
A stochastic variational approach to viscous Burgers
equations

Guoping Liu

Chinese Academy of Sciences and

Grupo de Física-Matemática

Joint work with: Ana Bela Cruzeiro

Instituto Superior Técnico and

Grupo de Física-Matemática

Lismath Seminar

April 1, 2016 1 / 26



Contents

1 Preliminaries

2 Stochastic variational principle for the viscous Burgers equation

3 Existence of a critical diffusion

4 Backward stochastic differential equation for the viscous Burgers equation

2 / 26



Martingale

Fix a probability space (Ω,F ,P) and an increasing σ-algebra (Ft )t≥0

(Fs ⊂ Ft ,∀s < t)

A stochastic process X : Ω× R+ → R is adapted if X (t) is
Ft -measurable for every t .

A (real valued) adapted process M(t) is a martingale if
(i) E |M(t)| <∞ for all t
(ii) E(M(t)|Fs) = M(s) a.s. for all 0 ≤ s < t
where E denotes expectation and E(·|Fs) conditional expectation with
respect to Fs.

For martingales M,N, we define covariation
[M,N]t = limn

∑
(M(ti+1)−M(ti ))(N(ti+1)− N(ti )).
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Semi-martingale

A real-valued process X (t) is a semi-martingale if it is of the form

X (t) = X (0) + M(t) + A(t)

where M is a martingale and A an adapted process of bounded variation
with A(0) = 0.

Itô stochastic integral∫ t

0
X (s)dY (s) = lim

n

∑
X (ti )[Y (ti+1)− Y (ti )]

covariation of semi-martingale=covariation of their martingale part
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Itô’s formula for continuous semi-martingale

Theorem (Itô’s formula)

If X is a continuous semi-martingale and f ∈ C2(R), then f (X ) is a
continuous semi-martingale satisfying

f (X (t)) = f (X (0)) +

∫ t

0
f ′(X (s))dX (s) +

1
2

∫ t

0
f ′′(X (s))d [X ,X ]s

Remark
Brownian motion W (t) is a continuous martingale such that [W ,W ]t = t .
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Mean derivatives

Definition
If ξ is a semi-martingale on (Ω,F , (Ft ),P), we define Dt as follows

DtF (ξt ) = lim
ε→0

1
ε

[EtF (ξ(t + ε))− F (ξ(t))], ∀F ∈ C∞(Rd )

where Et denotes conditional expectation with respect to Ft .

Example
For the diffusion process

gu
t = gu

0 +
√

2ν
∫ t

0
dWs +

∫ t

0
u(s, gu

s )ds, (1)

by Itô’s formula, we obtain
f (gu

t , t) = f (gu
0 , 0) +

∫ t
0 (∂t + u · ∇+ ν∆)f (gu

s , s)ds +
√

2ν
∫ t

0 ∇f (gu
s , s)dWs.

Since EM(t) = EM(s) for the martingale M, we have
Df (gu

t , t) = (∂t + u · ∇+ ν∆)f (gu
t , t).

6 / 26



Strong solutions of SDE with singular time dependent drift

Theorem (N.V.Krylov,M.Rockner(2005),X.Zhang(2011))
Assume ∫ T

0
(

∫
R
|b(t , x)|pdx)

q
p dxdt < +∞, ∀T > 0

with p, q ∈ (1,∞), 1
p + 2

q < 1. Then there exists a unique strong solution
Xt (x) to SDE

dXt = bt (Xt )dt + dWt .

Moreover, for almost all ω and all t ≥ 0,

x 7→ Xt (ω, x) is a homeomorphism on R.
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Existence of solutions for SDE with drift coefficient in Lq space

Corollary (1)

Let u belong to the space Lq([0,T ]; Lq(R)). When q > 3, there exists a
stochastic process gu(t , x), strong solution of the stochastic differential
equation {

dgu(t , x) = u(t , gu(t , x))dt +
√

2νdWt

gu(0, x) = x , x ∈ R
(2)

that defines a homeomorphism on R.

Proof.

When u ∈ Lq([0,T ]; Lq(R)) ( i.e.
∫ T

0

∫
R |u(t , x)|qdxdt < +∞) and q > 3, the

drift satisfies the condition∫ T

0
(

∫
R
|u(t , x)|pdx)

p′
p dxdt < +∞

with p, p′ ∈ (1,∞), 1
p + 2

p′ < 1 (for p = p′ = q).

8 / 26



Several important sets

S denotes the set of continuous semi-martingales taking values in the
homeomorphism group of R.

