The double centralizer theorem for finitary 2-representations and an application

Marco Mackaay
j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang

CAMGSD and Universidade do Algarve

Nov 6, 2020

Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_{A}(M)$-module.

Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_{A}(M)$-module.

Definition

We say that M has the Double Centralizer Property (DCP) if the canonical homomorphism

$$
\operatorname{can}: A \rightarrow \operatorname{End}_{\operatorname{End}_{A}(M)}(M)
$$

is an isomorphism of algebras.
Note that can is injective iff M is faithful.

Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_{A}(M)$-module.

Definition

We say that M has the Double Centralizer Property (DCP) if the canonical homomorphism

$$
\operatorname{can}: A \rightarrow \operatorname{End}_{\operatorname{End}_{A}(M)}(M)
$$

is an isomorphism of algebras.
Note that can is injective iff M is faithful.

Example (Schur-Weyl duality)

If $n \geq r$, we have

$$
\mathbb{C}\left[S_{r}\right] \cong \operatorname{End}_{\operatorname{End}_{\mathbb{C}\left[S_{r}\right]}\left(\left(\mathbb{C}^{n}\right)^{\otimes r}\right)}\left(\left(\mathbb{C}^{n}\right)^{\otimes r}\right)
$$

Double Centralizer Property

- The DCP is known to hold in lots of cases, e.g.
- A is semisimple and M is faithful;
- A is a self-injective algebra and M is faithful.
- A is quasi-hereditary and M is a faithful tilting module satisfying a certain condition.

Double Centralizer Property

- The DCP is known to hold in lots of cases, e.g.
- A is semisimple and M is faithful;
- A is a self-injective algebra and M is faithful.
- A is quasi-hereditary and M is a faithful tilting module satisfying a certain condition.
- If M has the DCP, then the functor

$$
\begin{aligned}
A \text {-fmod } & \rightarrow \operatorname{End}_{A}^{\mathrm{op}}(M) \text {-fmod } \\
N & \mapsto \operatorname{Hom}_{A}(M, N)
\end{aligned}
$$

estalishes a "nice" relation between A-fmod and $\operatorname{End}_{A}(M)$-fmod, e.g. in the semisimple case it is an equivalence.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,{ }^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

- \mathscr{C} has f.d. \mathbb{C}-linear morphism spaces and composition is bilinear.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,{ }^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

- \mathscr{C} has f.d. \mathbb{C}-linear morphism spaces and composition is bilinear.
- \oplus and 0 define an additive structure on \mathscr{C}.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,{ }^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

- \mathscr{C} has f.d. \mathbb{C}-linear morphism spaces and composition is bilinear.
- \oplus and 0 define an additive structure on \mathscr{C}.
- There is a finite set of pairwise non-isomorphic indecomposable objects $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{n} \in \mathscr{C}$ such that for every object $\mathrm{F} \in \mathscr{C}$ there are unique $m_{1}(\mathrm{~F}), \ldots, m_{n}(\mathrm{~F}) \in \mathbb{Z}_{\geq 0}$ s.t.

$$
\mathrm{F} \cong \bigoplus_{i=1}^{n} \mathrm{~B}_{i}^{\oplus m_{i}(\mathrm{~F})}
$$

By assumption, $I \cong \mathrm{~B}_{i}$ for some $i=1, \ldots, n$.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,{ }^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

- \mathscr{C} has f.d. \mathbb{C}-linear morphism spaces and composition is bilinear.
- \oplus and 0 define an additive structure on \mathscr{C}.
- There is a finite set of pairwise non-isomorphic indecomposable objects $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{n} \in \mathscr{C}$ such that for every object $\mathrm{F} \in \mathscr{C}$ there are unique $m_{1}(\mathrm{~F}), \ldots, m_{n}(\mathrm{~F}) \in \mathbb{Z}_{\geq 0}$ s.t.

$$
\mathrm{F} \cong \bigoplus_{i=1}^{n} \mathrm{~B}_{i}^{\oplus m_{i}(\mathrm{~F})}
$$

By assumption, $I \cong \mathrm{~B}_{i}$ for some $i=1, \ldots, n$.

- \otimes and I define a monoidal structure on \mathscr{C}.

fiat 2-categories

Let $\mathscr{C}=\left(\mathscr{C}, \oplus, \otimes, 0, I,{ }^{\star}\right)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C}.

- \mathscr{C} has f.d. \mathbb{C}-linear morphism spaces and composition is bilinear.
- \oplus and 0 define an additive structure on \mathscr{C}.
- There is a finite set of pairwise non-isomorphic indecomposable objects $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{n} \in \mathscr{C}$ such that for every object $\mathrm{F} \in \mathscr{C}$ there are unique $m_{1}(\mathrm{~F}), \ldots, m_{n}(\mathrm{~F}) \in \mathbb{Z}_{\geq 0}$ s.t.

$$
\mathrm{F} \cong \bigoplus_{i=1}^{n} \mathrm{~B}_{i}^{\oplus m_{i}(\mathrm{~F})}
$$

By assumption, $I \cong \mathrm{~B}_{i}$ for some $i=1, \ldots, n$.

- \otimes and I define a monoidal structure on \mathscr{C}.
- * defines a pivotal structure on \mathscr{C}.

Fusion categories

- \mathscr{C} is called semisimple if

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathscr{C}}\left(\mathrm{B}_{i}, \mathrm{~B}_{j}\right)\right)=\delta_{i j} \quad(i, j=1, \ldots, n)
$$

If \mathscr{C} is semisimple, it is called a fusion category and the B_{i} are called simple objects.

Fusion categories

- \mathscr{C} is called semisimple if

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathscr{C}}\left(\mathrm{B}_{i}, \mathrm{~B}_{j}\right)\right)=\delta_{i j} \quad(i, j=1, \ldots, n)
$$

If \mathscr{C} is semisimple, it is called a fusion category and the B_{i} are called simple objects.

Examples:

- Vect $_{G}$, for a finite group G;

Fusion categories

- \mathscr{C} is called semisimple if

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathscr{C}}\left(\mathrm{B}_{i}, \mathrm{~B}_{j}\right)\right)=\delta_{i j} \quad(i, j=1, \ldots, n)
$$

If \mathscr{C} is semisimple, it is called a fusion category and the B_{i} are called simple objects.

