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Quantum Hall effect
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Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

ρxy =
B

ne
=

h

νe2

→ Quantized electronic densities:

n = ν
eB

h

In terms of Φ0 = h
e : “Flux quantum”

Nelectrons = ν
Total magnetic flux

Φ0
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Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum
Φ0, so that the number of states per Landau level =

Total magnetic flux
Φ0

ν is interpreted as the number of occupied Landau levels

3<   <4νentierν
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Multi-Component Systems (Internal Degrees of Freedom)
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Realistic anisotropies

Hamiltonian can approximately have high SU(4) symmetry
Zeeman anisotropy: SU(2)→ U(1)

Graphene: valley weakly split, O(a/lB)

Bilayers: charging energy: SU(2)→ U(1); neglect tunnelling
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Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. N = 4 for
graphene).
Integer filling factor M with 1 ≤ M ≤ N − 1.
Large magnetic field → Projection onto the lowest Landau level
(LLL). Assume that largest sub-leading term is given by Coulomb
interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when ν = M + δν, δν << 1 ?

Ferromagnetic state is replaced by slowly varying textures (e. g.
Skyrmions lattices for M = 1).

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993), Brey,
Fertig, Côté and MacDonald, PRL 75, 2562 (1995)
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Example of entangled textures (N = 4, M = 1)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)
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Description of uniform states

Work in lowest Landau level with ν = M, 1 ≤ M ≤ N − 1. We
choose an M-dimensional subspace in CN , which corresponds to
the M occupied internal states. Explicitely, this subspace is
generated by the columns of an N ×M matrix V .

Consider now a complete basis χ(α)(r) in the LLL (orbital degree of
freedom). A ferromagnetic state is obtained by taking the Slater
determinant |SV 〉 built from single particle states of the form
|Ψ(iα)〉, (1 ≤ i ≤ M), given by:

Ψ
(iα)
a (r) = Vai χ

(α)(r), 1 ≤ a ≤ N

Terminology: The continuous set of M-dimensional subspaces in

CN is a smooth complex manifold of dimension (N −M)M, called
the Grassmannian Gr(M,N).
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Slater determinants in the LLL associated to smooth
textures (I)

Physical space manifold: Σ = R2

Textures: Smooth maps Σ→M = Gr(M,N)
Explicitely: Pick an N ×M matrix Vij(r) of maps.
This defines a local projector in internal (generalized spin space)
PV (r) = V (r)(V †(r)V (r))−1V †(r).

Auxiliary single-particle Hamiltonian:

Haux,V = −PLLL

∫ d2r
∑
a,b

PV (r)abΨ†a(r)Ψb(r)

PLLL
The ground-state of Haux,V is a Slater determinant |SV 〉.
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Slater determinants in the LLL associated to smooth
textures (II)

Main effect of PLLL: (Moon et al. (1995), Pasquier (2000),...)

nel(r) =
M

2πl2
− Q(r) + O(l2)

Nel = MNΦ − Qtop → CONSTRAINT

Energy functional:

Etot = Eloc + Enon−loc

Eloc: exchange energy (generalized ferromagnet), given by a
non-linear σ model energy functional (next slides).
Enon−loc = e2

8πε

∫
d2r

∫
d2r′Q(r)Q(r′)

|r−r′| .
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Slater determinants in the LLL associated to smooth
textures (III)

Etot = Eloc + Enon−loc

If filling factor is close to M, Enon−loc << Eloc. To find optimal
textures, we can therefore:

1 Minimize Eloc in the presence of the Nel = MNΦ − Qtop
constraint. This leads to a continuous family of degenerate
configurations (next slides).

