Crossed modules, homotopy 2-types, knotted surfaces and welded knots

Topological Quantum Field Theory Club (IST, Lisbon)

30th October 2020

João Faria Martins (University of Leeds)

L	Ε	V	Е	R	Н	U	L	M	E
Т	R	U	S	Т					

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- ► A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- ► A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- ► A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- ▶ JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- ▶ JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- ▶ JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- ► JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- ▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- ▶ JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- ▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- ▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- ▶ JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- ▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- ▶ JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- ▶ JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- ▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- ▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- ▶ R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- ► H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- ▶ R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- ▶ J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- ▶ R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- ► H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- ▶ J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- ▶ R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- ► H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423−491 (2004).

- ▶ R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- ► H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- ▶ J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- ► H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- ▶ J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- ► J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ▶ Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An $\mathit{n ext{-}type}$ is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ▶ Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ► Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ► Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ► Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ► More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

E.g.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that

- X is homeomorphic to a CW-complex, with * being a 0-cell (Frequently omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Given two \emph{n} -types X and Y ,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

E.g

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that

 X is homeomorphic to a CW-complex, with * being a 0-cell (Frequently omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An $extit{n-type}$ is a path-connected pointed space X=(X,st) such that

 X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n-type* is a path-connected pointed space X=(X,st) such that

1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n-type* is a path-connected pointed space X = (X, *) such that

1. X is homeomorphic to a CW-complex, with * being a U-cell (Frequently omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that: 1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenty omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n

Let $\{n$ -types $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -**types** $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n\text{-types}\}\$ be the category with objects the n-types

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Given two *n*-types X and Y, morphisms $X \to Y$ are pointed homotopy classes of pointed maps

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- ▶ Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- ▶ More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Given two n-types X and Y,

1-types and knot complements

Therefore, complements of non-splittable links in S^3 are 1-types

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} o \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y)$
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1\colon \ \{ extsf{1-types}\} o \{ extsf{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1\colon \ \{ extsf{1-types}\} o \{ extsf{groups}\}$$

s an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic
- iff induced maps $f_*, f'_* \colon \pi_1(X) o \pi_1(Y)$ ar

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1\colon \ \{ extsf{1-types}\} o \{ extsf{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic
 - iff induced maps $f_*, f_*' \colon \pi_1(X) o \pi_1(Y)$

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic
 - iff induced maps $f_*, f_*' \colon \pi_1(X) \to \pi_1(Y)$ are equal

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f': \pi_1(X) \to \pi_1(Y)$ are equal

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f, f': \pi_1(X) \to \pi_1(Y)$ are equal

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic

In particular, combining with Papakyriakopoulos theorem, we have **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a

non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$$\pi_1 \colon \{1\text{-types}\} \to \{\text{groups}\}$$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f_*': \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

l.e. we throw away homotopy theoretical information of order ≥ 3

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 .

(Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus \Sigma$ up to homotopy.

Let us look at *the homotopy 2-type* $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

l.e. we throw away homotopy theoretical information of order ≥ 3 .

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma\subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at *the homotopy 2-type* $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

l.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at *the homotopy 2-type* $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4\setminus \Sigma)$ of $S^4\setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

To be explained later

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

.. To be explained later

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let $\Sigma\subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3.

Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Crossed modules

Definition (Crossed module)

A *crossed module* $G = (\partial : E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

- ▶ *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \xrightarrow{1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \mapsto {}^{1}C \rightarrow G, \triangleright)$.
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- A left action ▷ of G on E, by automorphisms
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ► *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \longmapsto 1_G)$.
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms
- ▶ such that the following conditions (*Peiffer equations*) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \longmapsto 1_G)$.
- ▶ $\partial \colon A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".
- ightharpoonup A left action ho of G on E, by automorphisms
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ► *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \xrightarrow{1} G, \triangleright)$.
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \to G, \triangleright)$ is given by:

- ▶ A group map (i.e. a homomorphism) $\partial: E \to G$. (*G* is called the "base-group". *E* is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms.
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{\longrightarrow} G, \triangleright)$
- ▶ $\partial \colon A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \rightarrow G, \triangleright)$ is given by:

