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Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Introduction

Finite Groups Representation Theory

G
Finite Group

(Masche:Representations are completely reducible.)

[ρ1] [ρ2] . . . [ρr ] Irreducible Representations

χρ1 χρ2 . . . χρr Irreducible Characters

Class functions

o.n. basis 〈f , h〉G = 1

|G |
∑
g∈G

f (g)h(g)
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The Symmetric Group

Introduction

Theorem

The number of irreducible representations of G (up to
isomorphism) is equal to the number of conjugacy classes of G .
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The Symmetric Group

Introduction

Theorem[Brauer]

Let V be a complex vector space of �nite dimension.

1. If ρ is a representation of G over V , then V is a CG -module
respecting the product

σv := ρ(σ)(v);

2. If V is a CG -module with product σv , then the map
ρ(σ) : v → σg belongs to GL(V ) and

ρ : G −→ GL(G )
σ 7→ ρ(σ)

is a representation of G over V , for all σ ∈ G and for all
v ∈ V .
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The Symmetric Group

Introduction

The special case of the Symmetric Group

n.o of isoclasses of Irr. Rep. = n.o of conjugacy classes

Two permutations are conjugate if and only if they have the same
cycle type

n.o of conjugacy classes of Sn = n.o of partitions of n
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The Symmetric Group

Introduction

Isoclasses of Irreducible Representations of Sn

(1) n = 1

(1,1)(2) n = 2

(2,1)(3) (1,1,1) n = 3

(3,1) (2,2) (2,1,1)(4) (1,1,1,1) n = 4

(5) (4,1) (3,2) (3,1,1) (2,2,1) (2,1,1,1) (1,1,1,1,1) n = 5
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The Symmetric Group

Introduction

Isoclasses of Irreducible Representations of Sn
n = 1

n = 2

n = 3

n = 4

n = 5
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The Symmetric Group

Introduction

IrrRep(Sn)

CSn

construction

Pn

card
inali

ty

Young diagrams
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The Symmetric Group

Classic Approach

Example: Character table of S3

Conjugacy

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Classes (1) (12) (13) (23) (123) (132)
(*)(*)(*) (* *)(*) (* * *)

(3)
trivial

(2,1)
standard

(1,1,1)
sign
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The Symmetric Group

Classic Approach

Classic Approach

{
λ

partition of n

}
←→

{
Sλ

Specht module

}
←→

{
classe of irreducible
Sn−representations

}

Young Symmetrizer V (2,1)

Young diagram of
the partition(2,1)

Irreducible representation
of S3
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The Symmetric Group

Classic Approach

Constructing the Specht Modules of S3
λ1 = (3) λ2 = (2, 1) λ3 = (1, 1, 1)

1 2 3
1 2
3

1
2
3

Rλ1 = S3

Cλ1 = {(1)}
Rλ2 = {(1), (1 2)}
Cλ3 = {(1), (1 3)}

Rλ3 = {(1)}
Cλ3 = S3

Young symmetrizers

sλi =

( ∑
σ∈Rλi

σ

)( ∑
σ∈Cλi

sign(σ)σ

)
∈ CS3

CS3 · sλ1 CS3 · sλ2 CS3 · sλ3
C
∑

σ∈S3
σ Csλ2+Cx C

∑
σ∈S3

sgn(σ)σ
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The Symmetric Group

Classic Approach

Theorem

When λ ranges over all distinct partitions of n, {CSn · sλ} is a full
set of non-isomorphic simple CSn-modules.
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The Symmetric Group

Classic Approach
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The Symmetric Group

Classic Approach

s(1)

s(1,1)s(2)

s(2,1)s(3) s(1,1,1)

s(3,1) s(2,2) s(2,1,1)s(4) s(1,1,1,1)

s(5) s(4,1) s(3,2) s(3,1,1) s(2,2,1) s(2,1,1,1) s(1,1,1,1,1)
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The Symmetric Group

Classic Approach

Example: Character table of S3

Conjugacy

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Classes (1) (12) (13) (23) (123) (132)
(*)(*)(*) (* *)(*) (* * *)

(3) 1 1 1
trivial

(2,1) 2 0 -1
standard

(1,1,1) 1 -1 1
sign
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The Symmetric Group

Di�erent Approach

Theorem[Wedderburn-Artin]

CSn ' Cn1×n1 × . . .× Cnr×nr '
⊕
λ∈S∧n

GL(V λ)

CS3 '


∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

 ' GL(CS3·sλ1)⊕GL(CS3·sλ2)⊕GL(CS3·sλ3).