2 Lift this degeneracy by minimizing Enon−loc within this
degenerate family. Physically, this favors textures in which the
topological charge density is as uniform as possible.
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Kähler manifolds

M complex manifold with local complex coordinates wi .
M is equipped with an Hermitian metric

ds2 =
∑
ij

hij dwidw̄j

such that the corresponding associated (1,1) form

ω =
i

2

∑
ij

hij dwi ∧ dw̄j

is closed.
This implies that, locally, the metric derives from a Kähler potential
Φ, i.e. that:

hij =
∂2Φ

∂wi∂w̄j
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Grassmannians are Kähler manifolds

Choice of local coordinates on Gr(M,N): Pick a rank M, N ×M
matrix V . Then it has at least one non-zero M ×M minor
determinant. Assuming this is the first one, we get a dense open

subset of Gr(M,N). V =

(
Vu

Vd

)
. Multiplying V on the right by

V−1
u leads to the same M-dimensional subspace. This changes V

into (
Im
W

)
where W = VdV

−1
u is an arbitrary (N −M)×M matrix.

Kähler potential:

Φ(W ,W †) =
1
π
log det(I + W †W )
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Energy functionals for maps to Kähler manifolds

Classical energy functional for a map (x , y)→ (wi ):

E =
g

2

∫
d2r hij(w(r), w̄(r))∇wi .∇w̄j

E = g

∫
d2r hij(∂zwi∂z̄ w̄j + ∂z̄wi∂z w̄j)

The topological charge density is defined by:

Q =

∫
d2r f ∗ω

Explicitely:

Q =

∫
d2r hij(∂zwi∂z̄ w̄j − ∂z̄wi∂z w̄j)

dω = 0 implies that Q does not change to first order under any
infinitesimal variation of the map f , so Q depends only on the
homotopy class of f . In many interesting situations, Q takes only
integer values.
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Bogomolnyi inequality and its consequences

E = g(A + B)

Q = A− B

A =

∫
d2r hij∂zwi∂z̄ w̄j B =

∫
d2r hij∂z̄wi∂z w̄j

Since hij = h̄ji is positive definite, A and B are both real and
non-negative. Then A + B ≥ |A− B|, so:

E ≥ g |Q|

Minimal energy configurations with fixed Q:
If Q > 0, B = 0, so ∂z̄wi = 0: minimal configurations are
holomorphic.
If Q < 0, A = 0, so ∂zwi = 0: minimal configurations are
anti-holomorphic.
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A list of questions

Consider physical space to be a two-dimensional manifold Σ

1 How to construct (and parametrize) the whole family of
holomorphic maps Σ −→M ?

2 How to minimize spatial variations of the topological charge
density (Coulomb energy) ?

3 Space of maps Σ −→M as classical phase-space. How to
study the quantum Hamiltonian associated to the local energy
functional E ?
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Holomorphic maps from the sphere to CP(N − 1) (I)

S2 ∼= CP(1) ∼= C ∪ {∞} so we use one coordinate z ∈ C.
Kähler potential on the sphere: Φ = 1

π log(1 + |z |2)

Volume element: ω = dx∧dy
π(1+|z|2)2

Holomorphic maps f : S2 → CP(N − 1): collections of N
polynomials P1(z), ...,PN(z).
Topological charge: number of intersection points of f (S2) with an
arbitrary hyperplane in CP(N − 1) = maximal degree d of
P1(z), ...,PN(z).
Topological charge density:

Q(z , z̄) = (1 + |z |2)2∂z∂z̄ log(
N∑
i=1

|Pi (z)|2)

Q(z , z̄) is constant when:
N∑
i=1

|Pi (z)|2 = (1 + |z |2)d
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Holomorphic maps from the sphere to CP(N − 1) (II)

Hermitian scalar product on degree d polynomials:

(P,Q)d =
d + 1
π

∫
d2r

P(z)Q(z)

(1 + |z |2)d+2

Orthonormal basis: ep(z) =

(
d
p

)1/2

zp

General texture of degree d : Pi (z) =
∑d

i=0 Aijej(z)
Q(z , z̄) is constant when: A†A = Id+1
If d ≥ N: No solution
If d ≤ N − 2: many solutions, but not all components of the maps
are linearly independent.
If d = N − 1: AA† = IN = A†A, so (Pi ,Pj)d = δij .
Textures with uniform topological charge density ⇔ Components
form an orthonormal basis.
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Holomorphic maps from the torus to CP(N − 1) (I)

θ(z + γ) = eaγz+bγθ(z)

(θ, θ′)d =
∫
d2r exp(− πd |z|2

|γ1∧γ2|)θ(z)θ′(z)

Optimal textures
(d = N)

|Ψ(z)〉 =



θ0(z)
θ1(z)
.
.
.