Examples:

- Vect $_{G}$, for a finite group G;
- $\mathbb{C}[G]$-fmod, for a finite group G;

Fusion categories

- \mathscr{C} is called semisimple if

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathscr{C}}\left(\mathrm{B}_{i}, \mathrm{~B}_{j}\right)\right)=\delta_{i j} \quad(i, j=1, \ldots, n)
$$

If \mathscr{C} is semisimple, it is called a fusion category and the B_{i} are called simple objects.

Examples:

- Vect $_{G}$, for a finite group G;
- $\mathbb{C}[G]$-fmod, for a finite group G;
- $U_{q}(\mathfrak{g})$-fmod ss $_{\text {ss }}$, for a complex semisimple Lie algebra \mathfrak{g}.

Non-semisimple examples: Dual numbers

Let $D:=\mathbb{C}[x] /\left(x^{2}\right)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x)=1$ and $\epsilon(1)=0$. This implies that D is also a coalgebra, with counit ϵ, and the comultiplication δ is a (D, D)-bimodule map

Non-semisimple examples: Dual numbers

Let $D:=\mathbb{C}[x] /\left(x^{2}\right)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x)=1$ and $\epsilon(1)=0$. This implies that D is also a coalgebra, with counit ϵ, and the comultiplication δ is a (D, D)-bimodule map

Define

$$
\mathscr{C}_{D}:=\operatorname{add}(\{D, D \otimes D\})
$$

i.e. \mathscr{C}_{D} is the full subcategory of (D, D)-bimodules that are isomorphic to direct summands of direct sums of copies of D and $D \otimes D$.

Non-semisimple examples: Dual numbers

Let $D:=\mathbb{C}[x] /\left(x^{2}\right)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x)=1$ and $\epsilon(1)=0$. This implies that D is also a coalgebra, with counit ϵ, and the comultiplication δ is a (D, D)-bimodule map

Define

$$
\mathscr{C}_{D}:=\operatorname{add}(\{D, D \otimes D\})
$$

i.e. \mathscr{C}_{D} is the full subcategory of (D, D)-bimodules that are isomorphic to direct summands of direct sums of copies of D and $D \otimes D$. The monoidal structure on \mathscr{C}_{D} is defined by \otimes_{D} and $I=D$, e.g.

$$
\begin{aligned}
(D \otimes D) \otimes_{D}(D \otimes D) & \cong D \otimes\left(D \otimes_{D} D\right) \otimes D \\
& \cong D \otimes D \otimes D \\
& \cong(D \otimes D) \oplus(D \otimes D)
\end{aligned}
$$

Non-semisimple examples: Dual numbers

The pivotal structure on \mathscr{C}_{D} is defined by

- $D^{\star}:=D$, with unit and counit of adjunction defined by δ (comultiplication) and μ (multiplication), resp.
- $(D \otimes D)^{\star}:=D \otimes D$, with unit and counit of adjunction defined by

$$
\begin{aligned}
& D \xrightarrow{\delta} D \otimes D \xrightarrow{\mathrm{id}_{D} \otimes \delta(1) \otimes \mathrm{id}_{D}} D \otimes D \otimes_{D} D \otimes D \\
& D \otimes D \otimes_{D} D \otimes D \xrightarrow{\mathrm{id}_{D} \otimes \epsilon \cdot \mu \otimes \mathrm{id}_{D}} D \otimes D \xrightarrow{\mu} D
\end{aligned}
$$

Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

$$
\mathscr{C}_{A}:=\operatorname{add}(\{A, A \otimes A\}) .
$$

Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

$$
\mathscr{C}_{A}:=\operatorname{add}(\{A, A \otimes A\}) .
$$

Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is a complete set of orthogonal primitive idempotents in A, i.e. $e_{i} e_{j}=\delta_{i j} e_{i}$ and $e_{1}+\cdots+e_{n}=1$. A complete set of pairwise non-isomorphic indecomposables is given by

$$
\{A\} \cup\left\{A e_{i} \otimes e_{j} A \mid i, j=1, \ldots, n\right\}
$$

Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

$$
\mathscr{C}_{A}:=\operatorname{add}(\{A, A \otimes A\}) .
$$

Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is a complete set of orthogonal primitive idempotents in A, i.e. $e_{i} e_{j}=\delta_{i j} e_{i}$ and $e_{1}+\cdots+e_{n}=1$. A complete set of pairwise non-isomorphic indecomposables is given by

$$
\{A\} \cup\left\{A e_{i} \otimes e_{j} A \mid i, j=1, \ldots, n\right\}
$$

The monoidal structure is defined by \otimes_{A} and $I=A$, and the pivotal structure by $A^{\star}=A$ and $\left(A e_{i} \otimes e_{j} A\right)^{\star}=A e_{j} \otimes e_{i} A$ with units and counits of adjunction similar to the ones above.

Coxeter groups, Hecke algebras, Soergel bimodules

Let $M=\left(m_{i j}\right)_{i, j=1}^{n} \in \operatorname{Mat}\left(n, \mathbb{Z}_{\geq 0}\right)$ be a symmetric matrix such that

$$
m_{i j}= \begin{cases}1 & \text { if } i=j ; \\ \geq 2 & \text { if } i \neq j .\end{cases}
$$

Definition (Coxeter system)

A Coxeter system (W, S) with Coxeter matrix M is given by a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ (simple reflections) and a group (Coxeter group)

$$
W:=\left\langle s_{1}, \ldots, s_{n} \in S \mid\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle .
$$

We call n the rank of (W, S).

Examples

- The Coxeter group of type $I_{2}(n)$ is isomorphic to the dihedral group $D_{2 n}$:

$$
D_{2 n}=\left\langle s, t \mid s^{2}=t^{2}=e \wedge(s t)^{n}=e\right\rangle
$$

The isomorphism with the usual presentation

$$
\left\langle\rho, \sigma \mid \sigma^{2}=\rho^{n}=e \wedge \rho \sigma=\sigma \rho^{-1}\right\rangle
$$

is given by $s \mapsto \sigma$ and $t \rightarrow \sigma \rho$.