- ▶ A group map (i.e. a homomorphism) $\partial \colon E \to G$. (*G* is called the "base-group". *E* is the "principal group".)
- ightharpoonup A left action ightharpoonup of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G$, $e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ightharpoonup G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms.
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G \cup A} G, \triangleright)$
- $\partial \colon A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \rightarrow G, \triangleright)$ is given by:

- ▶ A group map (i.e. a homomorphism) $\partial \colon E \to G$. (*G* is called the "base-group". *E* is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ightharpoonup G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms.
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G} G, \triangleright)$.
- ▶ $\partial \colon A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$:
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G \cap G} G, \triangleright)$.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- ▶ such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

```
2. \partial(e) \triangleright f = efe^{-1}, where e, f \in E.
```

- ightharpoonup G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G \to G} G, \triangleright)$.
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an abelian group.
 Consider a left-action ▷ of G on A, by automor
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G \cup G} G, \triangleright)$.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphism

 We have a crossed module $G = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ightharpoonup G a group; A an abelian group.
 - Consider a left-action \triangleright of G on A, by automorphisms
 - We have a crossed module $\mathcal{G} = (A \xrightarrow{G \cup G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $G = (\partial: A \to G. \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial : E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ▶ *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphism We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ▶ *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphism. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A} \longmapsto 1_{G} \triangleright G, \triangleright)$.
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ▶ *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms
 We have a crossed module $G = (A \xrightarrow{a \in A} \longmapsto 1_G) \subseteq G.$
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms We have a crossed module $G = (A \xrightarrow{a \in A} \xrightarrow{b \in A} G, \triangleright)$
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

ightharpoonup G a group; A an abelian group.

Consider a left-action \triangleright of G on A, by automorphisms We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.

▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- ▶ A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action \triangleright of G on A, by automorphisms.

We have a crossed module
$$\mathcal{G} = (A \xrightarrow{a \in A \longmapsto 1_{\mathcal{G}}} \mathcal{G}, \triangleright)$$
.

▶ $\partial \colon A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial \colon A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

▶ *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.

▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $G = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G$, $e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► G a group; A an <u>abelian group</u>. Consider a left-action \triangleright of G on A, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial \colon E \to G$. (G is called the "base-group". E is the "principal group".)
- ightharpoonup A left action ho of G on E, by automorphisms,
- ▶ such that the following conditions (Peiffer equations) hold:
 - 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G$, $e \in E$;
 - 2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright)$.
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$ (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

$$ightharpoonup \Pi_2(D^2,S^1,*)=(\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\mathit{trivial}})$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$ (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module *

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let *H* be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$ (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

$$\blacksquare \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\mathit{trivial}}).$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module $\Pi_2(M, N, *) = (\partial \colon \pi_2(M, N, *) \to \pi_1(N, *), \triangleright).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module $\Pi_2(M, N, *) = (\partial \colon \pi_2(M, N, *) \to \pi_1(N, *), \triangleright).$

$$\blacksquare \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module $\Pi_2(M, N, *) = (\partial \colon \pi_2(M, N, *) \to \pi_1(N, *), \triangleright).$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

 $\blacksquare \ \Pi_2(D^2,S^1,*)=(\mathbb{Z}\xrightarrow{\mathrm{id}}\mathbb{Z},\triangleright_{\mathsf{trivial}}).$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright)$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

 $ightharpoonup \Pi_2(D^2,S^1,*)=(\mathbb{Z}\stackrel{\scriptscriptstyle{10}}{
ightharpoonup}\mathbb{Z},
ho_{triviəl}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, \triangleright) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

lacksquare $\Pi_2(D^2, \mathcal{S}^1, *) = (\mathbb{Z} \stackrel{\mathrm{id}}{ o} \mathbb{Z}, riangle_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*)=(\partial\colon \pi_2(M,N,*)\to \pi_1(N,*),\triangleright).$$

