Spin textures in Quantum Hall ferromagnets

Benoît Douçot
Dima Kovrizhin, Roderich Moessner

November 9, 2020

Quantum Hall effect

$$
\begin{aligned}
& R_{x x}=(V(3)-V(4)) / I \\
& R_{x y}=(V(3)-V(5)) / I
\end{aligned}
$$

Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

$$
\rho_{x y}=\frac{B}{n e}=\frac{h}{\nu e^{2}}
$$

\rightarrow Quantized electronic densities:

$$
n=\nu \frac{e B}{h}
$$

In terms of $\Phi_{0}=\frac{h}{e}$: "Flux quantum"

$$
N_{\text {electrons }}=\nu \frac{\text { Total magnetic flux }}{\Phi_{0}}
$$

Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum Φ_{0}, so that the number of states per Landau level $=$

Total magnetic flux

ν is interpreted as the number of occupied Landau levels

v entier

Multi-Component Systems (Internal Degrees of Freedom)

(A) physical spin: $\mathrm{SU}(2)$

(B) bilayer: $\mathrm{SU}(2)$ isospin

two-fold valley degeneracy $\rightarrow \mathrm{SU}(2)$ isospin
spin + isospin : SU(4)

Realistic anisotropies

Hamiltonian can approximately have high $S U(4)$ symmetry

- Zeeman anisotropy: $S U(2) \rightarrow U(1)$
- Graphene: valley weakly split, $O\left(a / I_{B}\right)$
- Bilayers: charging energy: $S U(2) \rightarrow U(1)$; neglect tunnelling

Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. $N=4$ for graphene).
Integer filling factor M with $1 \leq M \leq N-1$.
Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when $\nu=M+\delta \nu, \delta \nu \ll 1$?

Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. $N=4$ for graphene).
Integer filling factor M with $1 \leq M \leq N-1$.
Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when $\nu=M+\delta \nu, \delta \nu \ll 1$?
Ferromagnetic state is replaced by slowly varying textures (e. g. Skyrmions lattices for $M=1$).

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993), Brey, Fertig, Côté and MacDonald, PRL 75, 2562 (1995)

Example of entangled textures $(N=4, M=1)$

Description of uniform states

Work in lowest Landau level with $\nu=M, 1 \leq M \leq N-1$. We choose an M-dimensional subspace in \mathbb{C}^{N}, which corresponds to the M occupied internal states. Explicitely, this subspace is generated by the columns of an $N \times M$ matrix V.
Consider now a complete basis $\chi^{(\alpha)}(r)$ in the LLL (orbital degree of freedom). A ferromagnetic state is obtained by taking the Slater determinant $\left|\mathcal{S}_{V}\right\rangle$ built from single particle states of the form $\left|\psi^{(i \alpha)}\right\rangle,(1 \leq i \leq M)$, given by:

$$
\psi_{a}^{(i \alpha)}(r)=V_{a i} \chi^{(\alpha)}(r), \quad 1 \leq a \leq N
$$

Terminology: The continuous set of M-dimensional subspaces in \mathbb{C}^{N} is a smooth complex manifold of dimension $(N-M) M$, called the Grassmannian $\operatorname{Gr}(M, N)$.

Slater determinants in the LLL associated to smooth

 textures (I)Physical space manifold: $\Sigma=\mathbb{R}^{2}$
Textures: Smooth maps $\Sigma \rightarrow \mathcal{M}=\operatorname{Gr}(M, N)$
Explicitely: Pick an $N \times M$ matrix $V_{i j}(r)$ of maps.
This defines a local projector in internal (generalized spin space)
$P_{V}(\mathbf{r})=V(\mathbf{r})\left(V^{\dagger}(\mathbf{r}) V(\mathbf{r})\right)^{-1} V^{\dagger}(\mathbf{r})$.
Auxiliary single-particle Hamiltonian:

$$
H_{\mathrm{aux}, V}=-\mathcal{P}_{L L L}\left(\int d^{2} \mathbf{r} \sum_{a, b} P_{V}(\mathbf{r})_{a b} \Psi_{a}^{\dagger}(\mathbf{r}) \Psi_{b}(\mathbf{r})\right) \mathcal{P}_{L L L}
$$

The ground-state of $H_{\text {aux }, V}$ is a Slater determinant $\left|\mathcal{S}_{V}\right\rangle$.