S0 denotes the subset of S consisting of diffusions gu such that

dgu
t =
√

2νdWt + u(t , gu
t )dt , gu

0 = e

with u ∈ Lq([0,T ]× R).

S̃0 denotes the subset of S0 consisting of diffusions whose drift u
satisfies the condition

∫ T
0

∫
R u(t , x)ψ(t , x)dtdx ≥ c, for a fixed constant

c > 0 and a function ψ ∈ Lp([0,T ]× R) with p = q
q−1 .
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Critical semi-martingales

To a vector field v ∈ C1([0,T ]× C∞c (R)) with v(0, ·) = v(T , ·) = 0, we associate ev
t

the solution of the ordinary differential equation

d
dt

ev
t (x) = v̇(t , ev

t (x)), ev
0 (x) = x .

Definition
Let J be a real-valued functional defined on S. Consider left and right derivatives of J
at a semi-martingale ξ ∈ S along directions ev

· , v ∈ C1([0,T ]× C∞c (R)) with
v(0, ·) = 0, namely

(Dl )ev
·
J[ξ] =

d
dε
|ε=0J[eεv· ◦ ξ(·)]

(Dr )ev
·
J[ξ] =

d
dε
|ε=0J[ξ(·) ◦ eεv· ]

A semi-martingale ξ is said to be critical for J if

(Dl )ev
·
J[ξ] = (Dr )ev

·
J[ξ] = 0

for all v as above.
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Action functional

For g ∈ S, we define the action functional as follows:

Aq[g] ,
1
q

E
∫ T

0
||(Dtg(t)) ◦ (g(t))−1(·)||qLq dt .

If gu ∈ S0, its drift is of the form Dtgu
t = u(t , gu

t ). For such a process the
action functional becomes

Aq[gu] =
1
q

E
∫ T

0
||(Dtgu

t ) ◦ (gu
t )−1(·)||qLq dt

=
1
q

∫ T

0
||u(t , ·)||qLq dt .
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Stochastic variational principle for the viscous Burgers equation

Assume that 3 < q <∞ is even.

Theorem
Let gu be solution of a stochastic differential equation of the form (1). Then gu

is critical for the action functional Aq if and only if the vector field u(t) satisfies
in the weak sense the following equation

∂t (uq−1) = −q + 1
q

(uq)′ + ν(uq−1)′′. (3)

Remark

Let v = uq−1, we have uq = v
q

q−1 . Then equation (3) becomes

∂tv = −q + 1
q

(v
q

q−1 )′ + νv ′′, (4)

which is the viscous Burgers equation.
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Proof

As the metric is right-invariant we only need to consider left derivatives.
Let ε > 0. Since ev

0 (x) = x , we have

eεv
t = e + ε

∫ t

0
v̇(s, eεv

s )ds

and

d
dε
|ε=0eεv

t =

∫ t

0
v̇(s, x)ds = v(t , x).

We denote eε(t , x) = eεv
t (x). Since q is even, we deduce that
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d
dε
|ε=0Aq[eε ◦ gu]

=
d
dε
|ε=0

1
q

E
∫ T

0
‖D[eε(t , gt )] ◦ (eε(gt ))−1(·)||qLq dt

= E
∫ T

0

∫
d
dε
|ε=0

1
q
|D[eε(t , gt )] ◦ (eε(gt ))−1(x)|qdxdt

= E
∫ ∫

|u(t , x)|q−2 <
d
dε
|ε=0{D[eε(t , gt )] ◦ (eε(gt ))−1}, u(t , x) > dtdx

= E
∫ ∫

|u(t , x)|q−2 < ∂tv + [uv ′ − u′v ] + νv ′′, u(t , x) > dtdx

= −
∫ ∫

∂t (|u|q−2u)vdtdx + ν

∫ ∫
(|u|q−2u)′′vdtdx

−
∫ ∫

q + 1
q

(|u|q)′vdtdx ,
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Since v is arbitrary satisfying v(0, ·) = v(T , ·) = 0,

d
dε
|ε=0Aq[eε ◦ gu] = 0

is equivalent to

∂t (uq−1) = −q + 1
q

(uq)′ + ν(uq−1)′′

weakly.