- The Coxeter group of type $I_{2}(n)$ is isomorphic to the dihedral group $D_{2 n}$:

$$
D_{2 n}=\left\langle s, t \mid s^{2}=t^{2}=e \wedge(s t)^{n}=e\right\rangle
$$

The isomorphism with the usual presentation

$$
\left\langle\rho, \sigma \mid \sigma^{2}=\rho^{n}=e \wedge \rho \sigma=\sigma \rho^{-1}\right\rangle
$$

is given by $s \mapsto \sigma$ and $t \rightarrow \sigma \rho$.

- The Coxeter group of type A_{n} is isomorphic to symmetric group S_{n+1}, generated by s_{1}, \ldots, s_{n}, subject to

$$
\begin{aligned}
m_{i i}=1: & \left(s_{i} s_{i}\right)^{1}=e \Leftrightarrow s_{i}^{2}=e ; \\
m_{i j} & =2: \quad\left(s_{i} s_{j}\right)^{2}=e \Leftrightarrow s_{i} s_{j}=s_{j} s_{i} \quad \text { if } j \neq i \pm 1 ; \\
m_{i(i \pm 1)}=3: & \left(s_{i} s_{i \pm 1}\right)^{3}=e \Leftrightarrow s_{i} s_{i \pm 1} s_{i}=s_{i \pm 1} s_{i} s_{i \pm 1} .
\end{aligned}
$$

Coxeter diagrams of finite type

Weyl type

non-Weyl type

Hecke algebras

Recall that $H=H(W, S)$ is a deformation of $\mathbb{Z}[W]$ over $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$:

$$
s_{i}^{2}=e \quad \rightsquigarrow \quad s_{i}^{2}=\left(\mathrm{v}^{-2}-1\right) s_{i}+\mathrm{v}^{-2} .
$$

Let $\left\{b_{w} \mid w \in W\right\}$ be the Kazhdan-Lusztig basis of H and write

$$
b_{u} b_{v}=\sum_{w \in W} h_{u, v, w} b_{w}
$$

for $h_{u, v, w} \in \mathbb{Z}_{\geq 0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$.

Soergel bimodules

Let W be a finite Coxeter group and $Q=Q(W)$ the coinvariant algebra.

Soergel bimodules

Let W be a finite Coxeter group and $Q=Q(W)$ the coinvariant algebra.

Definition (Soergel)

Let \mathcal{S} be the additive closure in Q-gfbimod- Q of the full monoidal subcategory generated by shifted copies of

$$
\mathrm{B}_{s_{i}}:=Q \otimes_{Q^{s_{i}}} Q\langle 1\rangle \quad(i=1, \ldots, n) .
$$

Soergel bimodules

Let W be a finite Coxeter group and $Q=Q(W)$ the coinvariant algebra.

Definition (Soergel)

Let \mathcal{S} be the additive closure in Q-gfbimod- Q of the full monoidal subcategory generated by shifted copies of

$$
\mathrm{B}_{s_{i}}:=Q \otimes_{Q^{s_{i}}} Q\langle 1\rangle \quad(i=1, \ldots, n) .
$$

Remark: \mathcal{S} is not abelian, e.g. the kernel of

$$
\mathrm{B}_{s_{i}}=Q \otimes_{Q^{s_{i}}} Q \xrightarrow{a \otimes b \mapsto a b} Q
$$

is isomorphic to Q as a right Q-module but the left Q-action is twisted by s_{i}.

Let $w \in W$ and $\underline{w}=s_{i_{1}} \cdots s_{i_{r}}$ a reduced expression (rex). The Bott-Samelson bimodule is defined as

$$
\mathrm{BS}(\underline{w}):=\mathrm{B}_{s_{i_{1}}} \otimes_{Q} \cdots \otimes_{Q} \mathrm{~B}_{s_{i r}} .
$$

Let $w \in W$ and $\underline{w}=s_{i_{1}} \cdots s_{i_{r}}$ a reduced expression (rex). The Bott-Samelson bimodule is defined as

$$
\mathrm{BS}(\underline{w}):=\mathrm{B}_{s_{i_{1}}} \otimes_{Q} \cdots \otimes_{Q} \mathrm{~B}_{s_{i_{r}}}
$$

Theorem (Soergel)

\mathcal{S} is finitary. For every $w \in W$, there is an indecomposable bimodule $\mathrm{B}_{w} \in \mathcal{S}$, unique up to degree-preserving isomorphism, such that

- B_{w} is isomorphic to a direct summand, with multiplicity one, of $\mathrm{BS}(\underline{w})$ for any rex \underline{w} of w;
- For all $t \in \mathbb{Z}, \mathrm{~B}_{w}\langle t\rangle$ is not isomorphic to a direct summand of $\mathrm{BS}(\underline{u})$ for any $u<w$ and any rex \underline{u} of u.
- Every indecomposable Soergel bimodule is isomorphic to $\mathrm{B}_{w}\langle t\rangle$ for some $w \in W$ and $t \in \mathbb{Z}$.

The categorification theorem

Theorem (Soergel, Elias-Williamson)

The $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-linear map given by

$$
b_{w} \mapsto\left[\mathrm{~B}_{w}\right]
$$

defines an algebra isomorphism between H and $[\mathcal{S}]_{\oplus}$ (split Grothendieck group).

The categorification theorem

Let $p=\sum_{i=-r}^{s} a_{i} \mathrm{v}^{i} \in \mathbb{Z}_{\geq 0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$. Define

$$
\mathrm{B}^{\oplus p}:=\bigoplus_{i=-r}^{s} \mathrm{~B}^{\oplus a_{i}}\langle-i\rangle .
$$

The categorification theorem

Let $p=\sum_{i=-r}^{s} a_{i} \mathrm{v}^{i} \in \mathbb{Z}_{\geq 0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$. Define

$$
\mathrm{B}^{\oplus p}:=\bigoplus_{i=-r}^{s} \mathrm{~B}^{\oplus a_{i}}\langle-i\rangle .
$$

Then the above theorem means:

Positive Integrality

For all $u, v \in W$, we have

$$
\mathrm{B}_{u} \otimes_{Q} \mathrm{~B}_{v} \cong \bigoplus_{w \in W} \mathrm{~B}_{w}^{\oplus h_{u, v, w}}
$$

whence

$$
h_{u, v, w} \in \mathbb{Z}_{\geq 0}\left[\mathrm{v}, \mathrm{v}^{-1}\right] .
$$

2-Representations

Definition

A finitary 2-representation of \mathscr{C} is a finitary category \mathcal{M} together with a linear, monoidal functor
$\mathbf{M}: \mathscr{C} \rightarrow \operatorname{End}(\mathcal{M})$,
called the 2-action of \mathscr{C} on \mathcal{M}.