Slater determinants in the LLL associated to smooth

 textures (II)Main effect of $\mathcal{P}_{\text {LLL }}$: (Moon et al. (1995), Pasquier (2000), ...)

$$
\begin{aligned}
n_{\mathrm{el}}(\mathbf{r}) & =\frac{M}{2 \pi l^{2}}-Q(\mathbf{r})+O\left(l^{2}\right) \\
N_{\mathrm{el}} & =M N_{\Phi}-Q_{\mathrm{top}} \rightarrow \text { CONSTRAINT }
\end{aligned}
$$

Energy functional:

$$
E_{\mathrm{tot}}=E_{\mathrm{loc}}+E_{\mathrm{non}-\mathrm{loc}}
$$

$E_{\text {loc }}$: exchange energy (generalized ferromagnet), given by a non-linear σ model energy functional (next slides).
$E_{\text {non-loc }}=\frac{e^{2}}{8 \pi \epsilon} \int d^{2} \mathbf{r} \int d^{2} \mathbf{r}^{\prime} \frac{Q(\mathbf{r}) Q\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$.

Slater determinants in the LLL associated to smooth

 textures (III)$$
E_{\mathrm{tot}}=E_{\mathrm{loc}}+E_{\mathrm{non}-\mathrm{loc}}
$$

If filling factor is close to $M, E_{\text {non-loc }} \ll E_{\text {loc }}$. To find optimal textures, we can therefore:
(1) Minimize $E_{\text {loc }}$ in the presence of the $N_{\text {el }}=M N_{\phi}-Q_{\text {top }}$ constraint. This leads to a continuous family of degenerate configurations (next slides).
(2) Lift this degeneracy by minimizing $E_{\text {non-loc }}$ within this degenerate family. Physically, this favors textures in which the topological charge density is as uniform as possible.

Kähler manifolds

\mathcal{M} complex manifold with local complex coordinates w_{i}.
\mathcal{M} is equipped with an Hermitian metric

$$
d s^{2}=\sum_{i j} h_{i j} d w_{i} d \bar{w}_{j}
$$

such that the corresponding associated $(1,1)$ form

$$
\omega=\frac{i}{2} \sum_{i j} h_{i j} d w_{i} \wedge d \bar{w}_{j}
$$

is closed.
This implies that, locally, the metric derives from a Kähler potential Φ, i.e. that:

$$
h_{i j}=\frac{\partial^{2} \Phi}{\partial w_{i} \partial \bar{w}_{j}}
$$

Grassmannians are Kähler manifolds

Choice of local coordinates on $\operatorname{Gr}(M, N)$: Pick a rank $M, N \times M$ matrix V. Then it has at least one non-zero $M \times M$ minor determinant. Assuming this is the first one, we get a dense open subset of $\operatorname{Gr}(M, N) . V=\binom{V_{u}}{V_{d}}$. Multiplying V on the right by V_{u}^{-1} leads to the same M-dimensional subspace. This changes V into

$$
\binom{I_{m}}{W}
$$

where $W=V_{d} V_{u}^{-1}$ is an arbitrary $(N-M) \times M$ matrix.
Kähler potential:

$$
\Phi\left(W, W^{\dagger}\right)=\frac{1}{\pi} \log \operatorname{det}\left(I+W^{\dagger} W\right)
$$

Classical energy functional for a map $(x, y) \rightarrow\left(w_{i}\right)$:

$$
\begin{aligned}
E & =\frac{g}{2} \int d^{2} \mathbf{r} h_{i j}(w(\mathbf{r}), \bar{w}(\mathbf{r})) \nabla w_{i} \cdot \nabla \bar{w}_{j} \\
E & =g \int d^{2} \mathbf{r} h_{i j}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}+\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)
\end{aligned}
$$

The topological charge density is defined by:

$$
Q=\int d^{2} r f^{*} \omega
$$

Explicitely:

$$
Q=\int d^{2} r h_{i j}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}-\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)
$$

$d \omega=0$ implies that Q does not change to first order under any infinitesimal variation of the map f, so Q depends only on the homotopy class of f. In many interesting situations, Q takes only integer values.

