A stochastic variational approach to viscous Burgers equations

Guoping Liu

Chinese Academy of Sciences and Grupo de Física-Matemática

Joint work with: Ana Bela Cruzeiro Instituto Superior Técnico and Grupo de Física-Matemática

Lismath Seminar

April 1, 2016

・ロ 、 ・ (型 、 * 注 、 注 、 注 、 つ へ で 1/26

Contents

- Stochastic variational principle for the viscous Burgers equation
- 3 Existence of a critical diffusion

Martingale

- Fix a probability space (Ω, F, P) and an increasing σ-algebra (F_t)_{t≥0} (F_s ⊂ F_t, ∀s < t)
- A stochastic process X : Ω × ℝ⁺ → ℝ is adapted if X(t) is *F*_t-measurable for every t.
- A (real valued) adapted process *M*(*t*) is a martingale if
 (i) *E*|*M*(*t*)| < ∞ for all *t*(ii) *E*(*M*(*t*)|*F_s*) = *M*(*s*) a.s. for all 0 ≤ *s* < *t* where *E* denotes expectation and *E*(·|*F_s*) conditional expectation with respect to *F_s*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

3/26

• For martingales M, N, we define covariation $[M, N]_t = \lim_n \sum (M(t_{i+1}) - M(t_i))(N(t_{i+1}) - N(t_i)).$ • A real-valued process X(t) is a semi-martingale if it is of the form

$$X(t) = X(0) + M(t) + A(t)$$

where *M* is a martingale and *A* an adapted process of bounded variation with A(0) = 0.

Itô stochastic integral

$$\int_0^t X(s)dY(s) = \lim_n \sum X(t_i)[Y(t_{i+1}) - Y(t_i)]$$

covariation of semi-martingale=covariation of their martingale part

Theorem (Itô's formula)

If X is a continuous semi-martingale and $f \in C^2(\mathbb{R})$, then f(X) is a continuous semi-martingale satisfying

$$f(X(t)) = f(X(0)) + \int_0^t f'(X(s)) dX(s) + \frac{1}{2} \int_0^t f''(X(s)) d[X, X]_s$$

Remark

Brownian motion W(t) is a continuous martingale such that $[W, W]_t = t$.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへの 5/26

Mean derivatives

Definition

If ξ is a semi-martingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, we define D_t as follows

$$D_t F(\xi_t) = \lim_{\epsilon \to 0} rac{1}{\epsilon} [E_t F(\xi(t+\epsilon)) - F(\xi(t))], orall F \in C^\infty(\mathbb{R}^d)$$

where E_t denotes conditional expectation with respect to \mathcal{F}_t .

Example

For the diffusion process

$$g_{t}^{u} = g_{0}^{u} + \sqrt{2\nu} \int_{0}^{t} dW_{s} + \int_{0}^{t} u(s, g_{s}^{u}) ds, \qquad (1)$$

by Itô's formula, we obtain $f(g_t^u, t) = f(g_0^u, 0) + \int_0^t (\partial_t + u \cdot \nabla + \nu \Delta) f(g_s^u, s) ds + \sqrt{2\nu} \int_0^t \nabla f(g_s^u, s) dW_s.$ Since EM(t) = EM(s) for the martingale M, we have $Df(g_t^u, t) = (\partial_t + u \cdot \nabla + \nu \Delta) f(g_t^u, t).$

Theorem (N.V.Krylov, M.Rockner (2005), X.Zhang (2011))

Assume

$$\int_0^T (\int_{\mathbb{R}} |b(t,x)|^p dx)^{\frac{q}{p}} dx dt < +\infty, \forall T > 0$$

with $p, q \in (1, \infty)$, $\frac{1}{p} + \frac{2}{q} < 1$. Then there exists a unique strong solution $X_t(x)$ to SDE

 $dX_t = b_t(X_t)dt + dW_t.$

Moreover, for almost all ω and all $t \ge 0$,

 $x \mapsto X_t(\omega, x)$ is a homeomorphism on \mathbb{R} .

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

Corollary (1)

Let u belong to the space $L^q([0, T]; L^q(\mathbb{R}))$. When q > 3, there exists a stochastic process $g_u(t, x)$, strong solution of the stochastic differential equation

$$\begin{cases} dg^{u}(t,x) = u(t,g^{u}(t,x))dt + \sqrt{2\nu}dW_{t} \\ g^{u}(0,x) = x, x \in \mathbb{R} \end{cases}$$

$$(2)$$

/26

that defines a homeomorphism on \mathbb{R} .

Proof.

