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Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital)
A-module. Then M is a left Enda(M)-module.
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Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital)
A-module. Then M is a left Enda(M)-module.

Definition
We say that M has the Double Centralizer Property (DCP) if the
canonical homomorphism

can: A — Endgyq,m)(M)

is an isomorphism of algebras.

Note that can is injective iff M is faithful.
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Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital)
A-module. Then M is a left Enda(M)-module.

Definition
We say that M has the Double Centralizer Property (DCP) if the
canonical homomorphism

can: A — Endgyq,m)(M)

is an isomorphism of algebras.

Note that can is injective iff M is faithful.

Example (Schur-Weyl duality)

If n> r, we have

C[Sr] = EndEnd@[s,]((Cn)@") (((E”)@f) 5
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Double Centralizer Property

@ The DCP is known to hold in lots of cases, e.g.
o A is semisimple and M is faithful;
e Ais a self-injective algebra and M is faithful.
e A is quasi-hereditary and M is a faithful tilting module
satisfying a certain condition.
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Double Centralizer Property

@ The DCP is known to hold in lots of cases, e.g.

o A is semisimple and M is faithful;

e Ais a self-injective algebra and M is faithful.

e A is quasi-hereditary and M is a faithful tilting module
satisfying a certain condition.

@ If M has the DCP, then the functor
A-fmod — End)’ (M)-fmod,
N — Homa(M, N)

estalishes a "nice” relation between A-fmod and
Enda(M)-fmod, e.g. in the semisimple case it is an
equivalence.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

@ ¢ has f.d. C-linear morphism spaces and composition is
bilinear.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

@ ¢ has f.d. C-linear morphism spaces and composition is
bilinear.

@ @ and 0 define an additive structure on €.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

@ ¢ has f.d. C-linear morphism spaces and composition is
bilinear.

@ @ and 0 define an additive structure on €.

@ There is a finite set of pairwise non-isomorphic

indecomposable objects By, ..., B, € ¥ such that for every
object F € % there are unique mi(F),..., my(F) € Z> s.t.
T REm ()
~ bm; F
F=~ @By
i=1
By assumption, | & B; for some i =1,...,n.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

@ ¢ has f.d. C-linear morphism spaces and composition is
bilinear.

@ @ and 0 define an additive structure on €.

@ There is a finite set of pairwise non-isomorphic

indecomposable objects By, ..., B, € ¥ such that for every
object F € % there are unique mi(F),..., my(F) € Z> s.t.
T REm ()
~ bm; F
F=~ @By
i=1
By assumption, | & B; for some i =1,...,n.

@ ® and I define a monoidal structure on €.
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fiat 2-categories

Let ¢ = (¢, ®,®,0,/,*) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

@ ¢ has f.d. C-linear morphism spaces and composition is
bilinear.

@ @ and 0 define an additive structure on €.

@ There is a finite set of pairwise non-isomorphic
indecomposable objects By, ..., B, € ¥ such that for every
object F € % there are unique mi(F),..., my(F) € Z> s.t.

n
~ om;(F)
F=~ @By
i=1

By assumption, | & B; for some i =1,...,n.
@ ® and / define a monoidal structure on %.

@ * defines a pivotal structure on %.
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Fusion categories

e ¢ is called semisimple if
dim@ (Hom(g(B;, Bj)) = 5’] (i,j = 1, ceey n).

If € is semisimple, it is called a fusion category and the B; are
called simple objects.
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Fusion categories

e ¢ is called semisimple if
dim@ (Hom(g(B;, Bj)) = 5’] (i,j = 1, ceey n).

If € is semisimple, it is called a fusion category and the B; are
called simple objects.

Examples:

@ Vectg, for a finite group G;
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Fusion categories

e ¢ is called semisimple if
dim@ (Hom(g(B;, Bj)) = 5’] (i,j = 1, ceey n).
If € is semisimple, it is called a fusion category and the B; are
called simple objects.

