The double centralizer theorem for finitary 2-representations and an application

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang

CAMGSD and Universidade do Algarve

Nov 6, 2020

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_A(M)$ -module.

< ⊒ > <

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_A(M)$ -module.

Definition

We say that M has the Double Centralizer Property (DCP) if the canonical homomorphism

```
can: A \to \operatorname{End}_{\operatorname{End}_A(M)}(M)
```

is an isomorphism of algebras.

Note that can is injective iff M is faithful.

Let A be a f.d. (complex) algebra and M a f.d. left (unital) A-module. Then M is a left $\operatorname{End}_A(M)$ -module.

Definition

We say that M has the Double Centralizer Property (DCP) if the canonical homomorphism

```
can: A \to \operatorname{End}_{\operatorname{End}_A(M)}(M)
```

is an isomorphism of algebras.

Note that can is injective iff M is faithful.

Example (Schur-Weyl duality)

If $n \ge r$, we have

$$\mathbb{C}[S_r] \cong \operatorname{End}_{\operatorname{End}_{\mathbb{C}[S_r]}\left((\mathbb{C}^n)^{\otimes r}\right)}\left((\mathbb{C}^n)^{\otimes r}\right).$$

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

- The DCP is known to hold in lots of cases, e.g.
 - A is semisimple and M is faithful;
 - A is a self-injective algebra and M is faithful.
 - A is quasi-hereditary and M is a faithful tilting module satisfying a certain condition.

- The DCP is known to hold in lots of cases, e.g.
 - A is semisimple and M is faithful;
 - A is a self-injective algebra and M is faithful.
 - A is quasi-hereditary and M is a faithful tilting module satisfying a certain condition.

• If *M* has the DCP, then the functor

 $A ext{-fmod}
ightarrow \operatorname{End}_A^{\operatorname{op}}(M) ext{-fmod},$ $N \mapsto \operatorname{Hom}_A(M, N)$

estalishes a "nice" relation between A-fmod and $\operatorname{End}_A(M)$ -fmod, e.g. in the semisimple case it is an equivalence.

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, \star)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, \star)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

• C has f.d. C-linear morphism spaces and composition is bilinear.

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, \star)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

- C has f.d. C-linear morphism spaces and composition is bilinear.
- ullet \oplus and 0 define an additive structure on \mathscr{C} .

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, \star)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

- C has f.d. C-linear morphism spaces and composition is bilinear.
- $\bullet~\oplus$ and 0 define an additive structure on ${\mathscr C}.$
- There is a finite set of pairwise non-isomorphic indecomposable objects B₁,..., B_n ∈ 𝒞 such that for every object F ∈ 𝒞 there are unique m₁(F),..., m_n(F) ∈ Z_{>0} s.t.

$$\mathbf{F} \cong \bigoplus_{i=1}^{n} \mathbf{B}_{i}^{\oplus m_{i}(\mathbf{F})}$$

By assumption, $I \cong B_i$ for some $i = 1, \ldots, n$.

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, *)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

- C has f.d. C-linear morphism spaces and composition is bilinear.
- $\bullet~\oplus$ and 0 define an additive structure on ${\mathscr C}.$
- There is a finite set of pairwise non-isomorphic indecomposable objects B₁,..., B_n ∈ 𝒞 such that for every object F ∈ 𝒞 there are unique m₁(F),..., m_n(F) ∈ Z_{>0} s.t.

$$\mathbf{F} \cong \bigoplus_{i=1}^{n} \mathbf{B}_{i}^{\oplus m_{i}(\mathbf{F})}$$

By assumption, $I \cong B_i$ for some $i = 1, \ldots, n$.

• \otimes and *I* define a monoidal structure on \mathscr{C} .

Let $\mathscr{C} = (\mathscr{C}, \oplus, \otimes, 0, I, *)$ be a finitary, pivotal category (a.k.a. a one-object, fiat 2-category), defined over \mathbb{C} .

- $\bullet \ {\mathscr C}$ has f.d. ${\mathbb C}\mbox{-linear}$ morphism spaces and composition is bilinear.
- $\bullet~\oplus$ and 0 define an additive structure on ${\mathscr C}.$
- There is a finite set of pairwise non-isomorphic indecomposable objects B₁,..., B_n ∈ 𝒞 such that for every object F ∈ 𝒞 there are unique m₁(F),..., m_n(F) ∈ Z_{>0} s.t.

$$\mathbf{F} \cong \bigoplus_{i=1}^{n} \mathbf{B}_{i}^{\oplus m_{i}(\mathbf{F})}$$

By assumption, $I \cong B_i$ for some $i = 1, \ldots, n$.

- ullet \otimes and I define a monoidal structure on \mathscr{C} .
- * defines a pivotal structure on \mathscr{C} .

 $\dim_{\mathbb{C}} (\operatorname{Hom}_{\mathscr{C}}(\mathbf{B}_i,\mathbf{B}_j)) = \delta_{ij} \quad (i,j = 1,\ldots,n).$

If $\mathscr C$ is semisimple, it is called a *fusion category* and the B_i are called *simple objects*.

 $\dim_{\mathbb{C}} \left(\operatorname{Hom}_{\mathscr{C}}(\mathbf{B}_i,\mathbf{B}_j) \right) = \delta_{ij} \quad (i,j = 1,\ldots,n).$

If $\mathscr C$ is semisimple, it is called a *fusion category* and the B_i are called *simple objects*.