2-Representations

Definition

A finitary 2-representation of \mathscr{C} is a finitary category \mathcal{M} together with a linear, monoidal functor
$\mathbf{M}: \mathscr{C} \rightarrow \operatorname{End}(\mathcal{M})$,
called the 2-action of \mathscr{C} on \mathcal{M}.

Example

The monoidal structure of \mathscr{C} defines the principal 2-representation

$$
\mathbf{P}: \mathscr{C} \rightarrow \operatorname{End}(\mathscr{C})
$$

2-Representations

Definition

A finitary 2-representation of \mathscr{C} is a finitary category \mathcal{M} together with a linear, monoidal functor
$\mathbf{M}: \mathscr{C} \rightarrow \operatorname{End}(\mathcal{M})$,
called the 2-action of \mathscr{C} on \mathcal{M}.

Example

The monoidal structure of \mathscr{C} defines the principal 2-representation

$$
\mathbf{P}: \mathscr{C} \rightarrow \operatorname{End}(\mathscr{C})
$$

- The finitary 2-representations of \mathscr{C} form a 2-category, denoted \mathscr{C}-afmod.

Cell theory

Note: We will often write $\mathrm{FG}:=\mathrm{F} \otimes \mathrm{G}$ and $\mathrm{FX}:=\mathrm{M}(\mathrm{F})(X)$.

Cell theory

Note: We will often write $\mathrm{FG}:=\mathrm{F} \otimes \mathrm{G}$ and $\mathrm{F} X:=\mathrm{M}(\mathrm{F})(X)$.

- There are natural pre-orders $\geq_{L}, \geq_{R}, \geq_{L R}$ on $\operatorname{Ind}(\mathscr{C}):=\{[\mathrm{F}] \mid \mathrm{F} \in \mathscr{C}$ indecomposable $\}$, e.g.

$$
[F] \geq_{\llcorner }[G] \quad \text { if } \quad \exists \mathrm{H} \in \mathscr{C}: \mathrm{F} \subseteq_{\oplus} \mathrm{HG} .
$$

Cell theory

Note: We will often write $\mathrm{FG}:=\mathrm{F} \otimes \mathrm{G}$ and $\mathrm{F} X:=\mathrm{M}(\mathrm{F})(X)$.

- There are natural pre-orders $\geq_{L}, \geq_{R}, \geq_{L R}$ on $\operatorname{Ind}(\mathscr{C}):=\{[\mathrm{F}] \mid \mathrm{F} \in \mathscr{C}$ indecomposable $\}$, e.g.

$$
[\mathrm{F}] \geq_{\llcorner }[\mathrm{G}] \quad \text { if } \quad \exists \mathrm{H} \in \mathscr{C}: \mathrm{F} \subseteq_{\oplus} \mathrm{HG} .
$$

- These pre-orders induce equivalence relations, e.g.

$$
[\mathrm{F}] \sim_{L}[\mathrm{G}] \quad \Leftrightarrow \quad[\mathrm{F}] \geq_{L}[\mathrm{G}] \wedge[\mathrm{G}] \geq_{L}[\mathrm{~F}],
$$

and the associated equivalence classes are called left, right and two-sided cells, respectively.

Cell theory

Note: We will often write $\mathrm{FG}:=\mathrm{F} \otimes \mathrm{G}$ and $\mathrm{F} X:=\mathrm{M}(\mathrm{F})(X)$.

- There are natural pre-orders $\geq_{L}, \geq_{R}, \geq_{L R}$ on $\operatorname{Ind}(\mathscr{C}):=\{[\mathrm{F}] \mid \mathrm{F} \in \mathscr{C}$ indecomposable $\}$, e.g.

$$
[\mathrm{F}] \geq_{\llcorner }[\mathrm{G}] \quad \text { if } \quad \exists \mathrm{H} \in \mathscr{C}: \mathrm{F} \subseteq_{\oplus} \mathrm{HG} .
$$

- These pre-orders induce equivalence relations, e.g.

$$
[\mathrm{F}] \sim_{L}[\mathrm{G}] \quad \Leftrightarrow \quad[\mathrm{F}] \geq_{L}[\mathrm{G}] \wedge[\mathrm{G}] \geq_{L}[\mathrm{~F}],
$$

and the associated equivalence classes are called left, right and two-sided cells, respectively.

- For each two-sided cell \mathcal{J}, we have

$$
\mathcal{J}=\coprod_{\mathcal{L} \subseteq \mathcal{J}} \mathcal{L}, \quad \mathcal{J}=\coprod_{\mathcal{R} \subseteq \mathcal{J}} \mathcal{R} .
$$

Cell theory: examples

- If \mathscr{C} is semisimple, then there is only one cell, because I is simple and $I \subseteq_{\oplus} L L^{\star}$ for any simple L.

Cell theory: examples

- If \mathscr{C} is semisimple, then there is only one cell, because I is simple and $I \subseteq_{\oplus} L L^{\star}$ for any simple L.
- \mathscr{C}_{A} has the following cell structure.
- Two-sided cells:

$$
\mathcal{J}:=\{A\}, \mathcal{J}^{\prime}:=\left\{A e_{i} \otimes e_{j} A \mid i, j=1, \ldots, n\right\} .
$$

- Left cells:

$$
\{A\}, \mathcal{L}_{j}:=\left\{A e_{i} \otimes e_{j} A \mid i=1, \ldots, n\right\} \text { for fixed } j
$$

- Right cells:

$$
\{A\}, \mathcal{R}_{i}:=\left\{A e_{i} \otimes e_{j} A \mid j=1, \ldots, n\right\} \text { for fixed } i
$$

Kazhdan-Lusztig cells

The cells of \mathscr{S} correspond exactly to the Kazhdan-Lusztig cells of H, e.g. in type $I_{2}(n)$:

Remark: d is the so called Duflo involution.