15 / 26



A second stochastic variational principle

If the admissible variations gεt satisfy the following equation

dgεt =
√

2νdWt + [∂teεvt + u · (eεvt )′ + ν(eεvt )′′](gεt )dt , (5)

we consider the notion of criticality with respect to this new class of
admissible variations. Then the following result holds

Theorem
Let gt be solution of a stochastic differential equation of the form (1). Then gt

is critical for the action functional Aq if and only if the vector field u(t) satisfies
in the weak sense the following equation

∂t (uq−1) = −(uq)′ + ν(uq−1)′′. (6)
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Existence of a critical diffusion

As the admissible variations considered in the second variational principle
preserve the class S0, we obtain the following result,

Theorem

There exists a semi-martingale g(t) in the class S̃0 which realizes the
minimum of the action functional Aq . Then the corresponding drift function
u(t , ·) is such that v = uq−1 satisfies the viscous Burgers equation

∂tv = −(v
q

q−1 )′ + νv ′′ (7)

in the weak sense.
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Proof

The action functional is bounded below. Let α be its infimum in the (non
empty set) S̃0. We consider gm(t) a minimizing sequence and write
gm(t) = gum (t), with um ∈ Lq([0,T ]; Lq(R)). We have the convergence
Aq[gm(·)]→ α as m→∞. The sequence

Aq[gm(·)] =
1
q
‖um‖q

Lq ([0,T ];Lq (R))

is bounded, therefore there exists a subsequence umj of um that converges
with respect to the weak topology, more precisely there exists u such that

umj → u, weakly in Lq([0,T ]; Lq).
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The limit function u satisfies the assumptions of Corollary 1. We can
therefore define a diffusion process gu in S0 as solution of the equation (1).
Since the norm is weakly lower semi-continuous, we have

Aq[gu(·)] ≤ lim
j→∞

Aq[gmj (·)].

We deduce that Aq[gu(·)] = α and gu is a minimum.
On the other hand, since umj converges weakly to u, we will have∫ T

0

∫
u(t , x)ψ(t , x)dtdx ≥ c which allows to consider nontrivial limit functions.

The time-dependent vector field u(t , ·) satisfies equation (6).
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BSDE for the viscous Burgers equation

We make a change of variables for (4) and (7).
Let ṽ(t , θ) = −v(T − t , θ), we obtain the following equation:

∂t ṽ = −cṽ
1

q−1 ṽ ′ − νṽ ′′.

Let Yt = ṽ(t ,
√

2νWt ), Zt = ṽ ′(t ,
√

2νWt ). By Itô’s formula we have,

dYt =
√

2νZtdWt − cY
1

q−1
t Ztdt

YT = uq−1
0 (
√

2νWT )
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Maximal bounded solution

If X |[0,t]×Ω : [0, t ]× Ω→ R satisfies X ∈ B([0, t ])×Ft , we say X is a
progressively measurable process.

H∞T (R) denotes the set of one-dimensional progressively measurable
processes which are almost surely bounded for almost every t .

H2
T (R) denotes the set of progressively measurable processes (Zt )0≤t≤T

such that E
∫ T

0 |Zs|2ds <∞.

We shall say that (Y ,Z ) ∈ H∞T (R)×H2
T (R), or simply Y ∈ H∞T (R), is a

maximal bounded solution of

Yt = ξ +

∫ T

t
f (t , ω,Ys,Zs)ds −

∫ T

t
ZsdWs (8)

if for all other solution (Ŷ , Ẑ ) ∈ H∞T (R)×H2
T (R) we have Ŷ ≤ Y .
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Existence for BSDE with superlinear-quadratic coefficient

Theorem (J.P.Lepeltier,J.San Martin,1997)

Assume ξ ∈ L∞(Ω,FT ,P), f ∈ P ⊗ B(R2) satisfies:

∀t , ω, f (t , ω, ·, ·) is continuous

∀t , ω, y , z, |f (t , ω, y , z)| ≤ l(y) + c|z|2 for some finite constant c

If l : R→ R+ is a positive function such that∫ 0

−∞

1
l(y)

dy =

∫ +∞

0

1
l(y)

dy =∞,

then the backward stochastic differential equation

Yt = ξ +

∫ T

t
f (t , ω,Ys,Zs)ds −

∫ T

t
ZsdWs

has a maximal bounded solution (Y ,Z ).
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Existence of bounded solutions for the viscous Burgers equation

Corollary (2)
There exists a maximal bounded solution (Y ,Z ) to the following backward
stochastic differential equation

Yt = ξ + c
∫ T

t
Y

1
q−1

s Zsds −
√

2ν
∫ T

t
ZsdWs (9)

with final value ξ ∈ L∞(Ω,FT ,P).

Proof.

Let f (y , z) = cy
1

q−1 z. Then |f (y , z)| ≤ C(y
2

q−1 + z2). We denote
l(y) = y

2
q−1 . Then l(y) satisfies the conditions∫ 0

−∞

1
l(y)

dy =

∫ +∞

0

1
l(y)

dy =∞.
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