When $u \in L^q([0, T]; L^q(\mathbb{R}))$ (i.e. $\int_0^T \int_{\mathbb{R}} |u(t, x)|^q dx dt < +\infty$) and q > 3, the drift satisfies the condition

$$\int_0^T (\int_{\mathbb{R}} |u(t,x)|^p dx)^{\frac{p'}{p}} dx dt < +\infty$$

with $p,p'\in(1,\infty), \ \ \frac{1}{\rho}+\frac{2}{\rho'}<1$ (for $\rho=\rho'=q).$

- *S* denotes the set of continuous semi-martingales taking values in the homeomorphism group of ℝ.
- S₀ denotes the subset of S consisting of diffusions g^u such that

$$dg_t^u = \sqrt{2\nu} dW_t + u(t, g_t^u) dt, \quad g_0^u = e$$

with $u \in L^q([0, T] \times \mathbb{R})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Critical semi-martingales

To a vector field $v \in C^1([0, T] \times C^{\infty}_{c}(\mathbb{R}))$ with $v(0, \cdot) = v(T, \cdot) = 0$, we associate e_t^v the solution of the ordinary differential equation

$$\frac{d}{dt}e_t^{\nu}(x) = \dot{\nu}(t, e_t^{\nu}(x)), \qquad e_0^{\nu}(x) = x$$

Definition

Let *J* be a real-valued functional defined on *S*. Consider left and right derivatives of *J* at a semi-martingale $\xi \in S$ along directions e_{\cdot}^{v} , $v \in C^{1}([0, T] \times C_{c}^{\infty}(\mathbb{R}))$ with $v(0, \cdot) = 0$, namely

$$(D_l)_{e_i^{\vee}} J[\xi] = \frac{d}{d\epsilon}|_{\epsilon=0} J[e_i^{\epsilon_{\vee}} \circ \xi(\cdot)]$$
$$(D_r)_{e_i^{\vee}} J[\xi] = \frac{d}{d\epsilon}|_{\epsilon=0} J[\xi(\cdot) \circ e_i^{\epsilon_{\vee}}]$$

A semi-martingale ξ is said to be critical for J if

$$(D_l)_{e_{\cdot}^{V}}J[\xi] = (D_r)_{e_{\cdot}^{V}}J[\xi] = 0$$

10/26

for all v as above.

Action functional

• For $g \in S$, we define the action functional as follows:

$$egin{aligned} \mathcal{A}_q[g] & \triangleq & rac{1}{q} E \int_0^T ||(D_t g(t)) \circ (g(t))^{-1}(\cdot)||_{L^q}^q dt. \end{aligned}$$

• If $g^u \in S_0$, its drift is of the form $D_t g^u_t = u(t, g^u_t)$. For such a process the action functional becomes

$$\begin{aligned} A_{q}[g^{u}] &= \frac{1}{q} E \int_{0}^{T} ||(D_{t}g_{t}^{u}) \circ (g_{t}^{u})^{-1}(\cdot)||_{L^{q}}^{q} dt \\ &= \frac{1}{q} \int_{0}^{T} ||u(t, \cdot)||_{L^{q}}^{q} dt. \end{aligned}$$

Stochastic variational principle for the viscous Burgers equation

Assume that $3 < q < \infty$ is even.

Theorem

Let g^u be solution of a stochastic differential equation of the form (1). Then g^u is critical for the action functional A_q if and only if the vector field u(t) satisfies in the weak sense the following equation

$$\partial_t(u^{q-1}) = -\frac{q+1}{q}(u^q)' + \nu(u^{q-1})''.$$
(3)

Remark

Let $v = u^{q-1}$, we have $u^q = v^{\frac{q}{q-1}}$. Then equation (3) becomes

$$\partial_t \mathbf{v} = -\frac{q+1}{q} (\mathbf{v}^{\frac{q}{q-1}})' + \nu \mathbf{v}'', \tag{4}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

12/26

which is the viscous Burgers equation.

Proof

As the metric is right-invariant we only need to consider left derivatives. Let $\varepsilon > 0$. Since $e_0^{\nu}(x) = x$, we have

$$oldsymbol{e}_t^{arepsilon oldsymbol{v}} = oldsymbol{e} + arepsilon \int_0^t \dot{oldsymbol{v}}(oldsymbol{s},oldsymbol{e}_s^{arepsilon oldsymbol{v}}) doldsymbol{s}$$

and

$$\frac{d}{d\varepsilon}|_{\varepsilon=0}\boldsymbol{e}_t^{\varepsilon v} = \int_0^t \dot{\boldsymbol{v}}(\boldsymbol{s},\boldsymbol{x})d\boldsymbol{s} = \boldsymbol{v}(t,\boldsymbol{x}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