Examples:
@ Vectg, for a finite group G;
e C[G]-fmod, for a finite group G;

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang  The double centralizer theorem



Fusion categories

e ¢ is called semisimple if
dim@ (Hom(g(B;, Bj)) = 5’] (i,j = 1, ceey n).
If € is semisimple, it is called a fusion category and the B; are
called simple objects.
Examples:
@ Vectg, for a finite group G;
e C[G]-fmod, for a finite group G;

o Ug(g)-fmodss, for a complex semisimple Lie algebra g.
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Non-semisimple examples: Dual numbers

Let D := C[x]/(x?). Then D is a symmetric Frobenius algebra
with non-degenerate trace form ¢(x) =1 and ¢(1) = 0. This
implies that D is also a coalgebra, with counit ¢, and the
comultiplication § is a (D, D)-bimodule map
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Non-semisimple examples: Dual numbers

Let D := C[x]/(x?). Then D is a symmetric Frobenius algebra
with non-degenerate trace form ¢(x) =1 and ¢(1) = 0. This
implies that D is also a coalgebra, with counit ¢, and the
comultiplication § is a (D, D)-bimodule map

Define
¢p :=add ({D,D ® D}),

i.e. €p is the full subcategory of (D, D)-bimodules that are
isomorphic to direct summands of direct sums of copies of D and
D& D.
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Non-semisimple examples: Dual numbers

Let D := C[x]/(x?). Then D is a symmetric Frobenius algebra
with non-degenerate trace form ¢(x) =1 and ¢(1) = 0. This
implies that D is also a coalgebra, with counit ¢, and the
comultiplication § is a (D, D)-bimodule map

Define
¢p :=add ({D,D ® D}),

i.e. €p is the full subcategory of (D, D)-bimodules that are
isomorphic to direct summands of direct sums of copies of D and
D ® D. The monoidal structure on ¥ is defined by ®p and

I =D, e.g.
(Do D)®p(D®D) = D®(D®pD)® D
~ DD®D

I

(D® D) ® (D@ D).

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang  The double centralizer theorem



Non-semisimple examples: Dual numbers

The pivotal structure on %p is defined by
@ D* := D, with unit and counit of adjunction defined by §
(comultiplication) and u (multiplication), resp.
e (D® D)*:= D ® D, with unit and counit of adjunction
defined by

idp ® (5(1) ® idp
R E—

DS DD DeD®pD®D

D®Dwp D@D 922er®do nop i p
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Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra
(also assumed to be basic and connected). Define

Ca:=add ({A, AR A}).
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Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra
(also assumed to be basic and connected). Define

Ca:=add ({A, AR A}).

Suppose {e1, ..., ey} is a complete set of orthogonal primitive
idempotents in A, i.e. ejej =d;je;and e +---+ e, =1. A
complete set of pairwise non-isomorphic indecomposables is given
by

{A}U{Ae,-@ejA| i,j=1,...,n}.
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Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra
(also assumed to be basic and connected). Define

Ca:=add ({A, AR A}).

Suppose {e1, ..., ey} is a complete set of orthogonal primitive
idempotents in A, i.e. ejej =d;je;and e +---+ e, =1. A
complete set of pairwise non-isomorphic indecomposables is given
by

{A}U{Ae,-@ejA| i,j=1,...,n}.
The monoidal structure is defined by ® 4 and / = A, and the
pivotal structure by A* = A and (Ae; ® g;A)* = Aej ® ;A with
units and counits of adjunction similar to the ones above.
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Coxeter groups, Hecke algebras, Soergel bimodules

Let M = (mj;)];_; € Mat(n, Z>o) be a symmetric matrix such that

1 ifi=;
mijj =
Y= 2 ifi 4]

Definition (Coxeter system)

A Coxeter system (W, S) with Coxeter matrix M is given by a set
S ={s1,...,5n} (simple reflections) and a group (Coxeter group)

W = (s1,...,sn € S| (sis;)™ = e).

We call n the rank of (W, S).
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@ The Coxeter group of type l(n) is isomorphic to the dihedral
group Do,:

Do, = (s,t|s>=t>=e A (st)" =e).
The isomorphism with the usual presentation
(po o> =p"=e N po=0pt)

is given by s +— o and t — op.
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@ The Coxeter group of type l(n) is isomorphic to the dihedral
group Do,:

Do, = (s,t|s>=t>=e A (st)" =e).
The isomorphism with the usual presentation
(po o> =p"=e N po=0pt)

is given by s +— o and t — op.