Cell 2-representations

- Let \mathcal{L} be a left cell. The cell 2-representation $\mathbf{C}_{\mathcal{L}}$ is given by the natural 2 -action of \mathscr{C} on

$$
\operatorname{add}\left(\left\{\mathrm{F} \in \mathscr{C} \mid \mathrm{F} \geq_{L} \mathcal{L}\right\}\right) / \mathcal{I}_{>\mathcal{L}}
$$

Cell 2-representations

- Let \mathcal{L} be a left cell. The cell 2-representation $\mathbf{C}_{\mathcal{L}}$ is given by the natural 2 -action of \mathscr{C} on

$$
\operatorname{add}\left(\left\{\mathrm{F} \in \mathscr{C} \mid \mathrm{F} \geq_{L} \mathcal{L}\right\}\right) / \mathcal{I}_{>\mathcal{L}}
$$

- Let \mathcal{J} be the two-sided cell containing \mathcal{L}. Then \mathcal{J} is the maximal two-sided cell that is not annihilated by $\mathbf{C}_{\mathcal{L}}$.

Cell 2-representations

- Let \mathcal{L} be a left cell. The cell 2-representation $\mathbf{C}_{\mathcal{L}}$ is given by the natural 2 -action of \mathscr{C} on

$$
\operatorname{add}\left(\left\{\mathrm{F} \in \mathscr{C} \mid \mathrm{F} \geq_{L} \mathcal{L}\right\}\right) / \mathcal{I}_{>\mathcal{L}} .
$$

- Let \mathcal{J} be the two-sided cell containing \mathcal{L}. Then \mathcal{J} is the maximal two-sided cell that is not annihilated by $\mathbf{C}_{\mathcal{L}}$.
- The cell 2-representations are important examples of so-called simple transitive 2-representations. However, the former do not exhaust the latter in general.

Simple transitive 2-representations

- A finitary 2-representation M of \mathscr{C} is transitive if every $X \in \mathcal{M}$ is a generator, i.e.

$$
\mathcal{M} \simeq \operatorname{add}(\{\mathrm{F} X \mid \mathrm{F} \in \mathscr{C}\}) .
$$

A transitive 2-representation is simple transitive if it has no proper \mathscr{C}-stable ideals.

Simple transitive 2-representations

- A finitary 2-representation M of \mathscr{C} is transitive if every $X \in \mathcal{M}$ is a generator, i.e.

$$
\mathcal{M} \simeq \operatorname{add}(\{\mathrm{F} X \mid \mathrm{F} \in \mathscr{C}\})
$$

A transitive 2-representation is simple transitive if it has no proper \mathscr{C}-stable ideals.

- Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.

Simple transitive 2-representations

- A finitary 2-representation M of \mathscr{C} is transitive if every $X \in \mathcal{M}$ is a generator, i.e.

$$
\mathcal{M} \simeq \operatorname{add}(\{\mathrm{F} X \mid \mathrm{F} \in \mathscr{C}\}) .
$$

A transitive 2-representation is simple transitive if it has no proper \mathscr{C}-stable ideals.

- Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.
- For every simple transitive 2-representation \mathbf{M} of \mathscr{C}, there is a unique maximal two-sided cell that is not annihilated by \mathbf{M}, called the apex.

Simple transitive 2-representations

- A finitary 2-representation M of \mathscr{C} is transitive if every $X \in \mathcal{M}$ is a generator, i.e.

$$
\mathcal{M} \simeq \operatorname{add}(\{\mathrm{F} X \mid \mathrm{F} \in \mathscr{C}\}) .
$$

A transitive 2-representation is simple transitive if it has no proper \mathscr{C}-stable ideals.

- Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.
- For every simple transitive 2-representation \mathbf{M} of \mathscr{C}, there is a unique maximal two-sided cell that is not annihilated by \mathbf{M}, called the apex.
- Let \mathscr{C}-afmod $\mathcal{J}_{\mathcal{J}}($ resp. \mathscr{C}-stmod $\mathcal{J})$ be the 2 -category of finitary (resp. simple transitive) 2-representations of \mathscr{C} whose Jordan-Hölder constituents all have apex \mathcal{J}.

Projective endofunctors

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}$-stmod $\mathcal{J}_{\mathcal{J}}$. Then:

- $\mathcal{M} \simeq A$-fproj for some f.d. self-injective algebra A.

Projective endofunctors

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}$-stmod $\mathcal{J}_{\mathcal{J}}$. Then:

- $\mathcal{M} \simeq A$-fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2 -representation of \mathscr{C}_{A}, e.g.

$$
\left(A e_{i} \otimes e_{j} A\right) \otimes_{A} A e_{k} \cong A e_{i} \otimes e_{j} A e_{k} \cong\left(A e_{i}\right)^{\oplus \operatorname{dim}_{\mathbb{C}}\left(e_{j} A e_{k}\right)}
$$

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}$-stmod \mathcal{J}. Then:

- $\mathcal{M} \simeq A$-fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2 -representation of \mathscr{C}_{A}, e.g.

$$
\left(A e_{i} \otimes e_{j} A\right) \otimes_{A} A e_{k} \cong A e_{i} \otimes e_{j} A e_{k} \cong\left(A e_{i}\right)^{\oplus \operatorname{dim}_{\mathbb{C}}\left(e_{j} A e_{k}\right)}
$$

- An endomorphism of \mathbf{M} is called projective if it corresponds to tensoring over A with a projective (A, A)-bimodule, i.e. one of the form $\oplus_{i, j=1}^{n}\left(A e_{i} \otimes e_{j} A\right)^{\oplus m_{i j}}$ for some $m_{i j} \in \mathbb{Z}_{\geq}$.

Projective endofunctors

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}$-stmod \mathcal{J}. Then:

- $\mathcal{M} \simeq A$-fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2 -representation of \mathscr{C}_{A}, e.g.

$$
\left(A e_{i} \otimes e_{j} A\right) \otimes_{A} A e_{k} \cong A e_{i} \otimes e_{j} A e_{k} \cong\left(A e_{i}\right)^{\oplus \operatorname{dim}_{\mathbb{C}}\left(e_{j} A e_{k}\right)}
$$

- An endomorphism of \mathbf{M} is called projective if it corresponds to tensoring over A with a projective (A, A)-bimodule, i.e. one of the form $\oplus_{i, j=1}^{n}\left(A e_{i} \otimes e_{j} A\right)^{\oplus m_{i j}}$ for some $m_{i j} \in \mathbb{Z}_{\geq}$.

Theorem (Kildetoft-M-Mazorchuk-Zimmermann)

The 2-representation \mathbf{M} restricts to a monoidal semifunctor

$$
\mathbf{M}: \operatorname{add}(\mathcal{J}) \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{C}}^{\mathrm{proj}}(\mathbf{M})
$$

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J}.

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the diagonal \mathcal{H}-cell $\mathcal{H}=\mathcal{H}(\mathcal{L})$ as

$$
\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{\star}
$$

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J}.

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the diagonal \mathcal{H}-cell $\mathcal{H}=\mathcal{H}(\mathcal{L})$ as

$$
\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{\star}
$$

Examples:

- \mathscr{C} semisimple: \mathscr{C} is the unique diagonal \mathcal{H}-cell.

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J}.

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the diagonal \mathcal{H}-cell $\mathcal{H}=\mathcal{H}(\mathcal{L})$ as

$$
\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{\star}
$$

Examples:

- \mathscr{C} semisimple: \mathscr{C} is the unique diagonal \mathcal{H}-cell.
- $\mathscr{C}_{A}:\{A\},\left\{A e_{i} \otimes e_{i} A\right\}$ for $i=1, \ldots, n$.

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J}.

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the diagonal \mathcal{H}-cell $\mathcal{H}=\mathcal{H}(\mathcal{L})$ as

$$
\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{\star} .
$$

Examples:

- \mathscr{C} semisimple: \mathscr{C} is the unique diagonal \mathcal{H}-cell.
- $\mathscr{C}_{A}:\{A\},\left\{A e_{i} \otimes e_{i} A\right\}$ for $i=1, \ldots, n$.
- $\mathcal{S}\left(D_{2 n}\right):\left\{\mathrm{B}_{e}\right\},\left\{\mathrm{B}_{s}, \mathrm{~B}_{s t s}, \ldots\right\},\left\{\mathrm{B}_{t}, \mathrm{~B}_{t s t}, \ldots\right\},\left\{\mathrm{B}_{w_{0}}\right\}$.

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J} of \mathscr{C}.

- For any diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$, there is an \mathcal{H}-simple monoidal subquotient category of \mathscr{C}, denoted $\mathscr{C}_{\mathcal{H}}$, whose only cells are $\{I\}$ and \mathcal{H}.

Strong \mathcal{H}-reduction

Fix a two-sided cell \mathcal{J} of \mathscr{C}.

- For any diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$, there is an \mathcal{H}-simple monoidal subquotient category of \mathscr{C}, denoted $\mathscr{C}_{\mathcal{H}}$, whose only cells are $\{I\}$ and \mathcal{H}.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

For any diagonal \mathcal{H}-cell in $\mathcal{H} \subseteq \mathcal{J}$, there is a biequivalence

$$
\mathscr{C} \text {-afmod }{ }_{\mathcal{J}}^{\mathrm{ex}} \simeq \mathscr{C}_{\mathcal{H}} \text {-afmod }{ }_{\mathcal{H}}^{\mathrm{ex}}
$$

which preserves Jordan-Hölder constituents and restricts to a biequivalence

$$
\mathscr{C}-\operatorname{stmod} \mathcal{J} \simeq \mathscr{C}_{\mathcal{H}}-\operatorname{stmod}_{\mathcal{H}}
$$

Note: We can pick any $\mathcal{H} \subseteq \mathcal{J}$!

Double centralizer theorem

Fix a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$-stmod $\mathcal{H}_{\mathcal{H}}$.

- Denote by $\mathscr{E} \mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathbf{M})$ the endomorphism category of \mathbf{M} in $\mathscr{C}_{\mathcal{H}}-\operatorname{stmod}_{\mathcal{H}}$.

Double centralizer theorem

Fix a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$-stmod $\mathcal{H}_{\mathcal{H}}$.

- Denote by $\mathscr{E} \mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathbf{M})$ the endomorphism category of \mathbf{M} in $\mathscr{C}_{\mathcal{H}}-\operatorname{stmod}_{\mathcal{H}}$.
- The 2-actions of $\mathscr{C}_{\mathcal{H}}$ and $\mathscr{E}^{\text {nd }} \mathscr{C}_{\mathscr{H}}(\mathbf{M})$ on \mathbf{M} commute.

Double centralizer theorem

Fix a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$-stmod $\mathcal{H}_{\mathcal{H}}$.

- Denote by $\mathscr{E} \mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathbf{M})$ the endomorphism category of \mathbf{M} in $\mathscr{C}_{\mathcal{H}}-\operatorname{stmod}_{\mathcal{H}}$.
- The 2-actions of $\mathscr{C}_{\mathcal{H}}$ and $\mathscr{E}^{\text {nd }} \mathscr{C}_{\mathcal{H}}(\mathbf{M})$ on \mathbf{M} commute.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

The canonical monoidal functor

$$
\operatorname{can}: \mathscr{C}_{\mathcal{H}} \rightarrow \mathscr{E}^{\mathrm{nd}_{\mathscr{E} \mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathbf{M})}^{\mathrm{ex}}(\mathbf{M})}
$$

is fully faithful on 2-morphism and essentially surjective on
1-morphisms when restricted to $\operatorname{add}(\mathcal{H})$ and corestricted to \mathscr{E} nd $_{\mathscr{E n d}}^{\mathscr{E}_{\mathcal{H}}}(\mathrm{M})(\mathrm{M})$.

Observations

- The above double centralizer theorem was inspired by the analog for faithful exact module categories of tensor categories, due to Ostrik and Etingof-Ostrik.