θd−1(z)


(θi , θj)d = δij

Pattern of zeros (d=4)

γ1

γ2
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Holomorphic maps from the torus to CP(N − 1) (II)

d = N = 2
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Holomorphic maps from the torus to CP(N − 1) (III)

d = N = 4
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Holomorphic maps from the torus to CP(N − 1) (IV)

Spatial variations of topological charge: Q(r) is always γ1/d and
γ2/d periodic. Unlike on the sphere, Q(r) is not exactly constant.

At large d the modulation contains mostly the lowest harmonic,
and its amplitude decays exponentially with d .

Large d behavior for a square lattice:

Q(x , y) ' 2
π
−4de−πd/2[cos(2

√
dx)−2e−πd/2 cos2(4

√
dx)+(x ↔ y)]+...

Only the triangular lattice seems to yield a true local energy
minimum. This has been evidenced by computing eigenfrequencies
of small deformation modes.

B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)
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Holomorphic maps from Σ to CP(N − 1) (I)

Components of a map f : Σ→ CP(N − 1) were polynomials on the
sphere and θ functions on the torus. Note that polynomials have
poles at z →∞, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ, and choose
the components of the maps sj(z) as global holomorphic sections of
L, for 1 ≤ j ≤ N.

Recipe for optimal textures: N = dimension of the space of global
holomorphic sections of L. Choose components forming an
orthonormal basis for a well chosen hermitian product.
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Holomorphic maps from Σ to CP(N − 1) (II)

Geometric quantization recipe for the hermitian product
ω : volume form associated to constant curvature metric on Σ
hd : hermitian metric on fibers of Ld whose curvature form equals
−d(2πi)ω

(s, s ′)L,d =

∫
Σ
hd(s(x), s ′(x))ω(x)

Topological charge form: ωtop − ω = 1
π∂z∂z̄ logB(z , z̄).

B(z , z̄)L,d =
∑N

j=1 h
d(sj(z), sj(z))

For an orthonormal basis B(z , z̄) is the Bergman kernel, whose
large d asymptotics has been studied a lot in the 90’s.
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Holomorphic maps from Σ to CP(N − 1) (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin,
Lu,...(1990 to 2000)):
B(z , z̄) = d + a0(z , z̄) + a−1(z , z̄)d−1 + a−2(z , z̄)d−2 + ..., such
that aj(z , z̄) is a polynomial in the curvature and its covariant
derivatives at (z , z̄).

Interesting consequence: If ω is associated to the constant
curvature metric on Σ, the previous family of textures have uniform
topological charge, up to corrections which are smaller than any
power of 1/d .

“Practical” questions: How to effectively construct such
orthonormal bases of sections, when Σ has genus ≥ 2 ?
Optimization of the exponentially small corrections in d with
respect to the line bundle L ?
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A list of questions

Consider physical space to be a two-dimensional manifold Σ

1 How to construct (and parametrize) the whole family of
holomorphic maps Σ −→M ?

2 How to minimize spatial variations of the topological charge
density (Coulomb energy) ?

3 Space of maps Σ −→M as classical phase-space. How to
study the quantum Hamiltonian associated to the local energy
functional E ?

Key idea: View classical textures as coherent states.
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Basic idea of geometric quantization

Kostant (1970), Souriau (1970), Berezin (1974), Rawnsley (1977): to each compact
symplectic (Kähler) manifold (M, ω), that admits an ample
complex line bundle L, we associate:

A quantum Hilbert space Hn: the space of holomorphic
sections of the ⊗nL bundle overM.
Pick a hermitian metric h on the fibers of ⊗nL, such that the
curvature form of the associated connection is proportional to
ω. Then 〈s1|s2〉 =

∫
M h(s1, s2)ωdimM.