@ The Coxeter group of type A, is isomorphic to symmetric
group Sny1, generated by sp, ..., sy, subject to

mj; = 1: (sis)l=eews?=e;
mj = 2: (s,~5j)2 =eosisg=ss ifj#i+]1;

_ 2. 3_ _
miG+1) = 31 (SiSit1)° = € € SiSi+1S] = Si+15iSi+1-
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Coxeter diagrams of finite type

Weyl type non-Weyl type
An *—o— —0—0
Bn — C *—o—0— *—0—.
Dn —o— 4—{
Hy  o2e
Ees 5

H4 —eo oo
E7 H—I—o—o—o /2 ( n) n
E8 H—I—o—o—o—o

F 4 .—QiQ—.
Gy R
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Hecke algebras

Recall that H = H(W, S) is a deformation of Z[W] over Z[v,v"!]:

sf=e ~ =2 -1)s+v >

Let {by | w € W} be the Kazhdan-Lusztig basis of H and write

bubv = Z hu,v,wa>
weW

for hu,v,w € Zzo[v,v_l].
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Soergel bimodules

Let W be a finite Coxeter group and Q@ = Q(W) the coinvariant
algebra.
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Soergel bimodules

Let W be a finite Coxeter group and Q@ = Q(W) the coinvariant
algebra.

Definition (Soergel)

Let S be the additive closure in Q-gfbimod-Q of the full monoidal
subcategory generated by shifted copies of

Bs = Q®qgs Q(1) (i=1,...,n).
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Soergel bimodules

Let W be a finite Coxeter group and Q@ = Q(W) the coinvariant
algebra.

Definition (Soergel)
Let S be the additive closure in Q-gfbimod-Q of the full monoidal
subcategory generated by shifted copies of

Bs = Q®qgs Q(1) (i=1,...,n).

Remark: S is not abelian, e.g. the kernel of

b ab
Bs;:Q®QSIQM>Q

is isomorphic to @ as a right @-module but the left Q-action is
twisted by s;.
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Let w e W and w = s;, ---s;, a reduced expression (rex). The
Bott-Samelson bimodule is defined as

BS(ﬂ) = B5i1 Qe ¥ BSi,'
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Let w e W and w = s;, ---s;, a reduced expression (rex). The
Bott-Samelson bimodule is defined as

BS(ﬂ) = B5i1 Qe ¥ BSi,'

Theorem (Soergel)

S is finitary. For every w € W, there is an indecomposable
bimodule B,, € S, unique up to degree-preserving isomorphism,
such that

e B,, is isomorphic to a direct summand, with multiplicity one,
of BS(w) for any rex w of w;

@ Forallt € Z, By(t) is not isomorphic to a direct summand of
BS(u) for any u < w and any rex u of u.

@ Every indecomposable Soergel bimodule is isomorphic to
B (t) for somew € W and t € Z.
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The categorification theorem

Theorem (Soergel, Elias-Williamson)

The Z[v,v~]-linear map given by
bw — [Bw]

defines an algebra isomorphism between H and [S]e (split
Grothendieck group).
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The categorification theorem

Let p=>":_  aiv' € Z>o[v,v]. Define

S

B .= 5 B® ().

i=—r
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The categorification theorem

Let p=>":_  aiv' € Z>o[v,v]. Define

S

B .= 5 B® ().

i=—r
Then the above theorem means:

Positive Integrality

For all u,v € W, we have
~ @hu,v,w
B, ®¢B, = P B, ",
weW

whence

hu,v,w S Zzo[v, V_l].
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2-Representations

Definition
A finitary 2-representation of ¢ is a finitary category M together
with a linear, monoidal functor

M: ¢ — End(M),

called the 2-action of € on M. |

The double centralizer theorem
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2-Representations

Definition
A finitary 2-representation of ¢ is a finitary category M together
with a linear, monoidal functor

M: ¢ — End(M),

called the 2-action of € on M.

Example
The monoidal structure of ¥ defines the principal 2-representation

| A\

P: ¢ — End(%)
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2-Representations

Definition
A finitary 2-representation of ¢ is a finitary category M together
with a linear, monoidal functor

M: ¢ — End(M),

called the 2-action of € on M.

| \

Example
The monoidal structure of ¥ defines the principal 2-representation

P: ¢ — End(%)

@ The finitary 2-representations of 4 form a 2-category, denoted
¢-afmod.
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Cell theory

Note: We will often write FG := F ® G and FX := M(F)(X).
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Cell theory

Note: We will often write FG := F ® G and FX := M(F)(X).

@ There are natural pre-orders >;,>gr, >;r On
Ind(%¢) := {[F] | F € ¥indecomposable}, e.g.

[F] >, [G] if FHe¥:F Cgq HG.
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Cell theory

Note: We will often write FG := F ® G and FX := M(F)(X).