13/26

We denote $e_{\varepsilon}(t, x) = e_t^{\varepsilon v}(x)$. Since *q* is even, we deduce that

$$\begin{split} & \frac{d}{d\varepsilon}|_{\varepsilon=0}A_{q}[e_{\varepsilon}\circ g^{u}] \\ = & \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{1}{q}E\int_{0}^{T}\|D[e_{\varepsilon}(t,g_{t})]\circ(e_{\varepsilon}(g_{t}))^{-1}(\cdot)||_{L^{q}}^{q}dt \\ = & E\int_{0}^{T}\int\frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{1}{q}|D[e_{\varepsilon}(t,g_{t})]\circ(e_{\varepsilon}(g_{t}))^{-1}(x)|^{q}dxdt \\ = & E\int\int|u(t,x)|^{q-2} < \frac{d}{d\varepsilon}|_{\varepsilon=0}\{D[e_{\varepsilon}(t,g_{t})]\circ(e_{\varepsilon}(g_{t}))^{-1}\}, u(t,x) > dtdx \\ = & E\int\int|u(t,x)|^{q-2} < \partial_{t}v + [uv'-u'v] + \nu v'', u(t,x) > dtdx \\ = & -\int\int\partial_{t}(|u|^{q-2}u)vdtdx + \nu\int\int(|u|^{q-2}u)''vdtdx \\ & -\int\int\frac{q+1}{q}(|u|^{q})'vdtdx, \end{split}$$

Since v is arbitrary satisfying $v(0, \cdot) = v(T, \cdot) = 0$,

$$rac{d}{darepsilon}|_{arepsilon=0} A_q[e_arepsilon\circ g^u]=0$$

is equivalent to

$$\partial_t(u^{q-1}) = -\frac{q+1}{q}(u^q)' + \nu(u^{q-1})''$$

15/26

weakly.

If the admissible variations g_t^{ε} satisfy the following equation

$$dg_t^{\varepsilon} = \sqrt{2\nu} dW_t + [\partial_t e_t^{\varepsilon \nu} + u \cdot (e_t^{\varepsilon \nu})' + \nu (e_t^{\varepsilon \nu})''] (g_t^{\varepsilon}) dt,$$
(5)

we consider the notion of criticality with respect to this new class of admissible variations. Then the following result holds

Theorem

Let g_t be solution of a stochastic differential equation of the form (1). Then g_t is critical for the action functional A_q if and only if the vector field u(t) satisfies in the weak sense the following equation

$$\partial_t(u^{q-1}) = -(u^q)' + \nu(u^{q-1})''.$$
(6)

As the admissible variations considered in the second variational principle preserve the class S_0 , we obtain the following result,

Theorem

There exists a semi-martingale g(t) in the class \tilde{S}_0 which realizes the minimum of the action functional A_q . Then the corresponding drift function $u(t, \cdot)$ is such that $v = u^{q-1}$ satisfies the viscous Burgers equation

$$\partial_t \mathbf{v} = -(\mathbf{v}^{\frac{q}{q-1}})' + \nu \mathbf{v}'' \tag{7}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

17/26

in the weak sense.

Proof

The action functional is bounded below. Let α be its infimum in the (non empty set) \tilde{S}_0 . We consider $g^m(t)$ a minimizing sequence and write $g^m(t) = g^{u_m}(t)$, with $u_m \in L^q([0, T]; L^q(\mathbb{R}))$. We have the convergence $A_q[g^m(\cdot)] \to \alpha$ as $m \to \infty$. The sequence

$$A_{q}[g^{m}(\cdot)] = \frac{1}{q} \|u_{m}\|_{L^{q}([0,T];L^{q}(\mathbb{R}))}^{q}$$

is bounded, therefore there exists a subsequence u_{m_j} of u_m that converges with respect to the weak topology, more precisely there exists u such that

$$u_{m_i} \rightarrow u$$
, weakly in $L^q([0, T]; L^q)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

The limit function u satisfies the assumptions of Corollary 1. We can therefore define a diffusion process g^u in S_0 as solution of the equation (1). Since the norm is weakly lower semi-continuous, we have

$$egin{aligned} & A_q[g^u(\cdot)] \leq \lim_{j o \infty} A_q[g^{m_j}(\cdot)]. \end{aligned}$$

We deduce that $A_q[g^u(\cdot)] = \alpha$ and g^u is a minimum. On the other hand, since u_{m_j} converges weakly to u, we will have $\int_0^T \int u(t, x)\psi(t, x)dtdx \ge c$ which allows to consider nontrivial limit functions. The time-dependent vector field $u(t, \cdot)$ satisfies equation (6). • We make a change of variables for (4) and (7). Let $\tilde{v}(t,\theta) = -v(T - t,\theta)$, we obtain the following equation:

$$\partial_t \tilde{\mathbf{V}} = -\mathbf{C} \tilde{\mathbf{V}}^{\frac{1}{q-1}} \tilde{\mathbf{V}}' - \nu \tilde{\mathbf{V}}''.$$