Observations

- The above double centralizer theorem was inspired by the analog for faithful exact module categories of tensor categories, due to Ostrik and Etingof-Ostrik.
- The following conjecture is also inspired by a result of Ostrik and Etingof-Ostrik:

Conjecture

There is a biequivalence

$$
\mathscr{C}_{\mathcal{H}}-\operatorname{afmod}_{\mathcal{H}}^{\mathrm{ex}} \simeq \mathscr{E}^{\mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}}(\mathbf{M})-\text { afmod }^{\mathrm{ex}}
$$

which preserves Jordan-Hölder constituents and restricts to a biequivalence

$$
\mathscr{C}_{\mathcal{H}}-\operatorname{stmod}_{\mathcal{H}} \simeq \mathscr{E}^{\mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathrm{M}) \text {-stmod. } . .}
$$

Application to Soergel bimodules

Let $\mathscr{S}=\mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of \mathscr{S} up to equivalence.

Application to Soergel bimodules

Let $\mathscr{S}=\mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of \mathscr{S} up to equivalence.

WARNING:

- Etingof-Nikshych-Ostrik: If \mathscr{C} is semisimple, then

$$
\#\{\text { s.t. 2-representations of } \mathscr{C}\} / \simeq<\infty
$$

Application to Soergel bimodules

Let $\mathscr{S}=\mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of \mathscr{S} up to equivalence.

WARNING:

- Etingof-Nikshych-Ostrik: If \mathscr{C} is semisimple, then

$$
\#\{\text { s.t. 2-representations of } \mathscr{C}\} / \simeq<\infty
$$

- This is not true in general, e.g. $\mathscr{C}:=T_{n}-\bmod$, where T_{n} is the Taft Hopf algebra.

Application to Soergel bimodules

Let $\mathscr{S}=\mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of \mathscr{S} up to equivalence.

WARNING:

- Etingof-Nikshych-Ostrik: If \mathscr{C} is semisimple, then

$$
\#\{\text { s.t. 2-representations of } \mathscr{C}\} / \simeq<\infty
$$

- This is not true in general, e.g. $\mathscr{C}:=T_{n}-\bmod$, where T_{n} is the Taft Hopf algebra.
- \mathscr{S} is not semisimple...

Already known results

- Recall that we can address the classification problem per apex.

Already known results

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
- Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_{n}, for all $n \geq 1$) [Mazorchuk-Miemietz].

Already known results

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
- Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_{n}, for all $n \geq 1$) [Mazorchuk-Miemietz].
- Coxeter type B_{n} and arbitrary apex, for $n \leq 4$ [Zimmermann, M-Mazorchuk-Miemietz-Zhang].

Already known results

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
- Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_{n}, for all $n \geq 1$) [Mazorchuk-Miemietz].
- Coxeter type B_{n} and arbitrary apex, for $n \leq 4$ [Zimmermann, M-Mazorchuk-Miemietz-Zhang].
- Arbitrary finite Coxeter type of rank >2 and subregular apex [Kildetoft-M-Mazorchuk-Zimmermann].

Already known results

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
- Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_{n}, for all $n \geq 1$) [Mazorchuk-Miemietz].
- Coxeter type B_{n} and arbitrary apex, for $n \leq 4$ [Zimmermann, M-Mazorchuk-Miemietz-Zhang].
- Arbitrary finite Coxeter type of rank >2 and subregular apex [Kildetoft-M-Mazorchuk-Zimmermann].
- Coxeter type $I_{2}(n)$ and arbitrary apex, for all $n \geq 2$ [Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)
There is a biequivalence

$$
\mathscr{S}_{\mathcal{H}}-\operatorname{gstmod}_{\mathcal{H}} \simeq \mathscr{E}^{\mathrm{nd}} \mathscr{S}_{\mathcal{H}}\left(\mathbf{C}_{\mathcal{H}}\right) \text {-gstmod }
$$

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

$$
\mathscr{S}_{\mathcal{H}}-\operatorname{gstmod}_{\mathcal{H}} \simeq \mathscr{E}^{\mathrm{nd}} \mathscr{S}_{\mathcal{H}}\left(\mathbf{C}_{\mathcal{H}}\right) \text {-gstmod }
$$

- This theorem is extremely helpful, because $\mathscr{E}^{\mathrm{nd}} \mathscr{S}_{\mathcal{H}}^{(0)}\left(\mathbf{C}_{\mathcal{H}}\right)$ is the trivial \mathbb{Z}-cover of a fusion category $\mathscr{A}_{\mathcal{H}}$. In particular,

$$
\#\{\text { g.s.t. 2-representations of } \mathscr{S}\} / \simeq<\infty
$$

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H}-cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

$$
\mathscr{S}_{\mathcal{H}}-\operatorname{gstmod}_{\mathcal{H}} \simeq \mathscr{E}^{\mathrm{nd}} \mathscr{S}_{\mathcal{H}}\left(\mathbf{C}_{\mathcal{H}}\right) \text {-gstmod }
$$

- This theorem is extremely helpful, because $\mathscr{E} \mathrm{nd}_{\mathscr{S}_{\mathcal{H}}}^{(0)}\left(\mathbf{C}_{\mathcal{H}}\right)$ is the trivial \mathbb{Z}-cover of a fusion category $\mathscr{A}_{\mathcal{H}}$. In particular, $\#\{$ g.s.t. 2-representations of $\mathscr{S}\} / \simeq<\infty$.
- In almost all cases, \mathcal{H} can be chosen such that $\mathscr{A}_{\mathcal{H}}$ is well-known and its simple transitive 2-representations have been classified.

Lusztig's a-function

Fact: $h_{x, y, z}$ is symmetric in v and v^{-1}.

Proposition (Lusztig)

Let \mathcal{H} be a diagonal \mathcal{H}-cell. There exists $\mathbf{a} \in \mathbb{Z}_{\geq 0}$ such that for all $x, y, z \in \mathcal{H}$:

$$
h_{x, y, z}=\gamma_{x, y, z^{-1} \mathrm{v}^{\mathbf{a}}+\cdots+\gamma_{x, y, z^{-1}} \mathrm{v}^{-\mathbf{a}}}
$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^{2}=e$ in W and

$$
\gamma_{d, x, y^{-1}}=\gamma_{x, d, y^{-1}}=\gamma_{x, y^{-1}, d}=\delta_{x, y}
$$

for all $x, y \in \mathcal{H}$.

Lusztig's a-function

Fact: $h_{x, y, z}$ is symmetric in v and v^{-1}.