@ There are natural pre-orders >;,>gr, >;r On
Ind(%¢) := {[F] | F € ¥indecomposable}, e.g.

[F] >, [G] if FHe¥:F Cgq HG.

@ These pre-orders induce equivalence relations, e.g.
[Fl~L[G] & [F]>L[G] A [G] = [F],

and the associated equivalence classes are called left, right
and two-sided cells, respectively.
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Cell theory

Note: We will often write FG := F ® G and FX := M(F)(X).

@ There are natural pre-orders >;,>gr, >;r On
Ind(%¢) := {[F] | F € ¥indecomposable}, e.g.

[F] >, [G] if FHe¥:F Cgq HG.

@ These pre-orders induce equivalence relations, e.g.
[Fl~L[G] & [F]>L[G] A [G] = [F],

and the associated equivalence classes are called left, right
and two-sided cells, respectively.
@ For each two-sided cell 7, we have

Jg=1lc . 7=]] R

LCT RCT
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Cell theory: examples

o If ¢ is semisimple, then there is only one cell, because / is
simple and | Cg LL* for any simple L.
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Cell theory: examples

o If ¢ is semisimple, then there is only one cell, because / is
simple and | Cg LL* for any simple L.
@ %4 has the following cell structure.
o Two-sided cells:

J={A}, T ={Ae;®@eA|ij=1,...,n}.
o Left cells:

{A}, Lj:={Aei®eA|i=1,...,n} for fixed j.
e Right cells:

{A}, Ri={Aei®@eA|j=1,...,n} for fixed i.
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Kazhdan-Lusztig cells

The cells of . correspond exactly to the Kazhdan-Lusztig cells of

H, e.g. in type h(n):

@, sts,... | st,stst,...
ts, tsts, . .. <:::>7tst,...

Remark: @ is the so called Duflo involution.
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Cell 2-representations

o Let £ be a left cell. The cell 2-representation C, is given by
the natural 2-action of € on

add({F € ¢ |F >, £}) /T-r.
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Cell 2-representations

o Let £ be a left cell. The cell 2-representation C, is given by
the natural 2-action of € on

add({F € ¢ |F >, £}) /T-r.

o Let J be the two-sided cell containing £. Then J is the
maximal two-sided cell that is not annihilated by C,.
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Cell 2-representations

o Let £ be a left cell. The cell 2-representation C, is given by
the natural 2-action of € on

add({F € ¢ |F >, £}) /T-r.

o Let J be the two-sided cell containing £. Then J is the
maximal two-sided cell that is not annihilated by C,.

@ The cell 2-representations are important examples of so-called
simple transitive 2-representations. However, the former do
not exhaust the latter in general.
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Simple transitive 2-representations

@ A finitary 2-representation M of ¥ is transitive if every
X € M is a generator, i.e.

M =~ add({FX | F € 4}).

A transitive 2-representation is simple transitive if it has no
proper ¢-stable ideals.
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Simple transitive 2-representations

@ A finitary 2-representation M of ¥ is transitive if every
X € M is a generator, i.e.

M =~ add({FX | F € 4}).

A transitive 2-representation is simple transitive if it has no
proper ¢-stable ideals.

@ Mazorchuk and Miemietz proved a categorical Jordan-Holder
theorem for finitary 2-representations, where the role of the
simples is played by the simple transitive 2-representations.
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Simple transitive 2-representations

@ A finitary 2-representation M of ¥ is transitive if every
X € M is a generator, i.e.

M =~ add({FX | F € 4}).

A transitive 2-representation is simple transitive if it has no
proper ¢-stable ideals.

@ Mazorchuk and Miemietz proved a categorical Jordan-Holder
theorem for finitary 2-representations, where the role of the
simples is played by the simple transitive 2-representations.

@ For every simple transitive 2-representation M of €, there is a
unique maximal two-sided cell that is not annihilated by M,
called the apex.
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Simple transitive 2-representations

@ A finitary 2-representation M of ¥ is transitive if every
X € M is a generator, i.e.

M =~ add({FX | F € 4}).

A transitive 2-representation is simple transitive if it has no
proper ¢-stable ideals.

@ Mazorchuk and Miemietz proved a categorical Jordan-Holder
theorem for finitary 2-representations, where the role of the
simples is played by the simple transitive 2-representations.