Examples:

• Vect_{G} , for a finite group G;

 $\dim_{\mathbb{C}} \left(\operatorname{Hom}_{\mathscr{C}}(\mathbf{B}_{i},\mathbf{B}_{j}) \right) = \delta_{ij} \quad (i,j = 1, \ldots, n).$

If $\mathscr C$ is semisimple, it is called a *fusion category* and the $\mathrm B_i$ are called *simple objects*.

Examples:

- Vect_{G} , for a finite group G;
- $\mathbb{C}[G]$ -fmod, for a finite group G;

 $\dim_{\mathbb{C}} \left(\operatorname{Hom}_{\mathscr{C}}(\mathbf{B}_{i},\mathbf{B}_{j}) \right) = \delta_{ij} \quad (i,j = 1, \ldots, n).$

If $\mathscr C$ is semisimple, it is called a *fusion category* and the B_i are called *simple objects*.

Examples:

- Vect_{G} , for a finite group G;
- $\mathbb{C}[G]$ -fmod, for a finite group G;
- $U_q(\mathfrak{g})$ -fmod_{ss}, for a complex semisimple Lie algebra \mathfrak{g} .

Non-semisimple examples: Dual numbers

Let $D := \mathbb{C}[x]/(x^2)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x) = 1$ and $\epsilon(1) = 0$. This implies that D is also a coalgebra, with counit ϵ , and the comultiplication δ is a (D, D)-bimodule map

Non-semisimple examples: Dual numbers

Let $D := \mathbb{C}[x]/(x^2)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x) = 1$ and $\epsilon(1) = 0$. This implies that D is also a coalgebra, with counit ϵ , and the comultiplication δ is a (D, D)-bimodule map

Define

$$\mathscr{C}_D := \operatorname{add} \left(\{ D, D \otimes D \} \right),$$

i.e. \mathcal{C}_D is the full subcategory of (D, D)-bimodules that are isomorphic to direct summands of direct sums of copies of D and $D \otimes D$.

Non-semisimple examples: Dual numbers

Let $D := \mathbb{C}[x]/(x^2)$. Then D is a symmetric Frobenius algebra with non-degenerate trace form $\epsilon(x) = 1$ and $\epsilon(1) = 0$. This implies that D is also a coalgebra, with counit ϵ , and the comultiplication δ is a (D, D)-bimodule map

Define

$$\mathscr{C}_D := \operatorname{add} \left(\{ D, D \otimes D \} \right),$$

i.e. \mathscr{C}_D is the full subcategory of (D, D)-bimodules that are isomorphic to direct summands of direct sums of copies of D and $D \otimes D$. The monoidal structure on \mathscr{C}_D is defined by \otimes_D and I = D, e.g.

$$\begin{array}{rcl} (D \otimes D) \otimes_D (D \otimes D) &\cong& D \otimes (D \otimes_D D) \otimes D \\ &\cong& D \otimes D \otimes D \\ &\cong& (D \otimes D) \oplus (D \otimes D). \end{array}$$

The pivotal structure on \mathcal{C}_D is defined by

- $D^* := D$, with unit and counit of adjunction defined by δ (comultiplication) and μ (multiplication), resp.
- (D ⊗ D)^{*} := D ⊗ D, with unit and counit of adjunction defined by

$$D \xrightarrow{\delta} D \otimes D \xrightarrow{\operatorname{id}_D \otimes \delta(1) \otimes \operatorname{id}_D} D \otimes D \otimes_D D \otimes D$$
$$D \otimes D \otimes_D D \otimes D \xrightarrow{\operatorname{id}_D \otimes \epsilon \cdot \mu \otimes \operatorname{id}_D} D \otimes D \xrightarrow{\mu} D.$$

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

 $\mathcal{C}_A := \mathrm{add}\left(\{A, A \otimes A\}\right).$

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

$$\mathscr{C}_A := \operatorname{add} (\{A, A \otimes A\}).$$

Suppose $\{e_1, \ldots, e_n\}$ is a complete set of orthogonal primitive idempotents in A, i.e. $e_i e_j = \delta_{ij} e_i$ and $e_1 + \cdots + e_n = 1$. A complete set of pairwise non-isomorphic indecomposables is given by

$$\{A\} \cup \{Ae_i \otimes e_j A \mid i, j = 1, \ldots, n\}.$$

More generally, let A be a weakly symmetric f.d. Frobenius algebra (also assumed to be basic and connected). Define

$$\mathcal{C}_A := \mathrm{add}\left(\{A, A \otimes A\}\right).$$

Suppose $\{e_1, \ldots, e_n\}$ is a complete set of orthogonal primitive idempotents in A, i.e. $e_i e_j = \delta_{ij} e_i$ and $e_1 + \cdots + e_n = 1$. A complete set of pairwise non-isomorphic indecomposables is given by

$$\{A\} \cup \{Ae_i \otimes e_j A \mid i, j = 1, \ldots, n\}.$$

The monoidal structure is defined by \otimes_A and I = A, and the pivotal structure by $A^* = A$ and $(Ae_i \otimes e_j A)^* = Ae_j \otimes e_i A$ with units and counits of adjunction similar to the ones above.

Coxeter groups, Hecke algebras, Soergel bimodules

Let $M = (m_{ij})_{i,j=1}^n \in \operatorname{Mat}(n, \mathbb{Z}_{\geq 0})$ be a symmetric matrix such that

$$m_{ij} = \begin{cases} 1 & \text{if } i = j; \\ \geq 2 & \text{if } i \neq j. \end{cases}$$

Definition (Coxeter system)

A Coxeter system (W, S) with Coxeter matrix M is given by a set $S = \{s_1, \ldots, s_n\}$ (simple reflections) and a group (Coxeter group)

$$W := \langle s_1, \ldots, s_n \in S \mid (s_i s_j)^{m_{ij}} = e \rangle.$$

We call n the rank of (W, S).