The coherent state at x is defined by: s(x) = 〈Φx |s〉s0(x), s0
being a reference section.

Symb(Â)(x) = 〈Φx |Â|Φx〉/〈Φx |Φx〉

Symb([Â, B̂]) −−−→
n→∞

i

n
{Symb(Â), Symb(B̂)}
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Geometric quantization on CP(N − 1) (I)

Consider N bosonic modes with [ai , a
†
j ] = δij for 0 ≤ i , j ≤ N − 1.

Take m positive integer, and consider the finite dimensional
subspace of bosonic Fock space, defined by the constraint:∑N−1

i=0 a+
i ai = m.

Orthonormal basis: |~n〉 =
(â+

0 )n0 ···(â+
N−1)nN−1

√
n0!···nN−1!

|0〉,
∑N−1

i=0 ni = m,

ni ≥ 0.

Coherent states: |ev̄ 〉 =
∑ v̄

n1
1 ···v̄

nN−1
N−1√

n0!···nN−1!
|~n〉

Overlaps: 〈ev̄ ′ |ev̄ 〉 = (1+〈v |v ′〉)m
m!

Reproducing kernel: I = (m+N−1)!

π(N−1)m!

∫ ∏N−1
j=1 dvjdv̄j

(1+〈v |v〉)N
|ev̄ 〉〈ev̄ |
〈ev̄ |ev̄ 〉
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Geometric quantization on CP(N − 1) (II)

Covariant symbols:
〈ev̄ |

∏N−1
j=0 (a+

j )
mj a

nj
j |ev̄ 〉

〈ev̄ |ev̄ 〉 = m!
(m−n)!

∏N−1
j=1 v

mj
j v̄

nj
j

(1+〈v |v〉)n

Consider Ĥ an operator which can be written as a power series in
bosonic mode operators ai , a

†
j , and whose covariant symbol

H(v , v̄) = 〈ev̄ |Ĥ|ev̄ 〉
〈ev̄ |ev̄ 〉 is such that H(v , v̄) has a minimum at v = 0

and its Taylor expansion around v = 0 doesn’t contain any
monomial composed only of vj ’s nor only of v̄j ’s.

Then |e0〉 is an exact eigenstate of Ĥ, with eigenvalue H(0, 0).

B. Douçot QMMM seminar, Lisbon November 9th 2020



Key property of the Hessian

M complex Kähler manifold with local complex coordinates wi ,
ds2 =

∑
ij hijdwidw̄j , ω = i

2
∑

ij hijdwi ∧ dw̄j , dω = 0, so locally:

hij = ∂2Φ
∂wi∂w̄j

. We consider maps R2 →M.

E = g
∫
d2r ∂2Φ

∂wi∂w̄j
(∂zwi∂z̄ w̄j + ∂z̄wi∂z w̄j)

Q =
∫
d2r f ∗ω =

∫
d2r ∂2Φ

∂wi∂w̄j
(∂zwi∂z̄ w̄j − ∂z̄wi∂z w̄j)

E = gQ + 2g
∫
d2r ∂2Φ

∂wi∂w̄j
∂z̄wi∂z w̄j

Pick a holomorphic texture wcl,i (r) and write
wi (r) = wcl,i (r) + δwi (r). Using the fact that ∂z̄wcl,i = 0, we see
that the Taylor expansion of E does not contain any term involving
only δwi (r)’s nor any term involving only δw̄i (r)’s.

