Tânia Sofia Zaragoza Cotrim Silva

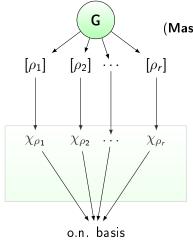
LisMath Seminar

April 11, 2016

イロト 不良 ト イヨト イヨト ヨー ろくぐ

└─ Introduction

Finite Groups Representation Theory



Finite Group
(Masche:Representations are completely reducible.)

Irreducible Representations

Irreducible Characters

Class functions $\langle f, h \rangle_G = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{h(g)}$

└─ Introduction

Theorem

The number of irreducible representations of G (up to isomorphism) is equal to the number of conjugacy classes of G.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

└─ Introduction

Theorem[Brauer]

Let V be a complex vector space of finite dimension.

1. If ρ is a representation of G over V, then V is a $\mathbb{C}G\text{-module}$ respecting the product

$$\sigma \mathbf{v} := \rho(\sigma)(\mathbf{v});$$

2. If V is a $\mathbb{C}G$ -module with product σv , then the map $\rho(\sigma): v \to \sigma g$ belongs to GL(V) and

$$\begin{array}{cccc}

ho: & G & \longrightarrow & GL(G) \\
 & \sigma & \mapsto &
ho(\sigma)
 \end{array}$$

is a representation of G over V, for all $\sigma \in G$ and for all $v \in V$.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 目 ● のへで

The special case of the Symmetric Group

 $n.^{\circ}$ of isoclasses of Irr. Rep. = $n.^{\circ}$ of conjugacy classes

Two permutations are conjugate if and only if they have the same cycle type

イロト イポト イヨト イヨト

Sar

n.° of conjugacy classes of $S_n = n.°$ of partitions of n

Introduction

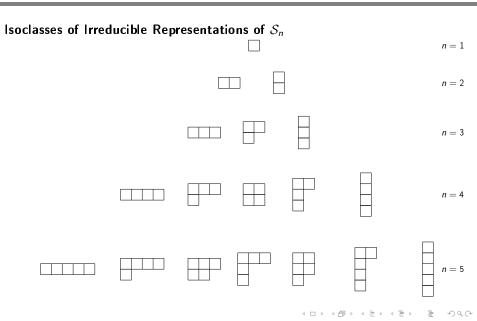
(5)

Isoclasses of Irreducible Representations of S_n

		(1)				n = 1	
	(:	2) (1,	1)			<i>n</i> = 2	
	(3)	(2,1)	(1,1,1)			<i>n</i> = 3	
(4)	(3,1)	(2,2)	(2,1,1)	(1,1,1,1)		<i>n</i> = 4	
(4,1)	(3,2)	(3,1,1)	(2,2,1)	(2,1,1,1)	(1,1,1,1,1)	n = 5	

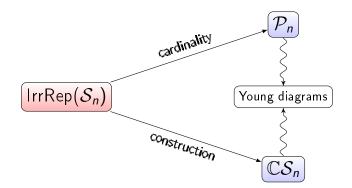
< ロ > < 母 > < 臣 > < 臣 > < 臣 > 三 の < で</p>

Introduction



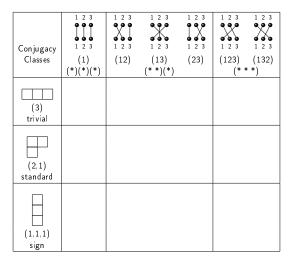
└─ The Symmetric Group

Introduction



└─ Classic Approach

Example: Character table of S_3



└─ Classic Approach

Classic Approach

$$\begin{cases} \lambda \\ \text{partition of } n \end{cases} \longleftrightarrow \begin{cases} S^{\lambda} \\ \text{Specht module} \end{cases} \longleftrightarrow \begin{cases} \text{classe of irreducible} \\ S_n - \text{representations} \end{cases}$$

└─ Classic Approach

Ť.