 $\blacksquare \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*)=(\partial\colon \pi_2(M,N,*)\to \pi_1(N,*),\triangleright).$$

 $\blacksquare \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*)=(\partial\colon \pi_2(M,N,*)\to \pi_1(N,*),\triangleright).$$

 $\blacksquare \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

 $\blacksquare \ \Pi_2(D^2,S^1,*)=(\mathbb{Z}\stackrel{\mathrm{id}}{\to} \mathbb{Z},\triangleright_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*) = (\partial \colon \pi_2(M,N,*) \to \pi_1(N,*), \triangleright).$$

 $\blacksquare \ \Pi_2(D^2,S^1,*)=(\mathbb{Z}\stackrel{\mathrm{id}}{\to} \mathbb{Z},\triangleright_{\mathit{trivial}}).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ▶ Let H be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.
- ▶ Let (M, N, *) be a pair of spaces. We have a crossed module:

$$\Pi_2(M,N,*)=(\partial\colon \pi_2(M,N,*)\to \pi_1(N,*),\triangleright).$$

 $\blacksquare \ \Pi_2(D^2,S^1,*)=(\mathbb{Z}\xrightarrow{\mathrm{id}}\mathbb{Z},\triangleright_{\mathit{trivial}}).$

Let V be a set, G a group. Consider a set map $\partial_0\colon V o G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V\to\mathcal{G}\rangle=\big(\partial\colon\mathcal{F}(V\stackrel{\partial_0}{\longrightarrow}\mathcal{G})\longrightarrow\mathcal{G},\triangleright\big).$$

Universal property

$$\begin{array}{ccc}
V & \xrightarrow{\partial_0} & G & - & \xrightarrow{\psi} & - & - & - & E \\
\downarrow \partial & & & & \downarrow & \downarrow \\
G & & & & \downarrow & H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0:V\to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to \mathcal{G} \rangle = \big(\partial \colon \mathcal{F}\big(V \xrightarrow{\partial_0} \mathcal{G}\big) \longrightarrow \mathcal{G}, \triangleright\big).$$

Universal property

$$\begin{array}{ccc}
V & \xrightarrow{\partial_0} & G & - & \xrightarrow{\psi} & - & - & - & E \\
\downarrow & \downarrow & & & \downarrow & \downarrow \\
G & & & & \downarrow & H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0:V\to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = (\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright)$$

Universal property

$$\begin{array}{c}
V \xrightarrow{\partial_0} G \\
\downarrow \\
G \xrightarrow{\phi} H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0:V\to G$.

We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

Universal property

$$\mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - E$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to \mathsf{G} \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} \mathsf{G}) \longrightarrow \mathsf{G}, \triangleright \big).$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - \longrightarrow E$$

$$\downarrow \partial_0 \qquad \downarrow G \qquad \downarrow H$$

$$\begin{array}{c|c} (V \xrightarrow{\delta_0} G) - \xrightarrow{\psi} - - - E \\ \downarrow 0 \\ \downarrow G & \to H \end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \left(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \right).$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) = \xrightarrow{\psi} = - \Rightarrow E$$

$$\downarrow \partial \qquad \qquad \downarrow G$$

$$\downarrow \partial \qquad \qquad \downarrow H$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V\to G\rangle=(\partial\colon \mathcal{F}(V\stackrel{\partial_0}{\longrightarrow} G)\longrightarrow G_{\mathbb{R}^n})$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - \xrightarrow{} E$$

$$\downarrow 0$$

$$\downarrow 0$$

$$\downarrow 0$$

$$\downarrow 0$$

$$\downarrow H$$

$$\begin{pmatrix}
V & \xrightarrow{\phi} & G \\
\partial \downarrow & & \downarrow \\
G & \xrightarrow{\phi} & H
\end{pmatrix}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = (\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - \xrightarrow{E} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(V \xrightarrow{\delta 0} G) - \overset{\psi}{-} - - - E$$