Bogomolnyi inequality and its consequences

$$
\begin{gathered}
E=g(A+B) \\
Q=A-B \\
A=\int d^{2} \mathbf{r} h_{i j} \partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j} \quad B=\int d^{2} \mathbf{r} h_{i j} \partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}
\end{gathered}
$$

Since $h_{i j}=\bar{h}_{j i}$ is positive definite, A and B are both real and non-negative. Then $A+B \geq|A-B|$, so:

$$
E \geq g|Q|
$$

Minimal energy configurations with fixed Q :
If $Q>0, B=0$, so $\partial_{\bar{z}} w_{i}=0$: minimal configurations are holomorphic.
If $Q<0, A=0$, so $\partial_{z} w_{i}=0$: minimal configurations are anti-holomorphic.

A list of questions

Consider physical space to be a two-dimensional manifold Σ
(1) How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow \mathcal{M}$?
(2) How to minimize spatial variations of the topological charge density (Coulomb energy) ?
(3) Space of maps $\Sigma \longrightarrow \mathcal{M}$ as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional E ?

Holomorphic maps from the sphere to $\mathbb{C P}(N-1)(I)$

$S^{2} \cong \mathbb{C P}(1) \cong \mathbb{C} \cup\{\infty\}$ so we use one coordinate $z \in \mathbb{C}$. Kähler potential on the sphere: $\Phi=\frac{1}{\pi} \log \left(1+|z|^{2}\right)$
Volume element: $\omega=\frac{d x \wedge d y}{\pi\left(1+|z|^{2}\right)^{2}}$
Holomorphic maps $f: S^{2} \rightarrow \mathbb{C P}(N-1)$: collections of N polynomials $P_{1}(z), \ldots, P_{N}(z)$.
Topological charge: number of intersection points of $f\left(S^{2}\right)$ with an arbitrary hyperplane in $\mathbb{C P}(N-1)=$ maximal degree d of
$P_{1}(z), \ldots, P_{N}(z)$.
Topological charge density:

$$
Q(z, \bar{z})=\left(1+|z|^{2}\right)^{2} \partial_{z} \partial_{\bar{z}} \log \left(\sum_{i=1}^{N}\left|P_{i}(z)\right|^{2}\right)
$$

$Q(z, \bar{z})$ is constant when:

$$
\sum_{i=1}^{N}\left|P_{i}(z)\right|^{2}=\left(1+|z|^{2}\right)^{d}
$$

Hermitian scalar product on degree d polynomials:

$$
(P, Q)_{d}=\frac{d+1}{\pi} \int d^{2} \mathbf{r} \frac{\overline{P(z)} Q(z)}{\left(1+|z|^{2}\right)^{d+2}}
$$

Orthonormal basis: $e_{p}(z)=\binom{d}{p}^{1 / 2} z^{p}$
General texture of degree $d: P_{i}(z)=\sum_{i=0}^{d} A_{i j} e_{j}(z)$ $Q(z, \bar{z})$ is constant when: $A^{\dagger} A=I_{d+1}$
If $d \geq N$: No solution
If $d \leq N-2$: many solutions, but not all components of the maps are linearly independent.
If $d=N-1: A A^{\dagger}=I_{N}=A^{\dagger} A$, so $\left(P_{i}, P_{j}\right)_{d}=\delta_{i j}$.
Textures with uniform topological charge density \Leftrightarrow Components form an orthonormal basis.

$$
\begin{gathered}
\theta(z+\gamma)=e^{a_{\gamma} z+b_{\gamma}} \theta(z) \\
\left(\theta, \theta^{\prime}\right)_{d}=\int d^{2} r \exp \left(-\frac{\pi d|z|^{\prime}}{\left|\gamma_{1} \wedge \gamma_{2}\right|}\right) \overline{\theta(z)} \theta^{\prime}(z)
\end{gathered}
$$

