{\langle e_{\bar{v}} | \prod_{j=0}^{N-1} (a_j^+)^{m_j} a_j^{n_j} | e_{\bar{v}} \rangle}{\langle e_{\bar{v}} | e_{\bar{v}} \rangle} = \frac{m!}{(m-n)!} \frac{\prod_{j=1}^{N-1} v_j^{m_j} \bar{v}_j^{n_j}}{(1+\langle v | v \rangle)^n}$$
Consider \hat{H} an operator which can be written as a power series in bosonic mode operators a_i , a_j^{\dagger} , and whose covariant symbol $H(v, \bar{v}) = \frac{\langle e_{\bar{v}} | \hat{H} | e_{\bar{v}} \rangle}{\langle e_{\bar{v}} | e_{\bar{v}} \rangle}$ is such that $H(v, \bar{v})$ has a minimum at $v = 0$ and its Taylor expansion around $v = 0$ doesn't contain any monomial composed only of v_j 's nor only of \bar{v}_j 's.

Then $|e_0\rangle$ is an exact eigenstate of \hat{H} , with eigenvalue H(0,0).

 \mathcal{M} complex Kähler manifold with local complex coordinates w_i , $ds^2 = \sum_{ii} h_{ij} dw_i d\bar{w}_i, \ \omega = \frac{i}{2} \sum_{ii} h_{ij} dw_i \wedge d\bar{w}_i, \ d\omega = 0$, so locally: $h_{ij} = \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_i}$. We consider maps $\mathbb{R}^2 \to \mathcal{M}$. $E = g \int d^2 \mathbf{r} \; \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_i} (\partial_z w_i \partial_{\bar{z}} \bar{w}_j + \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$ $Q = \int d^2 \mathbf{r} \, f^* \omega = \int d^2 \mathbf{r} \, \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_i} (\partial_z w_i \partial_{\bar{z}} \bar{w}_j - \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$ $E = gQ + 2g \int d^2 \mathbf{r} \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_i} \partial_{\bar{z}} w_i \partial_z \bar{w}_i$ Pick a holomorphic texture $w_{cl,i}(\mathbf{r})$ and write $w_i(\mathbf{r}) = w_{cl,i}(\mathbf{r}) + \delta w_i(\mathbf{r})$. Using the fact that $\partial_{\overline{z}} w_{cl,i} = 0$, we see that the Taylor expansion of E does not contain any term involving only $\delta w_i(\mathbf{r})$'s nor any term involving only $\delta \bar{w}_i(\mathbf{r})$'s.

B. Douçot, D. Kovrizhin, R. Moessner, PRB 93, 094426 (2016)

Towards continuum limit: lattice regularization

Take a 2D lattice, and associate to each site the quantized Hilbert space obtained from the classical $\mathbb{C}P(N-1)$ manifold, with the same *m* at each site. The classical limit is obtained as $m \to \infty$. Consider the Hamiltonian:

$$\hat{\mathcal{H}}=-\sum_{\langle \mathbf{rr}'
angle}\sum_{ij}a_{i}^{\dagger}(\mathbf{r})a_{j}(\mathbf{r})a_{j}^{\dagger}(\mathbf{r}')a_{i}(\mathbf{r}')$$

Its covariant symbol is:

$$H(v,\bar{v}) = -m^2 \frac{(1 + \langle v(\mathbf{r}) | v(\mathbf{r}') \rangle)(1 + \langle v(\mathbf{r}') | v(\mathbf{r}) \rangle)}{(1 + \langle v(\mathbf{r}) | v(\mathbf{r}) \rangle)(1 + \langle v(\mathbf{r}') | v(\mathbf{r}') \rangle)}$$

This provides a lattice discretization of the classical $\mathbb{C}P(N-1)$ energy functional, together with a well defined quantization associated to it.

Numerical experiments (D. Kovrizhin)

Triangulation on the sphere (642 sites)

Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical configuration: compatible with the magnetic Laplacian on the sphere with a charge 2 magnetic monopole: manifestation of the spin Berry phase associated to a slow twist of the spin background.

Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical configuration: quantum zero point correction normalized to classical Skyrmion energy

Remark on lattice effects (I)

Absence of magnon-type excitations, due to holomorphic nature of the texture, holds only when magnon wave-length » lattice spacing.

Magnon frequency shift due to magnon non-conserving terms in the quadratic approximation around a classical Skyrmion solution

It turns out that the total quantum correction to the ground-state energy of a Skyrmion configuration goes to zero as $1/N_{\rm sites}$ when $N_{\rm sites} \rightarrow \infty$, even in the presence of small residual quantum fluctuations induced by the lattice discretization.

B. Douçot, D. Kovrizhin, R. Moessner, arXiv:1808.06783

Ubiquity of geometric quantization:

- Derivation of energy functionals and physical effects due to projection onto lowest Landau level.
- "Re-quantization" around classical textures and analysis of quantum zero point motion correction to total energy.
- More surprinsingly, provides a geometrical description of optimal textures, i.e. those with most uniform topological charge density.

Main open challenge: To identify optimal Grassmannian textures. For them, we are no longer dealing with line bundles, but with vector bundles over the space manifold Σ .

Maps $\Sigma \to Gr(M, N)$ and rank M vector bundles (I)

Basic fact: there exists a 1 to 1 correspondence between:

)

- Maps $f: \Sigma \to \operatorname{Gr}(M, N)$
- Rank *M* vector bundles *V* over Σ, together with a choice of *N* sections of *V*, which generate the fiber *V_x* at each *x* ∈ Σ, modulo automorphisms of *V*.

$$\mathcal{V} \cong f^* \mathcal{T}^* \xrightarrow{\overline{f}} \mathcal{T}^*$$

$$s_i \left[1 \le i \le N \right] \quad f_i$$

$$\Sigma \xrightarrow{f} \operatorname{Gr}(M, N)$$

 $f^*\mathcal{T}^*$: dual of tautological rank M vector bundle over $\operatorname{Gr}(M, N)$. For $V \in \operatorname{Gr}(M, N)$, $t_i(V)$ is the linear form on V defined by the *i*-th component in \mathbb{C}^N ($V \subset \mathbb{C}^N$).

Maps $\Sigma \to Gr(M, N)$ and rank *M* vector bundles (II)

Conversely, we start from a rank M vector bundle over Σ , and a choice of N sections $s_i(x)$, $1 \le i \le N$ of \mathcal{V} , which generate the fiber \mathcal{V}_x at each $x \in \Sigma$.

Using local frames in open subsets U_{α} covering Σ , each section $s_i(x)$ may be seen as an *M*-component row-vector. These *N* rows form an $N \times M$ matrix $V^{(\alpha)}(x)$, and if $x \in U_{\alpha} \cap U_{\beta}$:

$$V^{(\alpha)}(x) = V^{(\beta)}(x)t^{(\beta\alpha)}(x)$$

where $t^{(\beta\alpha)}(x)$ are the transition functions of \mathcal{V} . The linear span in \mathbb{C}^N of the columns of $V^{(\alpha)}(x)$ form a well defined $f(x) \in \operatorname{Gr}(M, N)$. Elements of $\mathcal{V}_x \longleftrightarrow M$ -component row-vectors Elements of $f(x) \longleftrightarrow M$ -component column-vectors

$$\mathcal{V}_x \cong f(x)^*$$

Using the Plücker embedding of Gr(M, N) into $\mathbb{C}P(\tilde{N}-1)$

Suggests to consider $i_{\mathcal{P}} f$, which is generated by the \tilde{N} sections $s_{i_1} \wedge ... \wedge s_{i_M}$ of Det \mathcal{V} .