$$\downarrow \partial \qquad \qquad \downarrow \partial$$

$$G \xrightarrow{\phi} H$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V\to G\rangle=\left(\partial\colon \mathcal{F}(V\xrightarrow{\partial_0}G)\longrightarrow G, \triangleright\right).$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - \xrightarrow{} E$$

$$\downarrow \partial$$

$$\downarrow G \xrightarrow{\phi} H$$

$$\begin{array}{c|c} (V \xrightarrow{\sim} G) - \overrightarrow{-} - - - E \\ \hline \partial & & \partial \\ G & \longrightarrow H \end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V\to G\rangle=\left(\partial\colon \mathcal{F}(V\xrightarrow{\partial_0}G)\longrightarrow G,\rhd\right).$$

Universal property

$$V \xrightarrow{i} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - \longrightarrow E$$

$$\downarrow 0$$

$$\downarrow G \longrightarrow H$$

$$\begin{array}{ccc}
V \longrightarrow G & ----E \\
\partial \downarrow & & \downarrow \\
G & \longrightarrow H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

Universal property

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V o G\rangle=ig(\partial\colon \mathcal{F}(V\stackrel{\partial_0}{\longrightarrow}G)\longrightarrow G,
hoig).$$

Universal property

$$\begin{pmatrix}
V & \xrightarrow{\phi_0} & G \\
\partial \downarrow & & \downarrow \\
G & \xrightarrow{\phi} & H
\end{pmatrix}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}\big(V \xrightarrow{\partial_0} G\big) \longrightarrow G, \triangleright \big).$$

Universal property

$$\begin{array}{c|c} (V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - E \\ \downarrow \partial & & \downarrow \partial \\ G & & \rightarrow H \end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}\big(V \xrightarrow{\partial_0} G\big) \longrightarrow G, \triangleright \big).$$

Universal property

$$\begin{array}{cccc}
\mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - E \\
\downarrow \partial & & \downarrow \partial \\
G & \longrightarrow H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}\big(V \xrightarrow{\partial_0} G\big) \longrightarrow G, \triangleright \big).$$

Universal property

$$\begin{array}{ccc}
(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - E \\
\downarrow \partial & & \downarrow \partial \\
G \xrightarrow{\phi} & H
\end{array}$$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle\partial_0\colon V\to G\rangle=\big(\partial\colon \mathcal{F}(V\stackrel{\partial_0}{\longrightarrow}G)\longrightarrow G,\triangleright\big).$$

Universal property

$$(V \xrightarrow{\phi_0} G) - \xrightarrow{\psi} - - - E$$
 $\downarrow \delta$
 $\downarrow G \xrightarrow{\phi} H$

$$Y = X \cup c_1 \cup c_2.$$

Whitehead theorem: If Y is obtained from X by attaching 2-cells then $\Pi_2(Y,X)$ is free on the attaching maps $\{2-cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2-cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2 - cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2-cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2-cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2 - cells\} \xrightarrow{\partial_0} \pi_1(X)$.

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y,X)$ is free on the attaching maps $\{2 - cells\} \xrightarrow{\partial_0} \pi_1(X)$.

```
A crossed module \mathcal{G} = (E \xrightarrow{\partial} G) contains a short complex E \to G.
Given \mathcal{G} and \mathcal{G}' = (E' \to G'), \exists notion of homotopy of maps \mathcal{G} \to \mathcal{G}'
```