Optimal textures
$(d=N)$
$|\Psi(z)\rangle=\left(\begin{array}{c}\theta_{0}(z) \\ \theta_{1}(z) \\ \cdot \\ \cdot \\ \cdot \\ \theta_{d-1}(z)\end{array}\right)$

$\left(\theta_{i}, \theta_{j}\right)_{d}=\delta_{i j}$

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (II)

$$
d=N=2
$$

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (III)

$$
d=N=4
$$

B. Douçot

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (IV)

Spatial variations of topological charge: $Q(r)$ is always γ_{1} / d and γ_{2} / d periodic. Unlike on the sphere, $Q(r)$ is not exactly constant.
At large d the modulation contains mostly the lowest harmonic, and its amplitude decays exponentially with d.
Large d behavior for a square lattice:
$Q(x, y) \simeq \frac{2}{\pi}-4 d e^{-\pi d / 2}\left[\cos (2 \sqrt{d} x)-2 e^{-\pi d / 2} \cos ^{2}(4 \sqrt{d} x)+(x \leftrightarrow y)\right]+\ldots$
Only the triangular lattice seems to yield a true local energy minimum. This has been evidenced by computing eigenfrequencies of small deformation modes.
B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)

Holomorphic maps from Σ to $\mathbb{C P}(N-1)(I)$

Components of a map $f: \Sigma \rightarrow \mathbb{C P}(N-1)$ were polynomials on the sphere and θ functions on the torus. Note that polynomials have poles at $z \rightarrow \infty$, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ, and choose the components of the maps $s_{j}(z)$ as global holomorphic sections of L, for $1 \leq j \leq N$.

Recipe for optimal textures: $N=$ dimension of the space of global holomorphic sections of L. Choose components forming an orthonormal basis for a well chosen hermitian product.

Holomorphic maps from Σ to $\mathbb{C P}(N-1)$ (II)

Geometric quantization recipe for the hermitian product ω : volume form associated to constant curvature metric on Σ h^{d} : hermitian metric on fibers of L^{d} whose curvature form equals $-d(2 \pi i) \omega$

$$
\left(s, s^{\prime}\right)_{L, d}=\int_{\Sigma} h^{d}\left(s(x), s^{\prime}(x)\right) \omega(x)
$$

Topological charge form: $\omega_{\text {top }}-\omega=\frac{1}{\pi} \partial_{z} \partial_{\bar{z}} \log B(z, \bar{z})$.
$B(z, \bar{z})_{L, d}=\sum_{j=1}^{N} h^{d}\left(s_{j}(z), s_{j}(z)\right)$
For an orthonormal basis $B(z, \bar{z})$ is the Bergman kernel, whose large d asymptotics has been studied a lot in the 90 's.

Holomorphic maps from \sum to $\mathbb{C P}(N-1)$ (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin, Lu, ...(1990 to 2000)):
$B(z, \bar{z})=d+a_{0}(z, \bar{z})+a_{-1}(z, \bar{z}) d^{-1}+a_{-2}(z, \bar{z}) d^{-2}+\ldots$, such that $a_{j}(z, \bar{z})$ is a polynomial in the curvature and its covariant derivatives at (z, \bar{z}).

Interesting consequence: If ω is associated to the constant curvature metric on Σ, the previous family of textures have uniform topological charge, up to corrections which are smaller than any power of $1 / d$.
"Practical" questions: How to effectively construct such orthonormal bases of sections, when Σ has genus ≥ 2 ? Optimization of the exponentially small corrections in d with respect to the line bundle L ?

A list of questions

Consider physical space to be a two-dimensional manifold Σ
(1) How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow \mathcal{M}$?
(2) How to minimize spatial variations of the topological charge density (Coulomb energy) ?
(3) Space of maps $\Sigma \longrightarrow \mathcal{M}$ as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional E ?