Constructing the Specht Modules of S_3

$\lambda_1 = (3)$	$\lambda_2 = (2,1)$	$\lambda_3=(1,1,1)$
		*
		23
$R_{\lambda_1} = S_3$	$R_{\lambda_2} = \{(1), (1\ 2)\}$	$R_{\lambda_3} = \{(1)\}$
$\mathcal{C}_{\lambda_{1}}=\{(1)\}$	$C_{\lambda_3} = \{(1), (1 \ 3)\}$	$C_{\lambda_3} = S_3$
+	+	+

Young symmetrizers
$$\mathfrak{s}_{\lambda_i} = \left(\sum_{\sigma \in R_{\lambda_i}} \sigma\right) \left(\sum_{\sigma \in C_{\lambda_i}} \operatorname{sign}(\sigma) \sigma\right) \in \mathbb{CS}_3$$

*	*	*
$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_1}$	$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_2}$	$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_3}$
$\mathbb{C}\sum_{\sigma\in\mathcal{S}_{3}}\sigma$	$\mathbb{C}\mathfrak{s}_{\lambda_2} + \mathbb{C}x$	$\mathbb{C}\sum\limits_{\sigma\in\mathcal{S}_{3}}sgn(\sigma)\sigma$

ī.

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

1

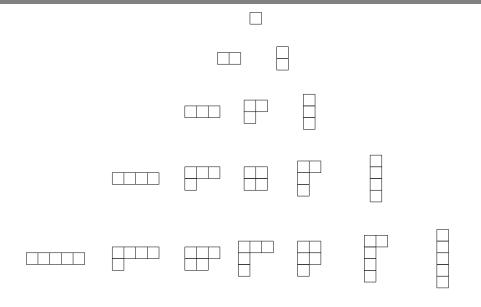
└─ Classic Approach

Theorem

When λ ranges over all distinct partitions of n, $\{\mathbb{C}S_n \cdot \mathfrak{s}_{\lambda}\}$ is a full set of non-isomorphic simple $\mathbb{C}S_n$ -modules.

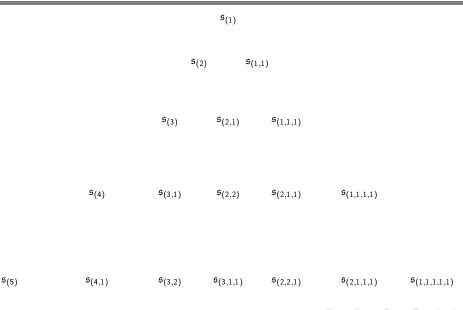
・ロト ・ 日 ・ モ ・ ト ・ 日 ・ うへぐ

- └─ The Symmetric Group
 - └─ Classic Approach



L The Symmetric Group

Classic Approach



< ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

└─ Classic Approach

Example: Character table of S_3

Conjugacy Classes	$ \begin{array}{c} 1 & 2 & 3 \\ \bullet & \bullet & \bullet \\ 1 & 2 & 3 \\ (1) \\ (*)(*)(*) \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1 2 3 1 2 3
(3) trivial	1	1	1
(2,1) standard	2	0	-1
(1,1,1) sign	1	-1	1

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

L The Symmetric Group

└─Different Approach

Theorem[Wedderburn-Artin]

$$\mathbb{C}\mathcal{S}_n \simeq \mathbb{C}^{n_1 \times n_1} \times \ldots \times \mathbb{C}^{n_r \times n_r} \simeq \bigoplus_{\lambda \in \mathcal{S}_n^{\wedge}} \mathsf{GL}(V^{\lambda})$$

$$\mathbb{C}\mathcal{S}_3 \simeq \begin{bmatrix} * & 0 & 0 & 0 \\ 0 & * & * & 0 \\ 0 & * & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix} \simeq \mathsf{GL}(\mathbb{C}\mathcal{S}_3 \cdot \mathfrak{s}_{\lambda_1}) \oplus \mathsf{GL}(\mathbb{C}\mathcal{S}_3 \cdot \mathfrak{s}_{\lambda_2}) \oplus \mathsf{GL}(\mathbb{C}\mathcal{S}_3 \cdot \mathfrak{s}_{\lambda_3}).$$