Theorem

Let V be an irreducible CSn-module.
The restrictionV |Sn−1 is multiplicity-free.
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The Symmetric Group

Di�erent Approach

Di�erent Approach

{
classe of irreducible
Sn−representations

}
←→

{
Spectrum
of CSn

}
←→

{
Resume
of Sn

}
←→

{
λ

partition of n

}

WeightsV (3,1)

Irreducible representation
of S4

Young diagram of
the partition (3,1)
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The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

S4
Permutation matrices

4× 4

V = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

ρ : S4 → GL(V )

where for all σ ∈ S4

ρ(σ)(x1, x2, x3, x4) = (xσ−1(1), xσ−1(2), xσ−1(3), xσ−1(4)).

ρ is an irreducible representation of S4
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The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

S4
Permutation matrices

4× 4

V = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

V

S4S3S2S1

u v w
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The Symmetric Group

Di�erent Approach

Gelfand-Zetlin Basis

Let V be a simple CSn-module whith canonical decomposition

V ρ|S1 =
⊕
T

V T .

For each Tρ we can choose a vector vTρ form each V Tρ obtaining a
basis {vTρ} of V ,which we call Gelfand-Zetlin basis.
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The Symmetric Group

Di�erent Approach

Branching Graph

n = 1

n = 2

n = 3

n = 4u, v ,w

u v ,w

vu w

vu w
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The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

S4
Permutation matrices

4× 4

V = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

V = <(1, 1, 1,−3)>⊕<(1, 1,−2, 0)>⊕<(1,−1, 0, 0)>.

Let u = (1, 1, 1,−3), v = (1, 1,−2, 0), w = (1,−1, 0, 0) and
GZ = {u, v ,w} which is a basis of V .

(1) (1 2) (2 3) (3 4)1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 −1

 1 0 0
0 −1

2

1

2

0 3

2

1

2

 −1

3

2

3
0

4

3
0 0

0 1

3
1

 .



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

S4
Permutation matrices

4× 4

V = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

V

CS4
J1

J2

J3

J4 u v w

J1 = 0
J2 = (1 2)
J3 = (1 3) + (2 3)
J4 = (1 4) + (2 4) + (3 4)
Jucys-Murphy elements
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The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

0 (1 2) (1 3) + (2 3) (1 4) + (2 4) + (3 4)0 0 0
0 0 0
0 0 0

 1 0 0
0 1 0
0 0 −1

 2 0 0
0 −1 0
0 0 1

 −1 0 0
0 2 0
0 0 2

 .
γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)

weights
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The Symmetric Group

Di�erent Approach

n = 1

n = 2

n = 3

n = 4

n = 5
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The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → → !
1 2 4
3

→ → → !
1 3 4
2
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The Symmetric Group

Di�erent Approach

Example

Consider

Q1 =
1 2 3
4

, Q2 =
1 2 4
3

and Q3 =
1 3 4
2

.

We have:

δ(Q1) = (0, 1, 2,−1)

δ(Q2) = (0, 1,−1, 2)

δ(Q3) = (0,−1, 1, 2)

 contents = weights


γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)
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The Symmetric Group

Di�erent Approach
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The Symmetric Group

Di�erent Approach

(0)

(0,-1)(0,1)

[(0,1,-1)])(0,1,2)) (0,-1,-2)

[(0,1,2,-1)] [(0,1,-1,0)] [(0,1,-1,-2)](0,1,2,3) (0,-1,-2,-3)

(0,1,2,3,4) [(0,1,2,3,-1)] [(0,1,2,-1,0)][(0,1,2,-1,-2)][(0,1,-1,-2)] [(0,1,-1,-2,-3)] (0,-1,-2,-3,-4)
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The Rook Monoid

Introduction

Finite Semigroups Representation Theory

S Finite Semigroup

J1 J2 . . . Js
U(S)

Regular J -classes

GJ1 GJ2
. . . GJs Maximal Subgroups

Irreducible Representations
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The Rook Monoid

Introduction

Theorem[Cli�ord,Munn,Ponizovskii]

The number of irreducible representations of S (up to isomorphism)
is equal to the number of irreducible representations of its maximal
subgroups GJ , with J ∈ U(S).
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The Rook Monoid