Homotopies are built on group derivations $s \colon G \to E'$.

```
Fact: We have category {Cof-Crossed Modules}/ \cong. Objects are crossed modules \mathcal{G} = (\partial \colon E \to F); F a free group. Maps \mathcal{G} \to \mathcal{G}' are homotopy classes of maps \mathcal{G} \to \mathcal{G}'.
```

```
Theorem Ho(\{Crossed\ Modules\}) is equivalent to \{2-types\}
```

```
the category \{Cof-Crossed Modules\}/\cong
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given \mathcal{G} and $\mathcal{G}'=(E' o G')$, \exists notion of homotopy of maps $\mathcal{G} o \mathcal{G}'$.

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial \colon E \to F)$; F a free group Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem $Ho(\{Crossed Modules\})$ is equivalent to $\{2\text{-types}\}$

i.e.: the category $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-ty

A crossed module $\mathcal{G}=(E\stackrel{\partial}{\to}G)$ contains a short complex $E\to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o \mathcal G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

I heorem
Ho({Crossed Modules}) is equivalent to {2-types

I.e.:

the category {Cof-Crossed Modules} / \cong is equivalent to category of 2-type

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given \mathcal{G} and $\mathcal{G}'=(E' o G')$, \exists notion of homotopy of maps $\mathcal{G} o \mathcal{G}'$.

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial \colon E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({Crossed Modules}) is equivalent to {2-types}

1.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial \colon E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho({Crossed Modules}) is equivalent to {2-types}

l.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial \colon E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho({Crossed Modules}) is equivalent to {2-types}

I.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial \colon E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho({Crossed Modules}) is equivalent to {2-types}

the category {Cof-Crossed Modules} / \cong is equivalent to category of 2-types

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G}=(\partial\colon E\to F)$; F a free group. Maps $\mathcal{G}\to\mathcal{G}'$ are homotopy classes of maps $\mathcal{G}\to\mathcal{G}'$.

Theorem

 $Ho(\{Crossed\ Modules\})$ is equivalent to $\{2\text{-types}\}.$

1.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G}=(\partial\colon E\to F)$; F a free group. Maps $\mathcal{G}\to\mathcal{G}'$ are homotopy classes of maps $\mathcal{G}\to\mathcal{G}'$.

Theorem

 $Ho(\{Crossed\ Modules\})$ is equivalent to $\{2\text{-types}\}.$

1.e.:

the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G}=(\partial\colon E\to F)$; F a free group. Maps $\mathcal{G}\to\mathcal{G}'$ are homotopy classes of maps $\mathcal{G}\to\mathcal{G}'$.

Theorem

 $Ho(\{Crossed\ Modules\})$ is equivalent to $\{2\text{-types}\}.$

1.e.:

the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G}=(\partial\colon E\to F)$; F a free group. Maps $\mathcal{G}\to\mathcal{G}'$ are homotopy classes of maps $\mathcal{G}\to\mathcal{G}'$.

Theorem

 $Ho(\{Crossed\ Modules\})$ is equivalent to $\{2\text{-types}\}.$

I.e.:

 $\textit{the category} \; \{ \textbf{Cof-Crossed Modules} \} / \cong$

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given $\mathcal G$ and $\mathcal G'=(E' o \mathcal G')$, \exists notion of homotopy of maps $\mathcal G o \mathcal G'.$

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {Cof-Crossed Modules}/ \cong . Objects are crossed modules $\mathcal{G}=(\partial\colon E\to F)$; F a free group. Maps $\mathcal{G}\to\mathcal{G}'$ are homotopy classes of maps $\mathcal{G}\to\mathcal{G}'$.

Theorem

 $\textit{Ho}(\{\textbf{Crossed Modules}\}) \textit{ is equivalent to } \{\textbf{2-types}\}.$

I.e.:

the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types.

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. i.e.

 $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concretee

Given a reduced CW-complex X, let X¹ be its one-skeleton.
We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

Let $\{ CW\text{-}complexes \}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

$$\Pi_2 \colon \{\mathsf{CW}\text{-}\mathsf{complexes}\} \ / \cong \ \longrightarrow \{\mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules}\} / \cong .$$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $\mathit{Ho}(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e.

 $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete

Given a reduced CW-complex X, let X¹ be its one-skeleton.