@ For every simple transitive 2-representation M of €, there is a
unique maximal two-sided cell that is not annihilated by M,
called the apex.

e Let ¢-afmod s (resp. ¢-stmod ) be the 2-category of finitary

(resp. simple transitive) 2-representations of ¢ whose
Jordan-Hoélder constituents all have apex J.
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Projective endofunctors

Let J be a two-sided cell and M € ¢-stmod 7. Then:
o M ~ A-fproj for some f.d. self-injective algebra A.
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Projective endofunctors

Let J be a two-sided cell and M € ¢-stmod 7. Then:
o M ~ A-fproj for some f.d. self-injective algebra A.
o A-fproj is a finitary 2-representation of ¢4, e.g.

(Ae,- [ eJ-A) XA Aek > Ag ® ejAek = (Ae,')@dimC(ejAek).
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Projective endofunctors

Let J be a two-sided cell and M € ¢-stmod 7. Then:
o M ~ A-fproj for some f.d. self-injective algebra A.
o A-fproj is a finitary 2-representation of ¢4, e.g.

(Ae,- [ eJ-A) XA Aek > Ag ® ejAek = (Ae;)@dimC(efAek).

@ An endomorphism of M is called projective if it corresponds to
tensoring over A with a projective (A, A)-bimodule, i.e. one of

the form @7 ;_, (Ae; ® ¢jA)®™i for some mj; € Z>.

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang  The double centralizer theorem



Projective endofunctors

Let J be a two-sided cell and M € ¢-stmod 7. Then:
o M ~ A-fproj for some f.d. self-injective algebra A.
o A-fproj is a finitary 2-representation of ¢4, e.g.

(Ae,- [ eJ-A) XA Aek > Ag ® ejAek = (Ae,')@dimC(ejAek).

@ An endomorphism of M is called projective if it corresponds to
tensoring over A with a projective (A, A)-bimodule, i.e. one of

the form @7 ;_, (Ae; ® ¢jA)®™i for some mj; € Z>.

Theorem (Kildetoft-M-Mazorchuk-Zimmermann)

The 2-representation M restricts to a monoidal semifunctor

M: add(J) — &nd2(M).
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Strong H-reduction

Fix a two-sided cell 7.

Definition
For every left cell £ C 7, define the diagonal H-cell H = H(L) as

H:=LNL".
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Strong H-reduction

Fix a two-sided cell 7.

Definition
For every left cell £ C 7, define the diagonal H-cell H = H(L) as

H:=LNL".

Examples:

@ ¢ semisimple: ¢ is the unique diagonal H-cell.
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Strong H-reduction

Fix a two-sided cell 7.

Definition
For every left cell £ C 7, define the diagonal H-cell H = H(L) as

H:=LNL".

Examples:
@ ¢ semisimple: ¢ is the unique diagonal H-cell.
o ¢a: {A}, {Aei®eiA} fori=1,...,n.
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Strong H-reduction

Fix a two-sided cell 7.

Definition
For every left cell £ C 7, define the diagonal H-cell H = H(L) as

H:=LNL".

Examples:
@ ¢ semisimple: ¢ is the unique diagonal H-cell.
o ¢a: {A}, {Aei®eiA} fori=1,...,n.
o S(D2p): {Be}, {Bs,Bsts, ...}, {Bt,Btst, ...}, {Buo}-
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Strong H-reduction

Fix a two-sided cell J of €.

o For any diagonal H-cell H C 7, there is an H-simple
monoidal subquotient category of ¥, denoted %7y, whose only
cells are {/} and H.
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Strong H-reduction

Fix a two-sided cell J of €.

o For any diagonal H-cell H C 7, there is an H-simple
monoidal subquotient category of ¥, denoted %7y, whose only
cells are {/} and H.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)
For any diagonal H-cell in H C J, there is a biequivalence

¢-afmod* ~ € -afmodyy,

which preserves Jordan-Holder constituents and restricts to a
biequivalence

%-stmod 7 ~ € -stmody,.

Note: We can pick any H C J!
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Double centralizer theorem

Fix a diagonal H-cell H C J and let M € €'y -stmody,.

@ Denote by éndg,, (M) the endomorphism category of M in
@y -stmody.
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Double centralizer theorem

Fix a diagonal H-cell H C J and let M € €'y -stmody,.
@ Denote by éndg,, (M) the endomorphism category of M in
@y -stmody.
@ The 2-actions of ¢, and &ndy,, (M) on M commute.
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Double centralizer theorem

Fix a diagonal H-cell H C J and let M € €'y -stmody,.