A list of questions

Consider physical space to be a two-dimensional manifold Σ
(1) How to construct (and parametrize) the whole family of holomorphic maps $\Sigma \longrightarrow \mathcal{M}$?
(2) How to minimize spatial variations of the topological charge density (Coulomb energy) ?
(3) Space of maps $\Sigma \longrightarrow \mathcal{M}$ as classical phase-space. How to study the quantum Hamiltonian associated to the local energy functional E ?

Key idea: View classical textures as coherent states.

Basic idea of geometric quantization

Kostant (1970), Souriau (1970), Berezin (1974), Rawnsley (1977): to each compact symplectic (Kähler) manifold (\mathcal{M}, ω), that admits an ample complex line bundle L, we associate:

- A quantum Hilbert space \mathcal{H}_{n} : the space of holomorphic sections of the $\otimes^{n} L$ bundle over \mathcal{M}.
- Pick a hermitian metric h on the fibers of $\otimes^{n} L$, such that the curvature form of the associated connection is proportional to ω. Then $\left\langle s_{1} \mid s_{2}\right\rangle=\int_{\mathcal{M}} h\left(s_{1}, s_{2}\right) \omega^{\operatorname{dim} \mathcal{M}}$.
- The coherent state at x is defined by: $s(x)=\left\langle\Phi_{x} \mid s\right\rangle s_{0}(x), s_{0}$ being a reference section.

$$
\begin{gathered}
\operatorname{Symb}(\hat{A})(x)=\left\langle\Phi_{x}\right| \hat{A}\left|\Phi_{x}\right\rangle /\left\langle\Phi_{x} \mid \Phi_{x}\right\rangle \\
\operatorname{Symb}([\hat{A}, \hat{B}]) \underset{n \rightarrow \infty}{\longrightarrow} \frac{i}{n}\{\operatorname{Symb}(\hat{A}), \operatorname{Symb}(\hat{B})\}
\end{gathered}
$$

Geometric quantization on $\mathbb{C} P(N-1)(I)$

Consider N bosonic modes with $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$ for $0 \leq i, j \leq N-1$. Take m positive integer, and consider the finite dimensional subspace of bosonic Fock space, defined by the constraint:
$\sum_{i=0}^{N-1} a_{i}^{+} a_{i}=m$.
Orthonormal basis: $|\vec{n}\rangle=\frac{\left(\hat{a}_{0}^{+}\right)^{n_{0} \ldots\left(\hat{a}_{N-1}^{+}\right)^{n} N-1}}{\sqrt{n_{0}!\cdots n_{N-1}!}}|0\rangle, \quad \sum_{i=0}^{N-1} n_{i}=m$, $n_{i} \geq 0$.
Coherent states: $\left|e_{\bar{v}}\right\rangle=\sum \frac{\bar{v}_{1}^{n_{1} \cdots \bar{v}_{N-1}}{ }^{n_{0}!\cdots n_{N-1}!}}{n}|\vec{n}\rangle$
Overlaps: $\left\langle e_{\bar{v}^{\prime}} \mid e_{\bar{v}}\right\rangle=\frac{\left(1+\left\langle v \mid v^{\prime}\right\rangle\right)^{m}}{m!}$
Reproducing kernel: $\mathbf{I}=\frac{(m+N-1)!}{\pi^{(N-1)} m!} \int \frac{\prod_{j=1}^{N-1} d v_{j} d \bar{v}_{j}}{(1+\langle v \mid v\rangle)^{N}} \frac{\left|e_{\bar{\nu}}\right\rangle\left\langle e_{\bar{v}}\right|}{\left\langle e_{\bar{v}} \mid e_{\bar{v}}\right\rangle}$