We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes} $/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \left\{\mathsf{CW}\text{-}\mathsf{complexes}\right\}/\cong \longrightarrow \left\{\mathsf{Cof}\text{-}\mathsf{Crossed}\ \mathsf{Modules}\right\}/\cong \mathbb{R}$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e.

 $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete

ightharpoonup Given a reduced CW-complex X, let X^1 be its one-skeleton... We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{\mathsf{CW}\text{-}\mathsf{complexes}\} \ / \cong \ \longrightarrow \{\mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules}\} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$.

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e.

 $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \left\{\mathsf{CW}\text{-}\mathsf{complexes}\right\}/\cong \longrightarrow \left\{\mathsf{Cof}\text{-}\mathsf{Crossed}\ \mathsf{Modules}\right\}/\cong \mathbb{R}$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$.

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{\mathsf{CW}\text{-}\mathsf{complexes}\} \ / \cong \ \longrightarrow \{\mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules}\} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of }2\text{-types}.$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{\mathsf{CW}\text{-}\mathsf{complexes}\} \ / \cong \ \longrightarrow \{\mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules}\} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \text{CW-complexes} \} / \cong \longrightarrow \{ \text{Cof-Crossed Modules} \} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial) - \pi_1(X) = \operatorname{coker}(\partial) - k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let {CW-complexes}/ \cong be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \left\{\mathsf{CW ext{-}complexes}
ight\}/\cong \ \longrightarrow \left\{\mathsf{Cof ext{-}Crossed Modules}
ight\}/\cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let $\{CW\text{-}complexes\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW\text{-}complexes} \} / \cong \longrightarrow \{ \mathsf{Cof\text{-}Crossed Modules} \} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to\pi_1(X^1),\triangleright).$$

Let $\{CW\text{-complexes}\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps.

 $\Pi_2\colon \left\{\mathsf{CW ext{-}complexes}
ight\}/\cong \longrightarrow \left\{\mathsf{Cof ext{-}Crossed Modules}
ight\}/\cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

Let $\{CW\text{-}complexes\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition Maps $X \to Y$ are pointed homotopy classes of pointed maps.

 $\Pi_2\colon \left\{\mathsf{CW}\text{-}\mathsf{complexes}\right\}/\cong \longrightarrow \left\{\mathsf{Cof}\text{-}\mathsf{Crossed} \;\mathsf{Modules}\right\}/\cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X.

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed\ Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps.

 $\Pi_2 \colon \{ \text{CW-complexes} \} / \cong \longrightarrow \{ \text{Cof-Crossed Modules} \} / \cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{ CW\text{-complexes} \}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition.

Maps X o Y are pointed homotopy classes of pointed maps.

We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} / \cong \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong .$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X,X^1)$ faithfully represents the homotopy 2-type of X.
 - Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps.

We have a functor

 Π_2 : {CW-complexes} $/\cong\longrightarrow$ {Cof-Crossed Modules} $/\cong$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X.
 - Hence $\pi_2(X) = \ker(\partial), \, \pi_1(X) = \operatorname{coker}(\partial), \, k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \text{CW-complexes} \} / \cong \longrightarrow \{ \text{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X.
 - Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X,X^1)$ faithfully represents the homotopy 2-type of X.
 - Hence $\pi_2(X) = \ker(\partial), \, \pi_1(X) = \operatorname{coker}(\partial), \, k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon\ \{\text{CW-complexes}\}\ /\cong\ \longrightarrow \{\text{Cof-Crossed Modules}\}/\cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \, \pi_1(X) = \operatorname{coker}(\partial), \, k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \; \{\text{CW-complexes}\} \; / \cong \; \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of } 2\text{-types}.$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \; \{\text{CW-complexes}\} \; / \cong \; \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \, \pi_1(X) = \operatorname{coker}(\partial)$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof\text{-}Crossed Modules}\}/\cong \text{is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X))$.