Examples

• The Coxeter group of type $I_2(n)$ is isomorphic to the dihedral group D_{2n} :

$$D_{2n} = \langle s, t \mid s^2 = t^2 = e \land (st)^n = e \rangle.$$

The isomorphism with the usual presentation

$$\langle
ho, \sigma \mid \sigma^2 =
ho^n = e \ \land \ \rho \sigma = \sigma
ho^{-1}
angle$$

is given by $s \mapsto \sigma$ and $t \to \sigma \rho$.

• The Coxeter group of type $I_2(n)$ is isomorphic to the dihedral group D_{2n} :

$$D_{2n} = \langle s, t \mid s^2 = t^2 = e \land (st)^n = e \rangle.$$

The isomorphism with the usual presentation

$$\langle \rho, \sigma \mid \sigma^2 = \rho^n = e \land \rho \sigma = \sigma \rho^{-1} \rangle$$

is given by $s \mapsto \sigma$ and $t \to \sigma \rho$.

• The Coxeter group of type A_n is isomorphic to symmetric group S_{n+1} , generated by s_1, \ldots, s_n , subject to

$$\begin{split} m_{ii} &= 1: \qquad (s_i s_i)^1 = e \Leftrightarrow s_i^2 = e; \\ m_{ij} &= 2: \qquad (s_i s_j)^2 = e \Leftrightarrow s_i s_j = s_j s_i \quad \text{if } j \neq i \pm 1; \\ m_{i(i\pm 1)} &= 3: \qquad (s_i s_{i\pm 1})^3 = e \Leftrightarrow s_i s_{i\pm 1} s_i = s_{i\pm 1} s_i s_{i\pm 1}. \end{split}$$

Coxeter diagrams of finite type

æ

• = • • = •

Recall that H = H(W, S) is a deformation of $\mathbb{Z}[W]$ over $\mathbb{Z}[v, v^{-1}]$:

$$s_i^2 = e \quad \rightsquigarrow \quad s_i^2 = (v^{-2} - 1)s_i + v^{-2}.$$

Let $\{b_w \mid w \in W\}$ be the Kazhdan-Lusztig basis of H and write

$$b_u b_v = \sum_{w \in W} h_{u,v,w} b_w,$$

for $h_{u,v,w} \in \mathbb{Z}_{\geq 0}[v, v^{-1}]$.

Soergel bimodules

Let W be a finite Coxeter group and Q = Q(W) the *coinvariant* algebra.

 Let W be a finite Coxeter group and Q = Q(W) the coinvariant algebra.

Definition (Soergel)

Let S be the additive closure in Q-gfbimod-Q of the full monoidal subcategory generated by shifted copies of

$$\mathbf{B}_{s_i} := Q \otimes_{Q^{s_i}} Q\langle 1 \rangle \quad (i = 1, \dots, n).$$

Let W be a finite Coxeter group and Q = Q(W) the *coinvariant algebra*.

Definition (Soergel)

Let S be the additive closure in Q-gfbimod-Q of the full monoidal subcategory generated by shifted copies of

$$B_{s_i} := Q \otimes_{Q^{s_i}} Q\langle 1 \rangle \quad (i = 1, \ldots, n).$$

Remark: \mathcal{S} is not abelian, e.g. the kernel of

$$\mathbf{B}_{s_i} = Q \otimes_{Q^{s_i}} Q \xrightarrow{a \otimes b \mapsto ab} Q$$

is isomorphic to Q as a right Q-module but the left Q-action is twisted by s_i .

Let $w \in W$ and $\underline{w} = s_{i_1} \cdots s_{i_r}$ a reduced expression (rex). The *Bott-Samelson bimodule* is defined as

$$\mathrm{BS}(\underline{w}) := \mathrm{B}_{s_{i_1}} \otimes_Q \cdots \otimes_Q \mathrm{B}_{s_{i_r}}.$$

Let $w \in W$ and $\underline{w} = s_{i_1} \cdots s_{i_r}$ a reduced expression (rex). The *Bott-Samelson bimodule* is defined as

$$\mathrm{BS}(\underline{w}) := \mathrm{B}_{s_{i_1}} \otimes_Q \cdots \otimes_Q \mathrm{B}_{s_{i_r}}.$$

Theorem (Soergel)

S is finitary. For every $w \in W$, there is an indecomposable bimodule $B_w \in S$, unique up to degree-preserving isomorphism, such that

- B_w is isomorphic to a direct summand, with multiplicity one, of BS(<u>w</u>) for any rex <u>w</u> of w;
- For all t ∈ Z, B_w⟨t⟩ is not isomorphic to a direct summand of BS(<u>u</u>) for any u < w and any rex <u>u</u> of u.
- Every indecomposable Soergel bimodule is isomorphic to $B_w\langle t \rangle$ for some $w \in W$ and $t \in \mathbb{Z}$.

Theorem (Soergel, Elias-Williamson)

The $\mathbb{Z}[v, v^{-1}]$ -linear map given by

$$b_w \mapsto [\mathbf{B}_w]$$

defines an algebra isomorphism between H and $[S]_{\oplus}$ (split Grothendieck group).

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

The categorification theorem

Let
$$p = \sum_{i=-r}^{s} a_i v^i \in \mathbb{Z}_{\geq 0}[v, v^{-1}]$$
. Define

$$\mathbf{B}^{\oplus p} := \bigoplus_{i=-r}^{s} \mathbf{B}^{\oplus a_{i}} \langle -i \rangle.$$

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

The categorification theorem

Let
$$p = \sum_{i=-r}^{s} a_i v^i \in \mathbb{Z}_{\geq 0}[v, v^{-1}]$$
. Define

$$\mathbf{B}^{\oplus p} := \bigoplus_{i=-r}^{s} \mathbf{B}^{\oplus a_{i}} \langle -i \rangle.$$

Then the above theorem means:

Positive Integrality

For all $u, v \in W$, we have

$$\mathbf{B}_{u} \otimes_{Q} \mathbf{B}_{v} \cong \bigoplus_{w \in W} \mathbf{B}_{w}^{\oplus h_{u,v,w}},$$

whence

$$h_{u,v,w} \in \mathbb{Z}_{\geq 0}[v,v^{-1}].$$

Definition

A finitary 2-representation of ${\mathscr C}$ is a finitary category ${\mathcal M}$ together with a linear, monoidal functor

 $M\colon \mathscr{C}\to \mathrm{End}(\mathcal{M}),$

called the 2-action of \mathscr{C} on \mathcal{M} .

Definition

A finitary 2-representation of ${\mathscr C}$ is a finitary category ${\mathcal M}$ together with a linear, monoidal functor

 $\mathsf{M}\colon \mathscr{C}\to \mathrm{End}(\mathcal{M}),$

called the 2-action of \mathscr{C} on \mathcal{M} .

Example

The monoidal structure of % defines the principal 2-representation

 $\mathbf{P} \colon \mathscr{C} \to \operatorname{End}(\mathscr{C})$

Definition

A finitary 2-representation of ${\mathscr C}$ is a finitary category ${\mathcal M}$ together with a linear, monoidal functor

 $\mathsf{M}\colon \mathscr{C}\to \mathrm{End}(\mathcal{M}),$

called the 2-action of \mathscr{C} on \mathcal{M} .

Example

The monoidal structure of *C* defines the principal 2-representation

 $\mathbf{P} \colon \mathscr{C} \to \operatorname{End}(\mathscr{C})$

• The finitary 2-representations of $\mathscr C$ form a 2-category, denoted $\mathscr C$ -afmod.

Note: We will often write $FG := F \otimes G$ and FX := M(F)(X).

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

Image: Image:

Note: We will often write $FG := F \otimes G$ and FX := M(F)(X).

 There are natural pre-orders ≥_L, ≥_R, ≥_{LR} on Ind(𝒞) := {[F] | F ∈ 𝒞 indecomposable}, e.g.

 $[F] \geq_{\mathcal{L}} [G] \quad \text{if} \quad \exists H \in \mathscr{C} : F \subseteq_{\oplus} HG.$

< 3 > 4 3 >

Note: We will often write $FG := F \otimes G$ and FX := M(F)(X).

 There are natural pre-orders ≥_L, ≥_R, ≥_{LR} on Ind(𝒞) := {[F] | F ∈ 𝔅 indecomposable}, e.g.

 $[F] \geq_{\mathcal{L}} [G] \quad \text{if} \quad \exists H \in \mathscr{C} : F \subseteq_{\oplus} HG.$

• These pre-orders induce equivalence relations, e.g.

 $[\mathbf{F}] \sim_L [\mathbf{G}] \quad \Leftrightarrow \quad [\mathbf{F}] \geq_L [\mathbf{G}] \land \ [\mathbf{G}] \geq_L [\mathbf{F}],$

and the associated equivalence classes are called *left, right and two-sided cells,* respectively.

Note: We will often write $FG := F \otimes G$ and FX := M(F)(X).

 There are natural pre-orders ≥_L, ≥_R, ≥_{LR} on Ind(𝒞) := {[F] | F ∈ 𝔅 indecomposable}, e.g.

 $[F] \geq_{\mathcal{L}} [G] \quad \text{if} \quad \exists H \in \mathscr{C} : F \subseteq_{\oplus} HG.$

• These pre-orders induce equivalence relations, e.g.

 $[\mathbf{F}] \sim_L [\mathbf{G}] \quad \Leftrightarrow \quad [\mathbf{F}] \geq_L [\mathbf{G}] \ \land \ [\mathbf{G}] \geq_L [\mathbf{F}],$

and the associated equivalence classes are called *left, right and two-sided cells,* respectively.

• For each two-sided cell $\mathcal J$, we have

$$\mathcal{J} = \coprod_{\mathcal{L} \subseteq \mathcal{J}} \mathcal{L} \quad , \quad \mathcal{J} = \coprod_{\mathcal{R} \subseteq \mathcal{J}} \mathcal{R}.$$

Cell theory: examples

If *C* is semisimple, then there is only one cell, because *I* is simple and *I* ⊆_⊕ *LL*^{*} for any simple *L*.

Cell theory: examples

- If *C* is semisimple, then there is only one cell, because *I* is simple and *I* ⊆_⊕ *LL*^{*} for any simple *L*.
- \mathscr{C}_A has the following cell structure.
 - Two-sided cells:

$$\mathcal{J} := \{A\} , \ \mathcal{J}' := \{Ae_i \otimes e_j A \mid i, j = 1, \dots, n\}.$$

Left cells:

$$\{A\}$$
, $\mathcal{L}_j := \{Ae_i \otimes e_j A \mid i = 1, \dots, n\}$ for fixed j .

• Right cells:

$$\{A\}$$
, $\mathcal{R}_i := \{Ae_i \otimes e_j A \mid j = 1, \dots, n\}$ for fixed *i*.

The cells of \mathscr{S} correspond exactly to the Kazhdan-Lusztig cells of H, e.g. in type $l_2(n)$:

Remark: d is the so called **Duflo involution**.

• Let ${\cal L}$ be a left cell. The cell 2-representation $C_{\cal L}$ is given by the natural 2-action of ${\mathscr C}$ on

add ({ $F \in \mathscr{C} | F \geq_{L} \mathcal{L}$ }) / $\mathcal{I}_{>\mathcal{L}}$.

• Let ${\cal L}$ be a left cell. The cell 2-representation $C_{\cal L}$ is given by the natural 2-action of ${\mathscr C}$ on

add ({
$$F \in \mathscr{C} | F \geq_{L} \mathcal{L}$$
})/ $\mathcal{I}_{>\mathcal{L}}$.

 Let *J* be the two-sided cell containing *L*. Then *J* is the maximal two-sided cell that is not annihilated by C_L. • Let ${\cal L}$ be a left cell. The cell 2-representation $C_{\cal L}$ is given by the natural 2-action of ${\mathscr C}$ on

add ({
$$F \in \mathscr{C} | F \geq_{L} \mathcal{L}$$
})/ $\mathcal{I}_{>\mathcal{L}}$.

- Let *J* be the two-sided cell containing *L*. Then *J* is the maximal two-sided cell that is not annihilated by C_L.
- The cell 2-representations are important examples of so-called *simple transitive 2-representations*. However, the former do not exhaust the latter in general.

• A finitary 2-representation **M** of \mathscr{C} is *transitive* if every $X \in \mathcal{M}$ is a *generator*, i.e.

```
\mathcal{M} \simeq \operatorname{add}\left(\{\operatorname{F} X \mid \operatorname{F} \in \mathscr{C}\}\right).
```

A transitive 2-representation is *simple transitive* if it has no proper *C*-stable ideals.

• A finitary 2-representation **M** of \mathscr{C} is *transitive* if every $X \in \mathcal{M}$ is a *generator*, i.e.

```
\mathcal{M} \simeq \operatorname{add}\left(\{\operatorname{F} X \mid \operatorname{F} \in \mathscr{C}\}\right).
```

A transitive 2-representation is *simple transitive* if it has no proper *C*-stable ideals.

• Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.

• A finitary 2-representation **M** of \mathscr{C} is *transitive* if every $X \in \mathcal{M}$ is a *generator*, i.e.

```
\mathcal{M} \simeq \operatorname{add}\left(\{\operatorname{F} X \mid \operatorname{F} \in \mathscr{C}\}\right).
```

A transitive 2-representation is *simple transitive* if it has no proper *C*-stable ideals.

- Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.
- For every simple transitive 2-representation **M** of \mathscr{C} , there is a unique maximal two-sided cell that is not annihilated by **M**, called the *apex*.

• A finitary 2-representation **M** of \mathscr{C} is *transitive* if every $X \in \mathcal{M}$ is a *generator*, i.e.

```
\mathcal{M} \simeq \operatorname{add}\left(\{\operatorname{F} X \mid \operatorname{F} \in \mathscr{C}\}\right).
```

A transitive 2-representation is *simple transitive* if it has no proper *C*-stable ideals.

- Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations, where the role of the simples is played by the simple transitive 2-representations.
- For every simple transitive 2-representation **M** of \mathscr{C} , there is a unique maximal two-sided cell that is not annihilated by **M**, called the *apex*.
- Let C-afmod_J (resp. C-stmod_J) be the 2-category of finitary (resp. simple transitive) 2-representations of C whose Jordan-Hölder constituents all have apex J.

Let $\mathcal J$ be a two-sided cell and $\bm M\in \mathscr C\text{-}\mathrm{stmod}_{\mathcal J}.$ Then:

• $\mathcal{M} \simeq A$ -fproj for some f.d. self-injective algebra A.

Let $\mathcal J$ be a two-sided cell and $\bm M\in \mathscr C\text{-}\mathrm{stmod}_{\mathcal J}.$ Then:

- $\mathcal{M} \simeq A$ -fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2-representation of \mathscr{C}_A , e.g.

 $(Ae_i \otimes e_j A) \otimes_A Ae_k \cong Ae_i \otimes e_j Ae_k \cong (Ae_i)^{\oplus \dim_{\mathbb{C}}(e_j Ae_k)}.$

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}\operatorname{-stmod}_{\mathcal{J}}$. Then:

- $\mathcal{M} \simeq A$ -fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2-representation of \mathscr{C}_A , e.g.

$$(Ae_i \otimes e_j A) \otimes_A Ae_k \cong Ae_i \otimes e_j Ae_k \cong (Ae_i)^{\oplus \dim_{\mathbb{C}}(e_j Ae_k)}.$$

An endomorphism of M is called *projective* if it corresponds to tensoring over A with a projective (A, A)-bimodule, i.e. one of the form ⊕ⁿ_{i,j=1}(Ae_i ⊗ e_jA)^{⊕m_{ij}} for some m_{ij} ∈ Z_≥.

Let \mathcal{J} be a two-sided cell and $\mathbf{M} \in \mathscr{C}\operatorname{-stmod}_{\mathcal{J}}$. Then:

- $\mathcal{M} \simeq A$ -fproj for some f.d. self-injective algebra A.
- A-fproj is a finitary 2-representation of \mathscr{C}_A , e.g.

$$(Ae_i \otimes e_j A) \otimes_A Ae_k \cong Ae_i \otimes e_j Ae_k \cong (Ae_i)^{\oplus \dim_{\mathbb{C}}(e_j Ae_k)}.$$

An endomorphism of M is called *projective* if it corresponds to tensoring over A with a projective (A, A)-bimodule, i.e. one of the form ⊕ⁿ_{i,j=1}(Ae_i ⊗ e_jA)^{⊕m_{ij}} for some m_{ij} ∈ Z_≥.

Theorem (Kildetoft-M-Mazorchuk-Zimmermann)

The 2-representation M restricts to a monoidal semifunctor

$$\mathsf{M}$$
: add $(\mathcal{J}) \to \mathscr{E}nd_{\mathscr{C}}^{\operatorname{proj}}(\mathsf{M}).$

伺 ト イヨト イヨト

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the *diagonal* \mathcal{H} -*cell* $\mathcal{H} = \mathcal{H}(\mathcal{L})$ as

 $\mathcal{H}:=\mathcal{L}\cap\mathcal{L}^{\star}.$

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the *diagonal* \mathcal{H} -*cell* $\mathcal{H} = \mathcal{H}(\mathcal{L})$ as

 $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^{\star}.$

Examples:

 $\bullet \ {\mathscr C}$ semisimple: ${\mathscr C}$ is the unique diagonal ${\mathcal H}\text{-cell}.$

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the *diagonal* \mathcal{H} -*cell* $\mathcal{H} = \mathcal{H}(\mathcal{L})$ as

 $\mathcal{H}:=\mathcal{L}\cap\mathcal{L}^{\star}.$

Examples:

- $\bullet \ {\mathscr C}$ semisimple: ${\mathscr C}$ is the unique diagonal ${\mathcal H}\text{-cell}.$
- \mathscr{C}_A : $\{A\}$, $\{Ae_i \otimes e_iA\}$ for $i = 1, \ldots, n$.

Definition

For every left cell $\mathcal{L} \subseteq \mathcal{J}$, define the *diagonal* \mathcal{H} -*cell* $\mathcal{H} = \mathcal{H}(\mathcal{L})$ as

 $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^{\star}.$

Examples:

- $\bullet \ {\mathscr C}$ semisimple: ${\mathscr C}$ is the unique diagonal ${\mathcal H}\text{-cell}.$
- \mathscr{C}_A : $\{A\}$, $\{Ae_i \otimes e_iA\}$ for $i = 1, \ldots, n$.
- $\mathcal{S}(D_{2n})$: {B_e}, {B_s, B_{sts}, ...}, {B_t, B_{tst}, ...}, {B_{w0}}.

Strong \mathcal{H} -reduction

Fix a two-sided cell $\mathcal J$ of $\mathscr C$.

For any diagonal *H*-cell *H* ⊆ *J*, there is an *H*-simple monoidal subquotient category of *C*, denoted *C_H*, whose only cells are {*I*} and *H*.

Strong \mathcal{H} -reduction

Fix a two-sided cell $\mathcal J$ of $\mathscr C$.

For any diagonal *H*-cell *H* ⊆ *J*, there is an *H*-simple monoidal subquotient category of *C*, denoted *C_H*, whose only cells are {*I*} and *H*.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

For any diagonal \mathcal{H} -cell in $\mathcal{H} \subseteq \mathcal{J}$, there is a biequivalence

 $\mathscr{C}\text{-afmod}_{\mathcal{J}}^{\operatorname{ex}} \simeq \mathscr{C}_{\mathcal{H}}\text{-afmod}_{\mathcal{H}}^{\operatorname{ex}},$

which preserves Jordan-Hölder constituents and restricts to a biequivalence

 $\mathscr{C}\operatorname{-stmod}_{\mathcal{J}}\simeq \mathscr{C}_{\mathcal{H}}\operatorname{-stmod}_{\mathcal{H}}.$

Note: We can pick any $\mathcal{H} \subseteq \mathcal{J}$!

Double centralizer theorem

Fix a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$ -stmod $_{\mathcal{H}}$.

• Denote by $\mathscr{E}nd_{\mathscr{C}_{\mathcal{H}}}(M)$ the endomorphism category of M in $\mathscr{C}_{\mathcal{H}}$ -stmod_{\mathcal{H}}.

Fix a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$ -stmod $_{\mathcal{H}}$.

- Denote by $\mathscr{E}nd_{\mathscr{C}_{\mathcal{H}}}(M)$ the endomorphism category of M in $\mathscr{C}_{\mathcal{H}}$ -stmod_{\mathcal{H}}.
- The 2-actions of $\mathscr{C}_{\mathcal{H}}$ and $\mathscr{E}_{nd}_{\mathscr{C}_{\mathcal{H}}}(M)$ on M commute.

Fix a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$ and let $\mathbf{M} \in \mathscr{C}_{\mathcal{H}}$ -stmod $_{\mathcal{H}}$.

- Denote by $\mathscr{E}nd_{\mathscr{C}_{\mathcal{H}}}(M)$ the endomorphism category of M in $\mathscr{C}_{\mathcal{H}}$ -stmod_{\mathcal{H}}.
- The 2-actions of $\mathscr{C}_{\mathcal{H}}$ and $\mathscr{E}_{nd}_{\mathscr{C}_{\mathcal{H}}}(M)$ on M commute.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

The canonical monoidal functor

$$\operatorname{can}: \mathscr{C}_{\mathcal{H}} \to \mathscr{E}\mathrm{nd}^{\operatorname{ex}}_{\mathscr{E}\mathrm{nd}_{\mathscr{C}_{\mathcal{H}}}(M)}(M).$$

is fully faithful on 2-morphism and essentially surjective on 1-morphisms when restricted to $\operatorname{add}(\mathcal{H})$ and corestricted to $\operatorname{end}_{\operatorname{end}_{\mathscr{C}_{\mathcal{H}}}(M)}^{\operatorname{proj}}(M)$.

Observations

• The above double centralizer theorem was inspired by the analog for faithful exact module categories of tensor categories, due to Ostrik and Etingof-Ostrik.

Observations

- The above double centralizer theorem was inspired by the analog for faithful exact module categories of tensor categories, due to Ostrik and Etingof-Ostrik.
- The following conjecture is also inspired by a result of Ostrik and Etingof-Ostrik:

Conjecture

There is a biequivalence

$$\mathscr{C}_{\mathcal{H}}\operatorname{-afmod}_{\mathcal{H}}^{\operatorname{ex}} \simeq \mathscr{E}\operatorname{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathsf{M})\operatorname{-afmod}^{\operatorname{ex}},$$

which preserves Jordan-Hölder constituents and restricts to a biequivalence

$$\mathscr{C}_{\mathcal{H}}$$
-stmod _{\mathcal{H}} $\simeq \mathscr{E}$ nd _{$\mathscr{C}_{\mathcal{H}}$} (**M**)-stmod.

Let $\mathscr{S} = \mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of \mathscr{S} up to equivalence.

Let $\mathscr{S} = \mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of ${\mathscr S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathscr C}$ is semisimple, then

 $\# \{ s.t. \text{ 2-representations of } \mathscr{C} \} / \simeq < \infty.$

Let $\mathscr{S} = \mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of ${\mathscr S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathscr C}$ is semisimple, then

 $\# \{ s.t. \text{ 2-representations of } \mathscr{C} \} / \simeq < \infty.$

• This is not true in general, e.g. $\mathscr{C} := T_n - \text{mod}$, where T_n is the Taft Hopf algebra.

A B M A B M

Let $\mathscr{S} = \mathscr{S}(W, S)$ be the monoidal category of Soergel bimodules for a finite Coxeter type (W, S).

Classification Problem

Classify all graded simple transitive 2-representations of ${\mathscr S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathscr C}$ is semisimple, then

 $\# \{ s.t. \text{ 2-representations of } \mathscr{C} \} / \simeq < \infty.$

- This is not true in general, e.g. $\mathscr{C} := T_n \text{mod}$, where T_n is the Taft Hopf algebra.
- S is not semisimple...

• Recall that we can address the classification problem per apex.

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
 - Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_n, for all n ≥ 1) [Mazorchuk-Miemietz].

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
 - Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_n, for all n ≥ 1) [Mazorchuk-Miemietz].
 - Coxeter type B_n and arbitrary apex, for n ≤ 4 [Zimmermann, M-Mazorchuk-Miemietz-Zhang].

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
 - Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_n, for all n ≥ 1) [Mazorchuk-Miemietz].
 - Coxeter type B_n and arbitrary apex, for n ≤ 4 [Zimmermann, M-Mazorchuk-Miemietz-Zhang].
 - Arbitrary finite Coxeter type of rank > 2 and subregular apex [Kildetoft-M-Mazorchuk-Zimmermann].

- Recall that we can address the classification problem per apex.
- Prior to our recent results, a complete classification was only known in the following cases:
 - Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_n, for all n ≥ 1) [Mazorchuk-Miemietz].
 - Coxeter type B_n and arbitrary apex, for n ≤ 4 [Zimmermann, M-Mazorchuk-Miemietz-Zhang].
 - Arbitrary finite Coxeter type of rank > 2 and subregular apex [Kildetoft-M-Mazorchuk-Zimmermann].
 - Coxeter type $l_2(n)$ and arbitrary apex, for all $n \ge 2$ [Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

 $\mathscr{S}_{\mathcal{H}}$ -gstmod_{\mathcal{H}} $\simeq \mathscr{E}$ nd_{$\mathscr{S}_{\mathcal{H}}$}($C_{\mathcal{H}}$)-gstmod.

★ ∃ ► < ∃ ►</p>

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

 $\mathscr{S}_{\mathcal{H}}$ -gstmod_{\mathcal{H}} $\simeq \mathscr{E}$ nd_{$\mathscr{S}_{\mathcal{H}}$}($C_{\mathcal{H}}$)-gstmod.

This theorem is extremely helpful, because *End*⁽⁰⁾_{𝒴_H}(C_𝒫) is the trivial ℤ-cover of a fusion category 𝒴_𝒤. In particular,

 $\# \{ g.s.t. \text{ 2-representations of } \mathscr{S} \} / \simeq < \infty.$

Application of the double centralizer theorem

Fix a two-sided cell \mathcal{J} and choose a diagonal \mathcal{H} -cell $\mathcal{H} \subseteq \mathcal{J}$. In this case, the double centralizer theorem implies:

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

 $\mathscr{S}_{\mathcal{H}}$ -gstmod_{\mathcal{H}} $\simeq \mathscr{E}$ nd_{$\mathscr{S}_{\mathcal{H}}$}($C_{\mathcal{H}}$)-gstmod.

This theorem is extremely helpful, because *End*⁽⁰⁾_{𝒴_H}(C_𝒫) is the trivial ℤ-cover of a fusion category 𝒴_𝒤. In particular,

 $\# \{ g.s.t. 2 \text{-representations of } \mathscr{S} \} / \simeq < \infty.$

 In almost all cases, H can be chosen such that A_H is well-known and its simple transitive 2-representations have been classified.

Lusztig's a-function

Fact:
$$h_{x,y,z}$$
 is symmetric in v and v⁻¹.

Proposition (Lusztig)

Let \mathcal{H} be a diagonal \mathcal{H} -cell. There exists $\mathbf{a} \in \mathbb{Z}_{\geq 0}$ such that for all $x, y, z \in \mathcal{H}$:

$$h_{x,y,z} = \gamma_{x,y,z^{-1}} \mathbf{v}^{\mathbf{a}} + \dots + \gamma_{x,y,z^{-1}} \mathbf{v}^{-\mathbf{a}}.$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^2 = e$ in W and

$$\gamma_{d,x,y^{-1}} = \gamma_{x,d,y^{-1}} = \gamma_{x,y^{-1},d} = \delta_{x,y}$$

for all $x, y \in \mathcal{H}$.

Lusztig's a-function

Fact:
$$h_{x,y,z}$$
 is symmetric in v and v⁻¹.

Proposition (Lusztig)

Let \mathcal{H} be a diagonal \mathcal{H} -cell. There exists $\mathbf{a} \in \mathbb{Z}_{\geq 0}$ such that for all $x, y, z \in \mathcal{H}$:

$$h_{x,y,z} = \gamma_{x,y,z^{-1}} \mathbf{v}^{\mathbf{a}} + \dots + \gamma_{x,y,z^{-1}} \mathbf{v}^{-\mathbf{a}}.$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^2 = e$ in W and

$$\gamma_{d,x,y^{-1}} = \gamma_{x,d,y^{-1}} = \gamma_{x,y^{-1},d} = \delta_{x,y}$$

for all $x, y \in \mathcal{H}$.

Asymptotic limit:

$$\gamma_{x,y,z^{-1}} = \lim_{\mathbf{v}\to +\infty} \mathbf{v}^{-\mathbf{a}} h_{x,y,z} \in \mathbb{Z}_{\geq 0}.$$

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

Soergel's hom-formula

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

< ∃ >

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

This implies that $\mathscr{S}_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x,y,z}$, the part

$$\mathcal{X}_{\leq -\mathbf{a}} := \mathrm{add}ig(\{\mathrm{B}_{w}\langle k
angle \mid w \in \mathcal{H}, k \leq -\mathbf{a}\}ig)$$

is lax monoidal: It is strictly associative with lax identity object $B_{\pmb{d}}\langle -\pmb{a}\rangle.$

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

This implies that $\mathscr{S}_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x,y,z}$, the part

$$\mathcal{X}_{\leq -\mathbf{a}} := \mathrm{add} (\{ \mathrm{B}_{w} \langle k \rangle \mid w \in \mathcal{H}, k \leq -\mathbf{a} \})$$

is lax monoidal: It is strictly associative with lax identity object $B_d\langle -\mathbf{a} \rangle$. Define the *asymptotic Soergel category*:

$$\mathcal{A}_{\mathcal{H}} := \mathcal{X}_{\leq -\mathbf{a}}/(\mathcal{X}_{<-\mathbf{a}}).$$

Theorem (Lusztig, Elias-Williamson)

 $\mathscr{A}_{\mathcal{H}} = (\mathscr{A}_{\mathcal{H}}, \star, I, \vee)$ is a fusion category:

- for every $x \in \mathcal{H}$, the object $A_x := [B_x \langle -a \rangle]$ is simple;
- {A_x | x ∈ H} is a complete set of pairwise non-isomorphic simple objects;
- for any $x, y \in \mathcal{H}$, we have

$$\mathbf{A}_{x} \star \mathbf{A}_{y} \cong \bigoplus_{z \in \mathcal{H}} \mathbf{A}_{z}^{\oplus \gamma_{x,y,z^{-1}}};$$

• $I := A_d$; • for every $x \in \mathcal{H}$, we have $A_x^{\vee} \cong A_{x^{-1}}$.

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In almost all cases, \mathcal{H} can be chosen such that $\mathscr{A}_{\mathcal{H}}$ is biequivalent to one of the following fusion categories:

• Vect_G or $\mathbb{C}[G]$ -fmod, with $G = (\mathbb{Z}/2\mathbb{Z})^k, S_3, S_4, S_5;$

•
$$U_q(\mathfrak{so}_3)$$
-fmod_{ss} for $q = e^{\frac{\pi i}{n}}$ for some $n \in \mathbb{Z}_{\geq 2}$.

• The simple transitive 2-representations of these fusion categories have been completely classified by Kirillov-Ostrik and Ostrik.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

$$\mathscr{E}\mathrm{nd}^{(0)}_{\mathscr{S}_{\mathcal{H}}}(\mathsf{C}_{\mathcal{H}})\simeq igoplus_{t\in\mathbb{Z}}\mathscr{A}_{\mathcal{H}}\langle t
angle.$$

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

There is a biequivalence

$$\mathscr{E}\mathrm{nd}^{(0)}_{\mathscr{S}_{\mathcal{H}}}(\mathsf{C}_{\mathcal{H}})\simeq igoplus_{t\in\mathbb{Z}}\mathscr{A}_{\mathcal{H}}\langle t
angle.$$

Corollary

There is a biequivalence

$$\mathscr{S}_{\mathcal{H}}^{(0)}$$
-stmod/ $\mathbb{Z} \simeq \mathscr{A}_{\mathcal{H}}$ -stmod.

In particular, there is a bijection

$$\{g.s.t. \text{ 2-reps of } \mathscr{S}_{\mathcal{H}}\} / \simeq \stackrel{1:1}{\longleftrightarrow} \{s.t. \text{ 2-reps of } \mathscr{A}_{\mathcal{H}}\} / \simeq .$$

THANKS!!!

æ

Marco Mackaay j/w Mazorchuk, Miemietz, Tubbenhauer, Zhang The double centralizer theorem