Geometric quantization on $\mathbb{C} P(N-1)(I I)$

Covariant symbols: $\frac{\left\langle e_{\bar{v}}\right| \prod_{j=0}^{N-1}\left(a_{j}^{+}\right)^{m_{j}} a_{j}^{n_{j}}\left|e_{\bar{v}}\right\rangle}{\left\langle e_{\bar{v}} \mid e_{\bar{v}}\right\rangle}=\frac{m!}{(m-n)!} \frac{\prod_{j=1}^{N-1} v_{j}^{m_{j}} \overline{\bar{v}}_{j}^{n_{j}}}{(1+\langle v \mid v\rangle)^{n}}$
Consider \hat{H} an operator which can be written as a power series in bosonic mode operators a_{i}, a_{j}^{\dagger}, and whose covariant symbol $H(v, \bar{v})=\frac{\left\langle e_{\overline{\bar{v}}}\right| \hat{H}\left|e_{\bar{v}}\right\rangle}{\left\langle e_{\bar{v}} \mid e_{\bar{v}}\right\rangle}$ is such that $H(v, \bar{v})$ has a minimum at $v=0$ and its Taylor expansion around $v=0$ doesn't contain any monomial composed only of v_{j} 's nor only of \bar{v}_{j} 's.
Then $\left|e_{0}\right\rangle$ is an exact eigenstate of \hat{H}, with eigenvalue $H(0,0)$.

Key property of the Hessian

\mathcal{M} complex Kähler manifold with local complex coordinates w_{i}, $d s^{2}=\sum_{i j} h_{i j} d w_{i} d \bar{w}_{j}, \omega=\frac{i}{2} \sum_{i j} h_{i j} d w_{i} \wedge d \bar{w}_{j}, d \omega=0$, so locally: $h_{i j}=\frac{\partial^{2} \Phi}{\partial w_{i} \partial \bar{w}_{j}}$. We consider maps $\mathbb{R}^{2} \rightarrow \mathcal{M}$.
$E=g \int d^{2} \mathbf{r} \frac{\partial^{2} \phi}{\partial w_{i} \bar{w}_{j}}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}+\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)$
$Q=\int d^{2} \mathbf{r} f^{*} \omega=\int d^{2} \mathbf{r} \frac{\partial^{2} \Phi}{\partial w_{i} \partial \bar{w}_{j}}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}-\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)$
$E=g Q+2 g \int d^{2} r \frac{\partial^{2} \Phi}{\partial w_{i} \partial \bar{w}_{j}} \partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}$
Pick a holomorphic texture $w_{\mathrm{cl}, i}(\mathbf{r})$ and write $w_{i}(\mathbf{r})=w_{\mathrm{cl}, i}(\mathbf{r})+\delta w_{i}(\mathbf{r})$. Using the fact that $\partial_{\bar{z}} w_{\mathrm{cl}, i}=0$, we see that the Taylor expansion of E does not contain any term involving only $\delta w_{i}(\mathbf{r})$'s nor any term involving only $\delta \bar{w}_{i}(\mathbf{r})$'s.
B. Douçot, D. Kovrizhin, R. Moessner, PRB 93, 094426 (2016)

Take a 2D lattice, and associate to each site the quantized Hilbert space obtained from the classical $\mathbb{C} P(N-1)$ manifold, with the same m at each site. The classical limit is obtained as $m \rightarrow \infty$. Consider the Hamiltonian:

$$
\hat{H}=-\sum_{\left\langle\mathbf{r} \mathbf{r}^{\prime}\right\rangle} \sum_{i j} a_{i}^{\dagger}(\mathbf{r}) a_{j}(\mathbf{r}) a_{j}^{\dagger}\left(\mathbf{r}^{\prime}\right) a_{i}\left(\mathbf{r}^{\prime}\right)
$$

Its covariant symbol is:

$$
H(v, \bar{v})=-m^{2} \frac{\left(1+\left\langle v(\mathbf{r}) \mid v\left(\mathbf{r}^{\prime}\right)\right\rangle\right)\left(1+\left\langle v\left(\mathbf{r}^{\prime}\right) \mid v(\mathbf{r})\right\rangle\right)}{(1+\langle v(\mathbf{r}) \mid v(\mathbf{r})\rangle)\left(1+\left\langle v\left(\mathbf{r}^{\prime}\right) \mid v\left(\mathbf{r}^{\prime}\right)\right\rangle\right)}
$$

This provides a lattice discretization of the classical $\mathbb{C} P(N-1)$ energy functional, together with a well defined quantization associated to it.

Numerical experiments (D. Kovrizhin)

Triangulation on the sphere (642 sites)

B. Douçot

Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical configuration: compatible with the magnetic Laplacian on the sphere with a charge 2 magnetic monopole: manifestation of the spin Berry phase associated to a slow twist of the spin background.

Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical configuration: quantum zero point correction normalized to classical Skyrmion energy

Remark on lattice effects (I)

Absence of magnon-type excitations, due to holomorphic nature of the texture, holds only when magnon wave-length » lattice spacing.

Magnon frequency shift due to magnon non-conserving terms in the quadratic approximation around a classical Skyrmion solution

Remark on lattice effects (II)

It turns out that the total quantum correction to the ground-state energy of a Skyrmion configuration goes to zero as $1 / N_{\text {sites }}$ when $N_{\text {sites }} \rightarrow \infty$, even in the presence of small residual quantum fluctuations induced by the lattice discretization.
B. Douçot, D. Kovrizhin, R. Moessner, arXiv:1808.06783

Ubiquity of geometric quantization:

- Derivation of energy functionals and physical effects due to projection onto lowest Landau level.
- "Re-quantization" around classical textures and analysis of quantum zero point motion correction to total energy.
- More surprinsingly, provides a geometrical description of optimal textures, i.e. those with most uniform topological charge density.
Main open challenge: To identify optimal Grassmannian textures. For them, we are no longer dealing with line bundles, but with vector bundles over the space manifold Σ.

Maps $\Sigma \rightarrow \operatorname{Gr}(M, N)$ and rank M vector bundles (I)

Basic fact: there exists a 1 to 1 correspondence between:

- Maps $f: \Sigma \rightarrow \operatorname{Gr}(M, N)$
- Rank M vector bundles \mathcal{V} over Σ, together with a choice of N sections of \mathcal{V}, which generate the fiber \mathcal{V}_{x} at each $x \in \Sigma$, modulo automorphisms of \mathcal{V}.

$f^{*} \mathcal{T}^{*}$: dual of tautological rank M vector bundle over $\operatorname{Gr}(M, N)$. For $V \in \operatorname{Gr}(M, N), t_{i}(V)$ is the linear form on V defined by the i-th component in $\mathbb{C}^{N}\left(V \subset \mathbb{C}^{N}\right)$.

Maps $\Sigma \rightarrow \operatorname{Gr}(M, N)$ and rank M vector bundles (II)

Conversely, we start from a rank M vector bundle over Σ, and a choice of N sections $s_{i}(x), 1 \leq i \leq N$ of \mathcal{V}, which generate the fiber \mathcal{V}_{x} at each $x \in \Sigma$.
Using local frames in open subsets U_{α} covering Σ, each section $s_{i}(x)$ may be seen as an M-component row-vector. These N rows form an $N \times M$ matrix $V^{(\alpha)}(x)$, and if $x \in U_{\alpha} \cap U_{\beta}$:

$$
V^{(\alpha)}(x)=V^{(\beta)}(x) t^{(\beta \alpha)}(x)
$$

where $t^{(\beta \alpha)}(x)$ are the transition functions of \mathcal{V}.
The linear span in \mathbb{C}^{N} of the columns of $V^{(\alpha)}(x)$ form a well defined $f(x) \in \operatorname{Gr}(M, N)$.
Elements of $\mathcal{V}_{x} \longleftrightarrow M$-component row-vectors
Elements of $f(x) \longleftrightarrow M$-component column-vectors

$$
\mathcal{V}_{x} \cong f(x)^{*}
$$

Using the Plücker embedding of $\operatorname{Gr}(M, N)$ into $\mathbb{C} P(\tilde{N}-1)$

$$
\begin{aligned}
& \tilde{N}=\binom{N}{M}
\end{aligned}
$$

Suggests to consider ip f, which is generated by the \tilde{N} sections $s_{i_{1}} \wedge \ldots \wedge s_{i_{M}}$ of Det \mathcal{V}.