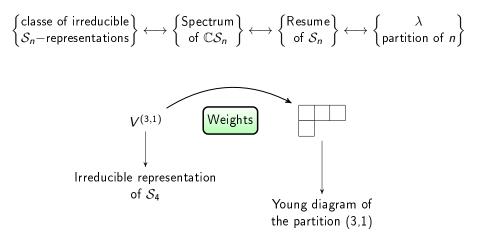
イロト 不良 ト イヨト イヨト ヨー ろくぐ

Theorem

Let V be an irreducible \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

└─Different Approach

Different Approach



└─Different Approach

Example: The standard representation of S_4

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

 $\rho: S_4 \rightarrow GL(V)$

where for all $\sigma \in \mathcal{S}_4$

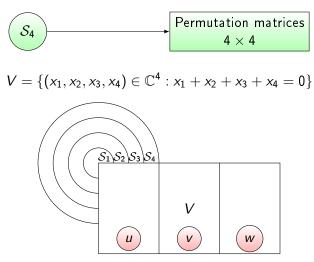
$$\rho(\sigma)(x_1, x_2, x_3, x_4) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}).$$

ho is an irreducible representation of \mathcal{S}_4

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - のへで

└─ Different Approach

Example: The standard representation of S_4



▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

└─Different Approach

Gelfand-Zetlin Basis

Let V be a simple $\mathbb{C}S_n$ -module whith canonical decomposition

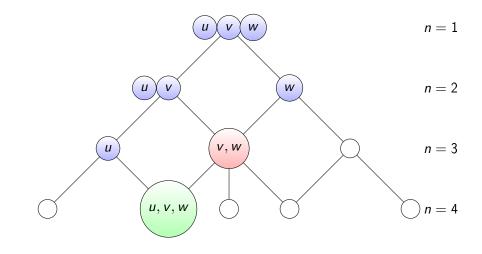
$$V^{\rho}|_{\mathcal{S}_1} = \bigoplus_{\mathcal{T}} V^{\mathcal{T}}.$$

For each T_{ρ} we can choose a vector $v_{T_{\rho}}$ form each $V^{T_{\rho}}$ obtaining a basis $\{v_{T_{\rho}}\}$ of V, which we call **Gelfand-Zetlin basis**.

イロト 不良 ト イヨト イヨト ヨー ろくぐ

└─Different Approach

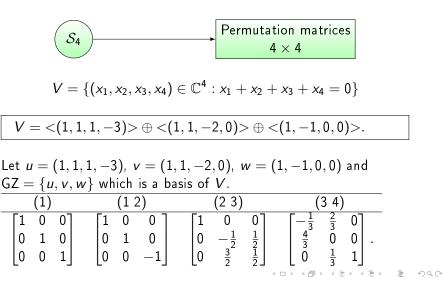
Branching Graph



<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

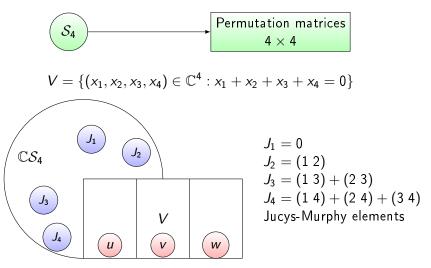
└─ Different Approach

Example: The standard representation of S_4



└─Different Approach

Example: The standard representation of S_4



ightarrow The Symmetric Group

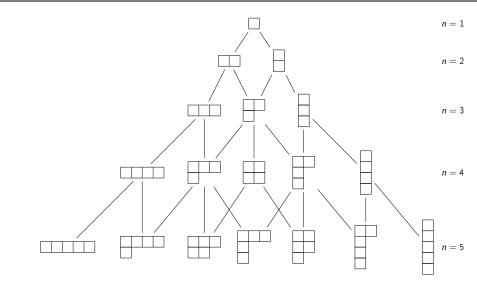
└─ Different Approach

Example: The standard representation of S_4

0	(1 2)	(13) + (23)	(1 4) + (2 4) + (3 4)
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$egin{bmatrix} 2 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$
	$\gamma(u) = (0,$	1,2,-1)	
	$\gamma(\mathbf{v}) = (0,$,1,-1,2) we	ights
	$\gamma(w) = (0$,−1,1,2) J	

(ロ)、(型)、(E)、(E)、(E)、(E)、(O)

- └─ The Symmetric Group
 - └─Different Approach

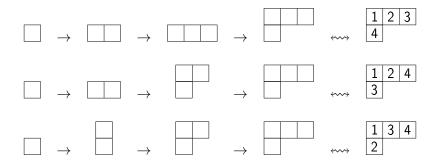


<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

L The Symmetric Group

└─ Different Approach

Example



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

└─ The Symmetric Group

└─ Different Approach

Example

Consider

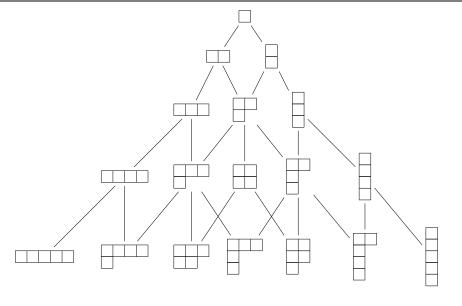
$$Q_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & & \\ \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 2 & 4 \\ 3 & & \\ \end{bmatrix} \text{ and } \quad Q_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & & \\ \end{bmatrix}.$$

We have:

$$\begin{split} \delta(Q_1) &= (0, 1, 2, -1) \\ \delta(Q_2) &= (0, 1, -1, 2) \\ \delta(Q_3) &= (0, -1, 1, 2) \end{split} \} \text{ contents } = \text{ weights} \begin{cases} & \gamma(u) = (0, 1, 2, -1) \\ & \gamma(v) = (0, 1, -1, 2) \\ & \gamma(w) = (0, -1, 1, 2) \end{cases} \end{cases}$$

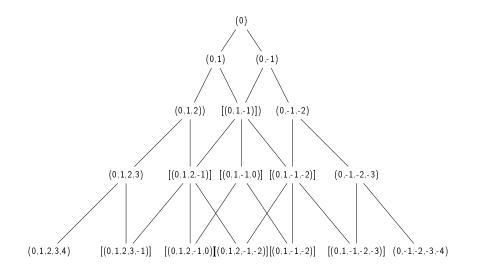
<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- └─ The Symmetric Group
 - └─Different Approach



└─ The Symmetric Group

Different Approach

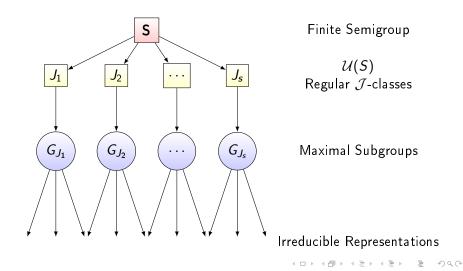


<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

-The Rook Monoid

└─ Introduction

Finite Semigroups Representation Theory



└─The Rook Monoid

Introduction

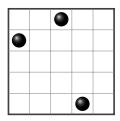
Theorem[Clifford,Munn,Ponizovskii]

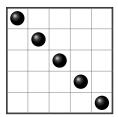
The number of irreducible representations of S (up to isomorphism) is equal to the number of irreducible representations of its maximal subgroups G_J , with $J \in \mathcal{U}(S)$.

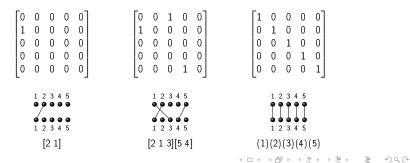
└─ The Rook Monoid

Introduction

The Rook Monoid







└─ The Rook Monoid

Classical Approach

1 2 3 • • •								
••• 1 2 3								
0								
1 2 3	123	1 2 3	123	1 2 3	1 2 3	123	1 2 3	1 2 3
•••	وەە	٠٠٠	•••	•••	• • •	•••	•••	•••
1 2 3	123	1 2 3	600 123	• • • 1 2 3	1 2 3	123	• • • 1 2 3	••• 1 2 3
(1)	[1 2]	[1 3]	[2 1]	(2)	[2 3]	[3 1]	[3 2]	(3)
1 2 3	123	123	123	123	123	123	123	123
• • •	• • •	٩٠٩	•••	•••	٩٩٥	•••	٩٠٩	~~~
1 2 3	1 2 3	1 2 3	000 123	1 2 3	1 2 3	1 2 3	000 123	1 2 3
(1)(2)	(1)[2 3]	(1)[3 2]	(1)(3)	(12)	[1 2 3]	[3 1 2]	[1 2](3)	[2 1 3]
1 2 3	123	123	123	123	123	123	123	123
•••	•••	•••	• • •	• • •	•••	• • •	• •	•••
• • •								•••
1 2 3	123	1 2 3	1 2 3	1 2 3	1 2 3	123	1 2 3	123
(2)[1 3]	(13)	[1 3 2]	[3 2 1]	(3)[2 1]	(2)[3 1]	(2)(3)	(1)[2 3]	(23)
1 2 3	1 2 3	1 2 3	123	1 2 3	1 2 3			
	1	ŶĨ	Ŷ	***	**			
••• 1 2 3	000 123	000 123	123	00 123	1 2 3			
(1)(2)(3)	(1)(2 3)	(1 2)(3)	(1 2 3)	(1 3 2)	(1 3)(2)			

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

└─ The Rook Monoid

Classical Approach

The special case of the Rook Monoid

n.° of isoclasses of Irr. Rep. = sum of the n.° of isoclasses of Irr. Rep of its maximal subgroup G_J

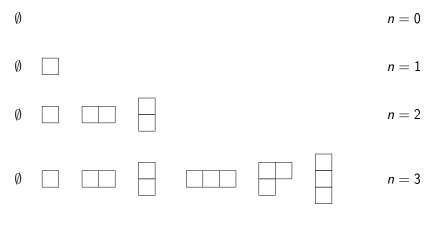
The list of the maximal subgroups G_J of \mathcal{I}_n will be isomorphic to $\mathcal{S}_0, \mathcal{S}_1, \ldots, \mathcal{S}_n$.

$$|IrrRep(\mathcal{I}_n)| = \sum_{k=0}^n |IrrRep(\mathcal{S}_k)|$$

L The Rook Monoid

Classical Approach

Isoclasses of Irr. Rep. of \mathcal{I}_n



▲ロト ▲暦ト ▲恵ト ▲恵ト 三恵 - 釣んで

└─ The Rook Monoid

└─Different Approach

	123 •••								
	••• 1 2 3								
	0								
	123	123	1 2 3	123	1 2 3	123	123	1 2 3	1 2 3
	•••	وەە	٠٠٠	•••	•••	• • •	•••	•••	•••
	••• 1 2 3	1 2 3	••• 1 2 3	600 123	••• 1 2 3	1 2 3	•••• 1 2 3	• • • 1 2 3	••• 1 2 3
	(1)	[1 2]	[1 3]	[2 1]	(2)	[2 3]	[3 1]	[3 2]	(3)
_	1 2 3	123	1 2 3	123	1 2 3	1 2 3	123	1 2 3	1 2 3
	•••	• • •	•••	° ° 	~ ••	٩٩٠	•••	९०१	~~~
	•••• 1 2 3	1 2 3	1 2 3	000 123	1 2 3	• • • • 1 2 3	1 2 3	1 2 3	1 2 3
	(1)(2)	(1)[2 3]	(1)[3 2]	(1)(3)	(12)	[1 2 3]	[3 1 2]	[1 2](3)	[2 1 3]
	123	123	123	123	123	1 2 3	1 2 3	123	1 2 3
	•••	~~	•••	• • •	•••	•••	• • •	• *	• • •
	123	1 2 3	• • • 1 2 3	66 123	6 6 6 1 2 3	1 2 3	• • • • 1 2 3	1 2 3	1 2 3
	(2)[1 3]								
_	1 2 3	(13)	[1 3 2] 1 2 3	[3 2 1]	(3)[2 1]	(2)[3 1]	(2)(3)	(1)[2 3]	(23)
	123 999	123 QQ	123 Q 9 Q	123 QQ,9	123 ••••	123 Q, 9 , 9			
	1 2 3	1 2 3	1 2 3	123	1 2 3	1 2 3			
	(1)(2)(3)	(1)(2 3)	(1 2)(3)	(1 2 3)	(1 3 2)	(1 3)(2)			

< ロ > < 母 > < 臣 > < 臣 > < 臣 > 三 の < で</p>

L The Rook Monoid

└─ Different Approach

rank 0		rank 1			rank 2		rank 3
1 2 3	123	123	123	123	123	123	123
•••	•••	•••	•••	•••	•••	•••	•••
•••	000	•••	•••	000	000	•••	000
1 2 3	123	1 2 3	1 2 3	123	123	1 2 3	123
ε_{\emptyset}	$\varepsilon_{\{1\}}$	$\varepsilon_{\{2\}}$	$\varepsilon_{\{3\}}$	$\varepsilon_{\{1,2\}}$	$\varepsilon_{\{1,3\}}$	€ _{2,3}	$\varepsilon_{\{1,2,3\}}$

$$\eta_{\mathbf{0}}=\varepsilon_{\emptyset}$$

$$\begin{split} \eta_1 &= -3\,\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} \\ \eta_2 &= 3\,\varepsilon_{\emptyset} - 2\,\varepsilon_{\{1\}} - 2\,\varepsilon_{\{2\}} - 2\,\varepsilon_{\{3\}} + \varepsilon_{\{1,2\}} + \varepsilon_{\{1,3\}} + \varepsilon_{\{2,3\}} \\ \eta_3 &= -\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} - \varepsilon_{\{1,2\}} - \varepsilon_{\{1,3\}} - \varepsilon_{\{2,3\}} + \varepsilon_{\{1,2,3\}} \end{split}$$

$$\mathbb{C}\mathcal{I}_n\simeq\mathbb{C}\mathcal{I}_n\eta_0\oplus\ldots\oplus\mathbb{C}\mathcal{I}_n\eta_n\simeq M_{\binom{n}{0}}(\mathbb{C}\mathcal{S}_0)\oplus\ldots\oplus M_{\binom{n}{n}}(\mathbb{C}\mathcal{S}_n)$$

In this case:

 $\mathbb{CI}_3 \simeq M_1(\mathbb{CS}_0) \oplus M_3(\mathbb{CS}_1) \oplus M_3(\mathbb{CS}_2) \oplus M_1(S_3)$

L The Rook Monoid

└─ Different Approach

Theorem[Munn]

Let

$$\mathcal{Q}_n = \bigcup_{r=0}^n \mathcal{P}_r.$$

The set $\{\rho^{\lambda\star} : \lambda \in Q_n\}$ is a full set of inequivalent irreducible representations of \mathcal{I}_n , where

$$\rho^{\lambda\star}(\sigma) = \sum_{|\mathcal{K}|=r, \mathsf{rank}(\varepsilon_{\mathcal{K}}\sigma=r)} \rho^{\lambda}(p(\varepsilon_{\mathcal{K}}\sigma)) E_{\mathsf{dom}(\varepsilon_{\mathcal{K}}\sigma), \mathsf{codom}(\varepsilon_{\mathcal{K}}\sigma)}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

└─ The Rook Monoid

└─ Different Approach

The character table of \mathcal{I}_3

Cicle patterns	-	(*)	(*)(*)	(* *)	(*)(*)(*)	(* *)(*)	(* * *)
Ø	1	1	1	1	1	1	1
	0	1	2	0	3	1	0
(2)	0	0	1	1	3	1	0
	0	0	1	-1	3	-1	0
(3)	0	0	0	0	1	1	1
(2,1)	0	0	0	0	2	0	-1
	0	0	0	0	1	-1	1

Where to go?

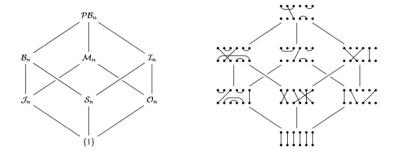


Figure: Taken from *Motzkin monoids and partial Brauer monoids*(I. Dolinka, J. East, R. Gray) - 2015.

Open Problems

- ► Construct a supercharacter theory for the rook monoid.
- ► Which are the irreducible representations of S_n over a field with arbitrary characteristic?
- ► How many commutation classes does the longest element of S_n have?

イロト 不良 ト イヨト イヨト ヨー ろくぐ

► Brauer's Problem List.

Main References

- Alexander Kleshchev. Linear and Projective Representations of Symmetric Groups. Cambridge University Press. 2005.
- Andrei Okounkov, Anatoly Vershik. A New Approach to Repesentation Theory of Symmetric Groups. Selecta Mathematica, New Series, vol. 2, No. 4,581-605. 1996.
- Louis Solomon. Representations of the rook monoid. Journal of Algebra 256, 309-342. 2002.
- W.D.Munn. The characters of the symmetric inverse semigroup. Proc. Cambridge Philos. Soc. 1957.

イロト 不良 ト イヨト イヨト ヨー ろくぐ

Other References

- ► James Alexander "Sandy" Green. *Polynomial representations of GL_n*. Springer. Second edition. 2006.
- Benjamin Steinberg. The Representation Theory of Finite Monoids, preliminary version. Springer, 2016.
- C. Curtis, I. Reiner. Representation Theory of Finite Groups and Associative Algebras. American Mathematical Society. 1962.
- William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

イロト 不良 ト イヨト イヨト ヨー ろくぐ