Introduction

The Rook Monoid


0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



0 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

[2 1] [2 1 3][5 4] (1)(2)(3)(4)(5)
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The Rook Monoid

Classical Approach

1 2 3

1 2 3

0
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1) [1 2] [1 3] [2 1] (2) [2 3] [3 1] [3 2] (3)
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1)(2) (1)[2 3] (1)[3 2] (1)(3) (1 2) [1 2 3] [3 1 2] [1 2](3) [2 1 3]
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(2)[1 3] (1 3) [1 3 2] [3 2 1] (3)[2 1] (2)[3 1] (2)(3) (1)[2 3] (2 3)
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1)(2)(3) (1)(2 3) (1 2)(3) (1 2 3) (1 3 2) (1 3)(2)
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The Rook Monoid

Classical Approach

The special case of the Rook Monoid

n.o of isoclasses of Irr. Rep. = sum of the n.o of isoclasses of Irr.
Rep of its maximal subgroup GJ

The list of the maximal subgroups GJ of In will be isomorphic to
S0,S1, . . . ,Sn.

|IrrRep(In)| =
n∑

k=0

|IrrRep(Sk)|
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The Rook Monoid

Classical Approach

Isoclasses of Irr. Rep. of In

∅ n = 0

∅ n = 1

∅ n = 2

∅ n = 3



Representation Theories of the Symmetric Group and the Rook Monoid

The Rook Monoid

Di�erent Approach

1 2 3

1 2 3

0
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1) [1 2] [1 3] [2 1] (2) [2 3] [3 1] [3 2] (3)
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1)(2) (1)[2 3] (1)[3 2] (1)(3) (1 2) [1 2 3] [3 1 2] [1 2](3) [2 1 3]
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(2)[1 3] (1 3) [1 3 2] [3 2 1] (3)[2 1] (2)[3 1] (2)(3) (1)[2 3] (2 3)
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(1)(2)(3) (1)(2 3) (1 2)(3) (1 2 3) (1 3 2) (1 3)(2)
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The Rook Monoid

Di�erent Approach

rank 0 rank 1 rank 2 rank 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

ε∅ ε{1} ε{2} ε{3} ε{1,2} ε{1,3} ε{2,3} ε{1,2,3}

η0 = ε∅

η1 = −3 ε∅ + ε{1} + ε{2} + ε{3}

η2 = 3 ε∅ − 2 ε{1} − 2 ε{2} − 2 ε{3} + ε{1,2} + ε{1,3} + ε{2,3}

η3 = −ε∅ + ε{1} + ε{2} + ε{3} − ε{1,2} − ε{1,3} − ε{2,3} + ε{1,2,3}

CIn ' CInη0 ⊕ . . .⊕ CInηn ' M(n
0
)(CS0)⊕ . . .⊕M(nn)

(CSn)

In this case:

CI3 ' M1(CS0)⊕M3(CS1)⊕M3(CS2)⊕M1(S3)
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The Rook Monoid

Di�erent Approach

Theorem[Munn]

Let

Qn =
n⋃

r=0

Pr .

The set {ρλ? : λ ∈ Qn} is a full set of inequivalent irreducible
representations of In, where

ρλ?(σ) =
∑

|K |=r ,rank(εKσ=r)

ρλ(p(εKσ))Edom(εkσ),codom(εKσ).
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The Rook Monoid

Di�erent Approach

The character table of I3

Cicle
patterns

− (*) (*)(*) (* *) (*)(*)(*) (* *)(*) (* * *)

∅ 1 1 1 1 1 1 1
-

0 1 2 0 3 1 0
(1)

0 0 1 1 3 1 0
(2)

0 0 1 -1 3 -1 0
(1,1)

0 0 0 0 1 1 1
(3)

0 0 0 0 2 0 -1
(2,1)

0 0 0 0 1 -1 1
(1,1,1)
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Open Problems

Where to go?

Figure: Taken from Motzkin monoids and partial Brauer

monoids(I. Dolinka, J. East, R. Gray) - 2015.
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Open Problems

Open Problems

I Construct a supercharacter theory for the rook monoid.

I Which are the irreducible representations of Sn over a �eld
with arbitrary characteristic?

I How many commutation classes does the longest element of
Sn have?

I Brauer's Problem List.
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