@ Denote by éndg,, (M) the endomorphism category of M in
@y -stmody.

@ The 2-actions of ¢, and &ndy,, (M) on M commute.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

The canonical monoidal functor
can: €y — éand‘;’;d(gﬂ (M)(M).

is fully faithful on 2-morphism and essentially surjective on
1-morphisms when restricted to add(H) and corestricted to
&ndl (M)(M).

£’nd<gH
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@ The above double centralizer theorem was inspired by the
analog for faithful exact module categories of tensor
categories, due to Ostrik and Etingof-Ostrik.
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Observations

@ The above double centralizer theorem was inspired by the
analog for faithful exact module categories of tensor
categories, due to Ostrik and Etingof-Ostrik.

@ The following conjecture is also inspired by a result of Ostrik
and Etingof-Ostrik:

Conjecture

There is a biequivalence
¢y -afmody =~ &ndy,, (M)-afmod ¥,

which preserves Jordan-Holder constituents and restricts to a
biequivalence

€ -stmody ~ éndgy,, (M)-stmod.
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Application to Soergel bimodules

Let = #(W,S) be the monoidal category of Soergel bimodules
for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of . up to
equivalence.
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Application to Soergel bimodules

Let = #(W,S) be the monoidal category of Soergel bimodules
for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of . up to
equivalence.

WARNING:
o Etingof-Nikshych-Ostrik: If € is semisimple, then

# {s.t. 2-representations of ¢} / ~ < oc.
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Application to Soergel bimodules

Let = #(W,S) be the monoidal category of Soergel bimodules
for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of . up to
equivalence.

WARNING:
o Etingof-Nikshych-Ostrik: If € is semisimple, then

# {s.t. 2-representations of ¢} / ~ < oc.

@ This is not true in general, e.g. € := T, — mod, where T, is
the Taft Hopf algebra.
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Application to Soergel bimodules

Let = #(W,S) be the monoidal category of Soergel bimodules
for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of . up to
equivalence.

WARNING:
o Etingof-Nikshych-Ostrik: If € is semisimple, then

# {s.t. 2-representations of ¢} / ~ < oc.

@ This is not true in general, e.g. € := T, — mod, where T, is
the Taft Hopf algebra.

@ .7 is not semisimple...
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Already known results

@ Recall that we can address the classification problem per apex.
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Already known results

@ Recall that we can address the classification problem per apex.

@ Prior to our recent results, a complete classification was only
known in the following cases:
o Arbitrary finite Coxeter type and strongly regular apex (e.g. in
Coxeter type A,, for all n > 1) [Mazorchuk-Miemietz].
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Already known results

@ Recall that we can address the classification problem per apex.

@ Prior to our recent results, a complete classification was only
known in the following cases:

o Arbitrary finite Coxeter type and strongly regular apex (e.g. in
Coxeter type A,, for all n > 1) [Mazorchuk-Miemietz].

o Coxeter type B, and arbitrary apex, for n < 4 [Zimmermann,
M-Mazorchuk-Miemietz-Zhang).
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Already known results

@ Recall that we can address the classification problem per apex.

@ Prior to our recent results, a complete classification was only
known in the following cases:

o Arbitrary finite Coxeter type and strongly regular apex (e.g. in
Coxeter type A,, for all n > 1) [Mazorchuk-Miemietz].

o Coxeter type B, and arbitrary apex, for n < 4 [Zimmermann,
M-Mazorchuk-Miemietz-Zhang).

o Arbitrary finite Coxeter type of rank > 2 and subregular apex
[Kildetoft-M-Mazorchuk-Zimmermann].
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Already known results

@ Recall that we can address the classification problem per apex.

@ Prior to our recent results, a complete classification was only
known in the following cases:

o Arbitrary finite Coxeter type and strongly regular apex (e.g. in
Coxeter type A,, for all n > 1) [Mazorchuk-Miemietz].

o Coxeter type B, and arbitrary apex, for n < 4 [Zimmermann,
M-Mazorchuk-Miemietz-Zhang).

o Arbitrary finite Coxeter type of rank > 2 and subregular apex
[Kildetoft-M-Mazorchuk-Zimmermann].

o Coxeter type h(n) and arbitrary apex, for all n > 2
[Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].
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Application of the double centralizer theorem

Fix a two-sided cell 7 and choose a diagonal H-cell H C 7. In
this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

Sy-gstmody, ~ &nd o, (Cy)-gstmod.
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Application of the double centralizer theorem

Fix a two-sided cell 7 and choose a diagonal H-cell H C 7. In
this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

Sy-gstmody, ~ &nd o, (Cy)-gstmod.