Proposition (Lusztig)

Let \mathcal{H} be a diagonal \mathcal{H}-cell. There exists $\mathbf{a} \in \mathbb{Z}_{\geq 0}$ such that for all $x, y, z \in \mathcal{H}$:

$$
h_{x, y, z}=\gamma_{x, y, z^{-1} \mathrm{v}^{\mathbf{a}}+\cdots+\gamma_{x, y, z^{-1}} \mathrm{v}^{-\mathbf{a}}}
$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^{2}=e$ in W and

$$
\gamma_{d, x, y^{-1}}=\gamma_{x, d, y^{-1}}=\gamma_{x, y^{-1}, d}=\delta_{x, y}
$$

for all $x, y \in \mathcal{H}$.
Asymptotic limit:

$$
\gamma_{x, y, z^{-1}}=\lim _{\mathrm{v} \rightarrow+\infty} \mathrm{v}^{-\mathbf{a}} h_{x, y, z} \in \mathbb{Z}_{\geq 0}
$$

Soergel's hom-formula

Theorem (Soergel, Elias-Williamson)

$$
\operatorname{dim}\left(\operatorname{hom}\left(\mathrm{B}_{x}, \mathrm{~B}_{y}\langle t\rangle\right)\right)= \begin{cases}\delta_{x, y}, & \text { if } t=0 ; \\ 0 & \text { if } t<0\end{cases}
$$

Soergel's hom-formula

Theorem (Soergel, Elias-Williamson)

$$
\operatorname{dim}\left(\operatorname{hom}\left(\mathrm{B}_{x}, \mathrm{~B}_{y}\langle t\rangle\right)\right)= \begin{cases}\delta_{x, y}, & \text { if } t=0 \\ 0 & \text { if } t<0\end{cases}
$$

This implies that $\mathscr{S}_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x, y, z}$, the part

$$
\mathcal{X}_{\leq-\mathbf{a}}:=\operatorname{add}\left(\left\{\mathrm{B}_{w}\langle k\rangle \mid w \in \mathcal{H}, k \leq-\mathbf{a}\right\}\right)
$$

is lax monoidal: It is strictly associative with lax identity object $\mathrm{B}_{d}\langle-\mathbf{a}\rangle$.

Soergel's hom-formula

Theorem (Soergel, Elias-Williamson)

$$
\operatorname{dim}\left(\operatorname{hom}\left(\mathrm{B}_{x}, \mathrm{~B}_{y}\langle t\rangle\right)\right)= \begin{cases}\delta_{x, y}, & \text { if } t=0 ; \\ 0 & \text { if } t<0\end{cases}
$$

This implies that $\mathscr{S}_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x, y, z}$, the part

$$
\mathcal{X}_{\leq-\mathbf{a}}:=\operatorname{add}\left(\left\{\mathrm{B}_{w}\langle k\rangle \mid w \in \mathcal{H}, k \leq-\mathbf{a}\right\}\right)
$$

is lax monoidal: It is strictly associative with lax identity object $\mathrm{B}_{d}\langle-\mathbf{a}\rangle$. Define the asymptotic Soergel category:

$$
\mathcal{A}_{\mathcal{H}}:=\mathcal{X}_{\leq-\mathbf{a}} /\left(\mathcal{X}_{<-\mathbf{a}}\right) .
$$

The asymptotic Soergel category

Theorem (Lusztig, Elias-Williamson)
$\mathscr{A}_{\mathcal{H}}=\left(\mathscr{A}_{\mathcal{H}}, \star, I, \mathrm{~V}\right)$ is a fusion category:

- for every $x \in \mathcal{H}$, the object $\mathrm{A}_{x}:=\left[\mathrm{B}_{x}\langle-a\rangle\right]$ is simple;
- $\left\{\mathrm{A}_{x} \mid x \in \mathcal{H}\right\}$ is a complete set of pairwise non-isomorphic simple objects;
- for any $x, y \in \mathcal{H}$, we have

$$
\mathrm{A}_{x} \star \mathrm{~A}_{y} \cong \bigoplus_{z \in \mathcal{H}} \mathrm{~A}_{z}^{\oplus \gamma_{x, y, z}-1} ;
$$

- $l:=\mathrm{A}_{d}$;
- for every $x \in \mathcal{H}$, we have $\mathrm{A}_{x}^{\vee} \cong \mathrm{A}_{x^{-1}}$.

Classification of asymptotic Soergel categories

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In almost all cases, \mathcal{H} can be chosen such that $\mathscr{A}_{\mathcal{H}}$ is biequivalent to one of the following fusion categories:

- Vect ${ }_{G}$ or $\mathbb{C}[G]$-fmod, with $G=(\mathbb{Z} / 2 \mathbb{Z})^{k}, S_{3}, S_{4}, S_{5}$;
- $U_{q}\left(\mathfrak{s o}_{3}\right)$-fmod ${ }_{\mathrm{ss}}$ for $q=e^{\frac{\pi i}{n}}$ for some $n \in \mathbb{Z}_{\geq 2}$.
- The simple transitive 2-representations of these fusion categories have been completely classified by Kirillov-Ostrik and Ostrik.

The endomorphism category

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)
There is a biequivalence

$$
\mathscr{E}_{\operatorname{nd}_{\mathcal{H}}}^{(0)}\left(\mathbf{C}_{\mathcal{H}}\right) \simeq \bigoplus_{t \in \mathbb{Z}} \mathscr{A}_{\mathcal{H}}\langle t\rangle
$$

The endomorphism category

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

$$
\mathscr{E}_{\operatorname{nd}_{\mathcal{H}}}^{(0)}\left(\mathbf{C}_{\mathcal{H}}\right) \simeq \bigoplus_{t \in \mathbb{Z}} \mathscr{A}_{\mathcal{H}}\langle t\rangle
$$

Corollary

There is a biequivalence

$$
\mathscr{S}_{\mathcal{H}}^{(0)} \text {-stmod } / \mathbb{Z} \simeq \mathscr{A}_{\mathcal{H}} \text {-stmod }
$$

In particular, there is a bijection

$$
\left\{\text { g.s.t. 2-reps of } \mathscr{S}_{\mathcal{H}}\right\} / \simeq \stackrel{1: 1}{\longleftrightarrow} \quad\left\{\text { s.t. 2-reps of } \mathscr{A}_{\mathcal{H}}\right\} / \simeq \text {. }
$$

THANKS!!!