• Let $Y_t = \tilde{v}(t, \sqrt{2\nu}W_t), Z_t = \tilde{v}'(t, \sqrt{2\nu}W_t)$. By Itô's formula we have,

$$dY_t = \sqrt{2\nu}Z_t dW_t - cY_t^{\frac{1}{q-1}}Z_t dt$$

$$Y_T = u_0^{q-1}(\sqrt{2\nu}W_T)$$

Maximal bounded solution

- If X|_{[0,t]×Ω} : [0, t] × Ω → ℝ satisfies X ∈ B([0, t]) × F_t, we say X is a progressively measurable process.
- *H*^T_T(ℝ) denotes the set of one-dimensional progressively measurable
 processes which are almost surely bounded for almost every *t*.
- $\mathcal{H}^2_T(\mathbb{R})$ denotes the set of progressively measurable processes $(Z_t)_{0 \le t \le T}$ such that $E \int_0^T |Z_s|^2 ds < \infty$.
- We shall say that $(Y, Z) \in \mathcal{H}^{\infty}_{T}(\mathbb{R}) \times \mathcal{H}^{2}_{T}(\mathbb{R})$, or simply $Y \in \mathcal{H}^{\infty}_{T}(\mathbb{R})$, is a maximal bounded solution of

$$Y_t = \xi + \int_t^T f(t, \omega, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
(8)

 $\text{ if for all other solution } (\hat{Y},\hat{Z}) \in \mathcal{H}^\infty_T(\mathbb{R}) \times \mathcal{H}^2_T(\mathbb{R}) \text{ we have } \hat{Y} \leq Y.$

Theorem (J.P.Lepeltier,J.San Martin,1997) Assume $\xi \in L^{\infty}(\Omega, \mathcal{F}_T, P)$, $f \in \mathcal{P} \otimes \mathcal{B}(\mathbb{R}^2)$ satisfies: $\forall t, \omega, f(t, \omega, \cdot, \cdot)$ is continuous $\forall t, \omega, y, z, |f(t, \omega, y, z)| \leq l(y) + c|z|^2$ for some finite constant cIf $l : \mathbb{R} \to \mathbb{R}_+$ is a positive function such that

$$\int_{-\infty}^0 \frac{1}{l(y)} dy = \int_0^{+\infty} \frac{1}{l(y)} dy = \infty,$$

then the backward stochastic differential equation

$$Y_t = \xi + \int_t^T f(t, \omega, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$

22/26

has a maximal bounded solution (Y, Z).

Corollary (2)

There exists a maximal bounded solution (Y, Z) to the following backward stochastic differential equation

$$Y_t = \xi + c \int_t^T Y_s^{\frac{1}{q-1}} Z_s ds - \sqrt{2\nu} \int_t^T Z_s dW_s$$
(9)

with final value $\xi \in L^{\infty}(\Omega, \mathcal{F}_T, P)$.

Proof.

Let $f(y, z) = cy^{\frac{1}{q-1}}z$. Then $|f(y, z)| \le C(y^{\frac{2}{q-1}} + z^2)$. We denote $l(y) = y^{\frac{2}{q-1}}$. Then l(y) satisfies the conditions

$$\int_{-\infty}^0 \frac{1}{l(y)} dy = \int_0^{+\infty} \frac{1}{l(y)} dy = \infty.$$

References

- Arnaudon, M., Chen, X., Cruzeiro, A.B.: Stochastic Euler-Poincaré reduction. J. Math. Physics., 55, 081507 (2014)
- Cipriano, F., Cruzeiro, A.B.: Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus. *Comm. Math. Phys.*, 275, no.1, 255–269(2007)
 - Cruzeiro, A.B., Liu, G.P.: A stochastic variational approach to the viscous Camassa-Holm and related equations. arxiv:1508.04064.
- Cruzeiro, A.B., Shamarova, E.: Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of the torus. *Stoch. Proc. and their Applic.*, **119**, 4034–4060(2009)

- Cruzeiro, A.B., Qian, Z.M.: Backward Stochastic Differential Equations Associated with the Vorticity Equations. J. Funct. Anal., 267, no.3, 660–677(2014)
 - Krylov, N.V., Rockner, M.: Strong solutions of stochastic equations with singular time dependent drift. *Prob. Th. Related Fields*, **131**, no.2, 154–196(2005)
- Lepeltier, J.P., San Martin, J.: Existence for BSDE with superlinear-quadratic coefficient. *Stochastic and Stochastic Reports*, 63, 227–240(1998)

Zhang, X.C.: Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. *EJP*, **16**, no.38, 1096–1116(2011)

Thank you for your attention!

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで