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Double Centralizer Property

Let A be a f.d. (complex) algebra and M a f.d. left (unital)
A-module. Then M is a left EndA(M)-module.

Definition

We say that M has the Double Centralizer Property (DCP) if the
canonical homomorphism

can : A→ EndEndA(M)(M)

is an isomorphism of algebras.

Note that can is injective iff M is faithful.

Example (Schur-Weyl duality)

If n ≥ r , we have

C[Sr ] ∼= EndEndC[Sr ]((Cn)⊗r)
(
(Cn)⊗r

)
.
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Double Centralizer Property

The DCP is known to hold in lots of cases, e.g.

A is semisimple and M is faithful;
A is a self-injective algebra and M is faithful.
A is quasi-hereditary and M is a faithful tilting module
satisfying a certain condition.

If M has the DCP, then the functor

A-fmod→ EndopA (M)-fmod,

N 7→ HomA(M,N)

estalishes a ”nice” relation between A-fmod and
EndA(M)-fmod, e.g. in the semisimple case it is an
equivalence.
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fiat 2-categories

Let C = (C ,⊕,⊗, 0, I , ?) be a finitary, pivotal category (a.k.a. a
one-object, fiat 2-category), defined over C.

C has f.d. C-linear morphism spaces and composition is
bilinear.

⊕ and 0 define an additive structure on C .

There is a finite set of pairwise non-isomorphic
indecomposable objects B1, . . . ,Bn ∈ C such that for every
object F ∈ C there are unique m1(F), . . . ,mn(F) ∈ Z≥0 s.t.

F ∼=
n⊕

i=1

B
⊕mi (F)
i .

By assumption, I ∼= Bi for some i = 1, . . . , n.

⊗ and I define a monoidal structure on C .
? defines a pivotal structure on C .
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Fusion categories

C is called semisimple if

dimC (HomC (Bi ,Bj)) = δij (i , j = 1, . . . , n).

If C is semisimple, it is called a fusion category and the Bi are
called simple objects.

Examples:

VectG , for a finite group G ;

C[G ]-fmod, for a finite group G ;

Uq(g)-fmodss, for a complex semisimple Lie algebra g.

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem



Fusion categories

C is called semisimple if

dimC (HomC (Bi ,Bj)) = δij (i , j = 1, . . . , n).

If C is semisimple, it is called a fusion category and the Bi are
called simple objects.

Examples:

VectG , for a finite group G ;

C[G ]-fmod, for a finite group G ;

Uq(g)-fmodss, for a complex semisimple Lie algebra g.

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem



Fusion categories

C is called semisimple if

dimC (HomC (Bi ,Bj)) = δij (i , j = 1, . . . , n).

If C is semisimple, it is called a fusion category and the Bi are
called simple objects.

Examples:

VectG , for a finite group G ;

C[G ]-fmod, for a finite group G ;

Uq(g)-fmodss, for a complex semisimple Lie algebra g.

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem



Fusion categories

C is called semisimple if

dimC (HomC (Bi ,Bj)) = δij (i , j = 1, . . . , n).

If C is semisimple, it is called a fusion category and the Bi are
called simple objects.

Examples:

VectG , for a finite group G ;

C[G ]-fmod, for a finite group G ;

Uq(g)-fmodss, for a complex semisimple Lie algebra g.

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem



Non-semisimple examples: Dual numbers

Let D := C[x ]/(x2). Then D is a symmetric Frobenius algebra
with non-degenerate trace form ε(x) = 1 and ε(1) = 0. This
implies that D is also a coalgebra, with counit ε, and the
comultiplication δ is a (D,D)-bimodule map

Define
CD := add ({D,D ⊗ D}) ,

i.e. CD is the full subcategory of (D,D)-bimodules that are
isomorphic to direct summands of direct sums of copies of D and
D ⊗ D. The monoidal structure on CD is defined by ⊗D and
I = D, e.g.

(D ⊗ D)⊗D (D ⊗ D) ∼= D ⊗ (D ⊗D D)⊗ D
∼= D ⊗ D ⊗ D
∼= (D ⊗ D)⊕ (D ⊗ D).
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Non-semisimple examples: Dual numbers

The pivotal structure on CD is defined by

D? := D, with unit and counit of adjunction defined by δ
(comultiplication) and µ (multiplication), resp.

(D ⊗ D)? := D ⊗ D, with unit and counit of adjunction
defined by

D
δ−→ D ⊗ D

idD ⊗ δ(1) ⊗ idD−−−−−−−−−−→ D ⊗ D ⊗D D ⊗ D

D ⊗ D ⊗D D ⊗ D
idD ⊗ ε·µ ⊗ idD−−−−−−−−−→ D ⊗ D

µ−→ D.
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Non-semisimple examples: Projective bimodules

More generally, let A be a weakly symmetric f.d. Frobenius algebra
(also assumed to be basic and connected). Define

CA := add ({A,A⊗ A}) .

Suppose {e1, . . . , en} is a complete set of orthogonal primitive
idempotents in A, i.e. eiej = δijei and e1 + · · ·+ en = 1. A
complete set of pairwise non-isomorphic indecomposables is given
by

{A} ∪ {Aei ⊗ ejA | i , j = 1, . . . , n} .

The monoidal structure is defined by ⊗A and I = A, and the
pivotal structure by A? = A and (Aei ⊗ ejA)? = Aej ⊗ eiA with
units and counits of adjunction similar to the ones above.
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Coxeter groups, Hecke algebras, Soergel bimodules

Let M = (mij)
n
i ,j=1 ∈ Mat(n,Z≥0) be a symmetric matrix such that

mij =

{
1 if i = j ;

≥ 2 if i 6= j .

Definition (Coxeter system)

A Coxeter system (W , S) with Coxeter matrix M is given by a set
S = {s1, . . . , sn} (simple reflections) and a group (Coxeter group)

W := 〈s1, . . . , sn ∈ S | (si sj)
mij = e〉.

We call n the rank of (W , S).

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem



Examples

The Coxeter group of type I2(n) is isomorphic to the dihedral
group D2n:

D2n = 〈s, t | s2 = t2 = e ∧ (st)n = e〉.

The isomorphism with the usual presentation

〈ρ, σ | σ2 = ρn = e ∧ ρσ = σρ−1〉

is given by s 7→ σ and t → σρ.

The Coxeter group of type An is isomorphic to symmetric
group Sn+1, generated by s1, . . . , sn, subject to

mii = 1: (si si )
1 = e ⇔ s2i = e;

mij = 2: (si sj)
2 = e ⇔ si sj = sjsi if j 6= i ± 1;

mi(i±1) = 3: (si si±1)3 = e ⇔ si si±1si = si±1si si±1.
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Coxeter diagrams of finite type

Weyl type non-Weyl type

An

Bn = Cn
4

Dn

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(n) n
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Hecke algebras

Recall that H = H(W , S) is a deformation of Z[W ] over Z[v, v−1]:

s2i = e  s2i = (v−2 − 1)si + v−2.

Let {bw | w ∈W } be the Kazhdan-Lusztig basis of H and write

bubv =
∑
w∈W

hu,v ,wbw ,

for hu,v ,w ∈ Z≥0[v, v−1].
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Soergel bimodules

Let W be a finite Coxeter group and Q = Q(W ) the coinvariant
algebra.

Definition (Soergel)

Let S be the additive closure in Q-gfbimod-Q of the full monoidal
subcategory generated by shifted copies of

Bsi := Q ⊗Qsi Q〈1〉 (i = 1, . . . , n).

Remark: S is not abelian, e.g. the kernel of

Bsi = Q ⊗Qsi Q
a⊗b 7→ ab−−−−−−→ Q

is isomorphic to Q as a right Q-module but the left Q-action is
twisted by si .
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Let w ∈W and w = si1 · · · sir a reduced expression (rex). The
Bott-Samelson bimodule is defined as

BS(w) := Bsi1
⊗Q · · · ⊗Q Bsir .

Theorem (Soergel)

S is finitary. For every w ∈W, there is an indecomposable
bimodule Bw ∈ S, unique up to degree-preserving isomorphism,
such that

Bw is isomorphic to a direct summand, with multiplicity one,
of BS(w) for any rex w of w;

For all t ∈ Z, Bw 〈t〉 is not isomorphic to a direct summand of
BS(u) for any u < w and any rex u of u.

Every indecomposable Soergel bimodule is isomorphic to
Bw 〈t〉 for some w ∈W and t ∈ Z.
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The categorification theorem

Theorem (Soergel, Elias-Williamson)

The Z[v, v−1]-linear map given by

bw 7→ [Bw ]

defines an algebra isomorphism between H and [S]⊕ (split
Grothendieck group).
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The categorification theorem

Let p =
∑s

i=−r aiv
i ∈ Z≥0[v, v−1]. Define

B⊕p :=
s⊕

i=−r
B⊕ai 〈−i〉.

Then the above theorem means:

Positive Integrality

For all u, v ∈W , we have

Bu ⊗Q Bv
∼=
⊕
w∈W

B
⊕hu,v,w
w ,

whence
hu,v ,w ∈ Z≥0[v, v−1].
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2-Representations

Definition

A finitary 2-representation of C is a finitary category M together
with a linear, monoidal functor

M : C → End(M),

called the 2-action of C on M.

Example

The monoidal structure of C defines the principal 2-representation

P : C → End(C)

The finitary 2-representations of C form a 2-category, denoted
C-afmod.
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Cell theory

Note: We will often write FG := F⊗G and FX := M(F)(X ).

There are natural pre-orders ≥L,≥R ,≥LR on
Ind(C) := {[F] | F ∈ C indecomposable}, e.g.

[F] ≥L [G] if ∃H ∈ C : F ⊆⊕ HG.

These pre-orders induce equivalence relations, e.g.

[F] ∼L [G] ⇔ [F] ≥L [G] ∧ [G] ≥L [F],

and the associated equivalence classes are called left, right
and two-sided cells, respectively.

For each two-sided cell J , we have

J =
∐
L⊆J
L , J =

∐
R⊆J

R.
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Cell theory: examples

If C is semisimple, then there is only one cell, because I is
simple and I ⊆⊕ LL? for any simple L.

CA has the following cell structure.

Two-sided cells:

J := {A} , J ′ := {Aei ⊗ ejA | i , j = 1, . . . , n}.

Left cells:

{A} , Lj := {Aei ⊗ ejA | i = 1, . . . , n} for fixed j .

Right cells:

{A} , Ri := {Aei ⊗ ejA | j = 1, . . . , n} for fixed i .
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Kazhdan-Lusztig cells

The cells of S correspond exactly to the Kazhdan-Lusztig cells of
H, e.g. in type I2(n):

e

s , sts, . . . st, stst, . . .

ts, tsts, . . . t , tst, . . .

w0

Remark: d is the so called Duflo involution.
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Cell 2-representations

Let L be a left cell. The cell 2-representation CL is given by
the natural 2-action of C on

add ({F ∈ C | F ≥L L}) /I>L.

Let J be the two-sided cell containing L. Then J is the
maximal two-sided cell that is not annihilated by CL.

The cell 2-representations are important examples of so-called
simple transitive 2-representations. However, the former do
not exhaust the latter in general.
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Simple transitive 2-representations

A finitary 2-representation M of C is transitive if every
X ∈M is a generator, i.e.

M' add ({FX | F ∈ C}) .

A transitive 2-representation is simple transitive if it has no
proper C-stable ideals.

Mazorchuk and Miemietz proved a categorical Jordan-Hölder
theorem for finitary 2-representations, where the role of the
simples is played by the simple transitive 2-representations.

For every simple transitive 2-representation M of C , there is a
unique maximal two-sided cell that is not annihilated by M,
called the apex.

Let C-afmodJ (resp. C-stmodJ ) be the 2-category of finitary
(resp. simple transitive) 2-representations of C whose
Jordan-Hölder constituents all have apex J .
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Projective endofunctors

Let J be a two-sided cell and M ∈ C-stmodJ . Then:

M' A-fproj for some f.d. self-injective algebra A.

A-fproj is a finitary 2-representation of CA, e.g.

(Aei ⊗ ejA)⊗A Aek ∼= Aei ⊗ ejAek ∼= (Aei )
⊕ dimC(ejAek ).

An endomorphism of M is called projective if it corresponds to
tensoring over A with a projective (A,A)-bimodule, i.e. one of
the form ⊕n

i ,j=1(Aei ⊗ ejA)⊕mij for some mij ∈ Z≥.

Theorem (Kildetoft-M-Mazorchuk-Zimmermann)

The 2-representation M restricts to a monoidal semifunctor

M : add(J )→ EndprojC (M).
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Strong H-reduction

Fix a two-sided cell J .

Definition

For every left cell L ⊆ J , define the diagonal H-cell H = H(L) as

H := L ∩ L?.

Examples:

C semisimple: C is the unique diagonal H-cell.

CA: {A}, {Aei ⊗ eiA} for i = 1, . . . , n.

S(D2n): {Be}, {Bs ,Bsts , . . .}, {Bt ,Btst , . . .}, {Bw0}.
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Strong H-reduction

Fix a two-sided cell J of C .

For any diagonal H-cell H ⊆ J , there is an H-simple
monoidal subquotient category of C , denoted CH, whose only
cells are {I} and H.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

For any diagonal H-cell in H ⊆ J , there is a biequivalence

C-afmod ex
J ' CH-afmod ex

H ,

which preserves Jordan-Hölder constituents and restricts to a
biequivalence

C-stmodJ ' CH-stmodH.

Note: We can pick any H ⊆ J !
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Double centralizer theorem

Fix a diagonal H-cell H ⊆ J and let M ∈ CH -stmodH.

Denote by EndCH (M) the endomorphism category of M in
CH -stmodH.

The 2-actions of CH and EndCH (M) on M commute.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

The canonical monoidal functor

can : CH → EndexEndCH (M)(M).

is fully faithful on 2-morphism and essentially surjective on
1-morphisms when restricted to add(H) and corestricted to
Endproj

EndCH (M)(M).
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Observations

The above double centralizer theorem was inspired by the
analog for faithful exact module categories of tensor
categories, due to Ostrik and Etingof-Ostrik.

The following conjecture is also inspired by a result of Ostrik
and Etingof-Ostrik:

Conjecture

There is a biequivalence

CH -afmod ex
H ' EndCH (M)-afmod ex,

which preserves Jordan-Hölder constituents and restricts to a
biequivalence

CH -stmodH ' EndCH (M)-stmod.
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Application to Soergel bimodules

Let S = S(W , S) be the monoidal category of Soergel bimodules
for a finite Coxeter type (W ,S).

Classification Problem

Classify all graded simple transitive 2-representations of S up to
equivalence.

WARNING:

Etingof-Nikshych-Ostrik: If C is semisimple, then

# {s.t. 2-representations of C} / ' <∞.

This is not true in general, e.g. C := Tn −mod, where Tn is
the Taft Hopf algebra.

S is not semisimple...
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Already known results

Recall that we can address the classification problem per apex.

Prior to our recent results, a complete classification was only
known in the following cases:

Arbitrary finite Coxeter type and strongly regular apex (e.g. in
Coxeter type An, for all n ≥ 1) [Mazorchuk-Miemietz].
Coxeter type Bn and arbitrary apex, for n ≤ 4 [Zimmermann,
M-Mazorchuk-Miemietz-Zhang].
Arbitrary finite Coxeter type of rank > 2 and subregular apex
[Kildetoft-M-Mazorchuk-Zimmermann].
Coxeter type I2(n) and arbitrary apex, for all n ≥ 2
[Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].
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Application of the double centralizer theorem

Fix a two-sided cell J and choose a diagonal H-cell H ⊆ J . In
this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

SH-gstmodH ' EndSH(CH)-gstmod.

This theorem is extremely helpful, because End
(0)
SH

(CH) is the
trivial Z-cover of a fusion category AH. In particular,

# {g.s.t. 2-representations of S} / ' <∞.

In almost all cases, H can be chosen such that AH is
well-known and its simple transitive 2-representations have
been classified.
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Lusztig’s a-function

Fact: hx ,y ,z is symmetric in v and v−1.

Proposition (Lusztig)

Let H be a diagonal H-cell. There exists a ∈ Z≥0 such that for all
x , y , z ∈ H:

hx ,y ,z = γx ,y ,z−1va + · · ·+ γx ,y ,z−1v−a.

Moreover, there exists a unique d ∈ H (Duflo involution) such that
d2 = e in W and

γd ,x ,y−1 = γx ,d ,y−1 = γx ,y−1,d = δx ,y

for all x , y ∈ H.

Asymptotic limit:

γx ,y ,z−1 = lim
v→+∞

v−ahx ,y ,z ∈ Z≥0.
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Soergel’s hom-formula

Theorem (Soergel, Elias-Williamson)

dim
(
hom(Bx ,By 〈t〉)

)
=

{
δx ,y , if t = 0;

0 if t < 0.

This implies that SH is a filtered category. By the properties of
hx ,y ,z , the part

X≤−a := add
(
{Bw 〈k〉 | w ∈ H, k ≤ −a}

)
is lax monoidal: It is strictly associative with lax identity object
Bd〈−a〉. Define the asymptotic Soergel category:

AH := X≤−a/
(
X<−a

)
.
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The asymptotic Soergel category

Theorem (Lusztig, Elias-Williamson)

AH = (AH, ?, I ,∨) is a fusion category:

for every x ∈ H, the object Ax := [Bx〈−a〉] is simple;

{Ax | x ∈ H} is a complete set of pairwise non-isomorphic
simple objects;

for any x , y ∈ H, we have

Ax ?Ay
∼=
⊕
z∈H

A
⊕γx,y,z−1

z ;

I := Ad ;

for every x ∈ H, we have A∨x
∼= Ax−1 .
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Classification of asymptotic Soergel categories

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In almost all cases, H can be chosen such that AH is biequivalent
to one of the following fusion categories:

VectG or C[G ]-fmod, with G = (Z/2Z)k , S3,S4,S5;

Uq(so3)-fmodss for q = e
πi
n for some n ∈ Z≥2.

The simple transitive 2-representations of these fusion
categories have been completely classified by Kirillov-Ostrik
and Ostrik.
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The endomorphism category

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

End
(0)
SH

(CH) '
⊕
t∈Z

AH〈t〉.

Corollary

There is a biequivalence

S
(0)
H -stmod/Z ' AH-stmod.

In particular, there is a bijection

{g.s.t. 2-reps of SH} / '
1:1←→ {s.t. 2-reps of AH} / ' .
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THANKS!!!
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