@ This theorem is extremely helpful, because gndQL(CH) is the
trivial Z-cover of a fusion category .&/3. In particular,

# {g.s.t. 2-representations of .7} / ~ < 0.
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Application of the double centralizer theorem

Fix a two-sided cell 7 and choose a diagonal H-cell H C 7. In
this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

Sy-gstmody, ~ &nd o, (Cy)-gstmod.

@ This theorem is extremely helpful, because gndQL(CH) is the
trivial Z-cover of a fusion category .&/3. In particular,

# {g.s.t. 2-representations of .7} / ~ < 0.

@ In almost all cases, H can be chosen such that &7y is
well-known and its simple transitive 2-representations have
been classified.
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Lusztig's a-function

Fact: hy, , is symmetric in v and vl

Proposition (Lusztig)

Let H be a diagonal H-cell. There exists a € Z>¢ such that for all
X,y,Z € H:

— a —a
hx,y,z = VTx,y,z—1V + o+ Ix,y,z=1V -

Moreover, there exists a unique d € H (Duflo involution) such that
d?> =ein W and

Yd,x,y=1 = Ux,dy=t = Vx,y=1,d = 5X,y

for all x,y € H.
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Lusztig's a-function

Fact: hy, , is symmetric in v and vl

Proposition (Lusztig)

Let H be a diagonal H-cell. There exists a € Z>¢ such that for all
X,y,Z € H:

— a —a
hx,y,z = VTx,y,z—1V + o+ Ix,y,z=1V -

Moreover, there exists a unique d € H (Duflo involution) such that
d?> =ein W and

Yd,x,y=1 = Ux,dy=t = Vx,y=1,d = 5X,y

for all x,y € H.

Asymptotic limit:

: —a
Txy,z7t = v_|'>TOOV hxy.z € Z>o0.
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Soergel’s hom-formula

Theorem (Soergel, Elias-Williamson)

| Oxy, Iift=0;
dim (hom(By, By(t))) = {0 ’ ift<0
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Soergel’s hom-formula

Theorem (Soergel, Elias-Williamson)

| Oxy, Iift=0;
dim (hom(By, By(t))) = {0 ’ ift<0

This implies that . is a filtered category. By the properties of
hyx.y.z, the part

X<_a:=add({Bu(k) | w € H, k < —a})

is lax monoidal: It is strictly associative with lax identity object
Bd(—a).
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Soergel’s hom-formula

Theorem (Soergel, Elias-Williamson)

| Oxy, Iift=0;
dim (hom(By, By(t))) = {0 ’ ift<0

This implies that . is a filtered category. By the properties of
hyx.y.z, the part

X<_a:=add({Bu(k) | w € H, k < —a})

is lax monoidal: It is strictly associative with lax identity object
By(—a). Define the asymptotic Soergel category:

Ay =X/ (Xea).
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The asymptotic Soergel category

Theorem (Lusztig, Elias-Williamson)

dy = (y,*,1,V) is a fusion category:
o for every x € H, the object A, := [Bx(—a)] is simple;
o {Ax | x € H} is a complete set of pairwise non-isomorphic
simple objects;
e for any x,y € H, we have
Ak A, = @ AT
zeH
o | :=Ay;
o for every x € H, we have AY = A ..
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Classification of asymptotic Soergel categories

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In almost all cases, H can be chosen such that <73, is biequivalent
to one of the following fusion categories:

e Vectg or C[G]-fmod, with G = (Z/2Z)*, S3, Sa, Ss;

o Uq(s03)-fmodys for g = e’ for some n € Z>s.

@ The simple transitive 2-representations of these fusion
categories have been completely classified by Kirillov-Ostrik

and Ostrik.
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The endomorphism category

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

6nd ) (C) =~ EP o).
tez
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The endomorphism category

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

6nd ) (C) =~ EP o).
tez

Corollary

There is a biequivalence
Yq(f)-stmod/z ~ oy -stmod.

In particular, there is a bijection

{g.s.t. 2-reps of Sy} / ~ N {s.t. 2-reps of oy} | ~ .
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THANKS!H!
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