B. Douçot, D. Kovrizhin, R. Moessner, PRB 93, 094426 (2016)
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Towards continuum limit: lattice regularization

Take a 2D lattice, and associate to each site the quantized Hilbert
space obtained from the classical CP(N − 1) manifold, with the
same m at each site. The classical limit is obtained as m→∞.
Consider the Hamiltonian:

Ĥ = −
∑
〈rr′〉

∑
ij

a†i (r)aj(r)a
†
j (r′)ai (r′)

Its covariant symbol is:

H(v , v̄) = −m2 (1 + 〈v(r)|v(r′)〉)(1 + 〈v(r′)|v(r)〉)
(1 + 〈v(r)|v(r)〉)(1 + 〈v(r′)|v(r′)〉)

This provides a lattice discretization of the classical CP(N − 1)
energy functional, together with a well defined quantization
associated to it.
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Numerical experiments (D. Kovrizhin)

Triangulation on the sphere (642 sites)
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Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical
configuration: compatible with the magnetic Laplacian on the
sphere with a charge 2 magnetic monopole: manifestation of the
spin Berry phase associated to a slow twist of the spin background.
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Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical
configuration: quantum zero point correction normalized to
classical Skyrmion energy
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Remark on lattice effects (I)

Absence of magnon-type excitations, due to holomorphic nature of
the texture, holds only when magnon wave-length » lattice spacing.

Magnon frequency shift due to magnon non-conserving terms in the
quadratic approximation around a classical Skyrmion solution
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Remark on lattice effects (II)

It turns out that the total quantum correction to the ground-state
energy of a Skyrmion configuration goes to zero as 1/Nsites when
Nsites →∞, even in the presence of small residual quantum
fluctuations induced by the lattice discretization.

B. Douçot, D. Kovrizhin, R. Moessner, arXiv:1808.06783
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Final remarks

Ubiquity of geometric quantization:
Derivation of energy functionals and physical effects due to
projection onto lowest Landau level.
“Re-quantization” around classical textures and analysis of
quantum zero point motion correction to total energy.
More surprinsingly, provides a geometrical description of
optimal textures, i.e. those with most uniform topological
charge density.

Main open challenge: To identify optimal Grassmannian textures.
For them, we are no longer dealing with line bundles, but with
vector bundles over the space manifold Σ.
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Maps Σ→ Gr(M ,N) and rank M vector bundles (I)

Basic fact: there exists a 1 to 1 correspondence between:
Maps f : Σ→ Gr(M,N)

Rank M vector bundles V over Σ, together with a choice of N
sections of V, which generate the fiber Vx at each x ∈ Σ,
modulo automorphisms of V.

Σ Gr(M,N)

V ∼= f ∗T ∗ T ∗

f

f̄

si ti1 ≤ i ≤ N

f ∗T ∗: dual of tautological rank M
vector bundle over Gr(M,N).
For V ∈ Gr(M,N), ti (V ) is the
linear form on V defined by the
i-th component in CN (V ⊂ CN).
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Maps Σ→ Gr(M ,N) and rank M vector bundles (II)

Conversely, we start from a rank M vector bundle over Σ, and a
choice of N sections si (x), 1 ≤ i ≤ N of V, which generate the
fiber Vx at each x ∈ Σ.
Using local frames in open subsets Uα covering Σ, each section
si (x) may be seen as an M-component row-vector. These N rows
form an N ×M matrix V (α)(x), and if x ∈ Uα ∩ Uβ :

V (α)(x) = V (β)(x)t(βα)(x)

where t(βα)(x) are the transition functions of V.
The linear span in CN of the columns of V (α)(x) form a well
defined f (x) ∈ Gr(M,N).
Elements of Vx ←→ M-component row-vectors
Elements of f (x) ←→ M-component column-vectors

Vx ∼= f (x)∗
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Using the Plücker embedding of Gr(M ,N) into CP(Ñ − 1)

Ñ =

(
N
M

)

Σ Gr(M,N)

Det V Det T ∗

CP(Ñ − 1)

O(1)

f

f

iP

iP

si1 ∧ ... ∧ siM ti1 ∧ ... ∧ tiM Xi1,...,iM

Suggests to consider iP f , which is generated by the Ñ sections
si1 ∧ ... ∧ siM of Det V.
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