Theorem $Ho(\{\text{Crossed Modules}\})\cong \{\text{2-types}\}$. I.e.

 $\{$ Cof-Crossed Modules $\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon \; \{\text{CW-complexes}\} \; / \cong \; \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$.

Theorem $\mathit{Ho}(\{\mathsf{Crossed\ Modules}\})\cong \{\mathsf{2\text{-types}}\}$. I.e.

 $\{ \textbf{Cof-Crossed Modules} \} / \cong \text{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2\colon\ \{\text{CW-complexes}\}\ /\cong\ \longrightarrow \{\text{Cof-Crossed Modules}\}/\cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$.

Theorem $Ho(\{Crossed\ Modules\})\cong \{2\text{-types}\}$. I.e.

 $\{ \textbf{Cof-Crossed Modules} \} / \cong \text{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

▶ Given a reduced CW-complex X, let X^1 be its one-skeleton. We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1)\to \pi_1(X^1),\triangleright).$$

Let $\{$ CW-complexes $\}/\cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor

$$\Pi_2\colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\}/ \cong.$$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial)$, $\pi_1(X) = \operatorname{coker}(\partial)$, $k(X) = k(\Pi_2(X))$.

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1.
$$\pi_1(X^1) = \mathcal{F}(1\text{-cells})$$
: free group on the set of 1-cells of X

2.
$$\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \stackrel{\partial}{\to} \pi_1(X^1) \right\rangle.$$

3.
$$\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$$
 is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cel

$$\Pi_2(X, X^1) = \mathcal{U}\left\{ \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\}$$

Also Π_2 satisfies a van Kampen type property. (Brown-Higgins)

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1.
$$\pi_1(X^1) = \mathcal{F}(1\text{-cells})$$
: free group on the set of 1-cells of X

2.
$$\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle$$

3.
$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X^3,X^1) \to \pi_1(X^1))$$
 is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cel

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\}\right\rangle$$

Also Π₂ satisfies a van Kampen type property. (Brown-Higgins

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$.

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1.
$$\pi_1(X^1) = \mathcal{F}(1\text{-cells})$$
: free group on the set of 1-cells of X

2.
$$\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$$

is the free crossed module on the attaching maps of the 2-cells

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\{ \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\}.$$

3.
$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X^3,X^1) \to \pi_1(X^1))$$
 is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cel

$$\Pi_2(X,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{\text{3-cells}\} \right\rangle$$

Also Π_2 satisfies a van Kampen type property. (Brown-Higgins

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1.
$$\pi_1(X^1) = \mathcal{F}(1 ext{-cells})$$
: free group on the set of 1-cells of X

2.
$$\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle$$

3.
$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X^3, X^1) \to \pi_1(X^1))$$

is obtained from the free crossed module $\Pi_2(X^2, X^1)$

 $\Pi_2(X,X^1) = \mathcal{U}\left(\left\{2\text{-cells}\right\} \stackrel{\partial}{ o} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \left\{3\text{-cells}\right\}\right)$

Also Π_2 satisfies a van Kampen type property. (Brown-Higgins)

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1.
$$\pi_1(X^1) = \mathcal{F}(1\text{-cells})$$
: free group on the set of 1-cells of X

2.
$$\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$$

is the free crossed module on the attaching maps of the 2-cells

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\{ \{2\text{-cells}\} \stackrel{\partial}{\to} \pi_1(X^1) \right\}$$

3.
$$\Pi_2(X, X^1) = (\partial \colon \pi_2(X^3, X^1) \to \pi_1(X^1))$$

is obtained from the free crossed module $\Pi_2(X^2, X^1)$

 $\Pi_2(X,X^1) = \mathcal{U}\left\langle \left\{ 2\text{-cells}
ight\} \stackrel{\partial}{ o} \pi_1(X^1) \mid \partial(c) = 1 ext{ for each } c \in \left\{ 3\text{-cells}
ight\}$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$
- is the free crossed module on the attaching maps of the 2-cells

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \left\{ 2\text{-cells} \right\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle$$

- 3. $\Pi_2(X, X^1) = (\partial \colon \pi_2(X^3, X^1) \to \pi_1(X^1))$
 - is obtained from the free crossed module $\Pi_2(X^2,X^1)$
 - by imposing a crossed module 2-relation for each 3-celling
- $\Pi_2(X, X^1) = \mathcal{U}\left(\left\{2\text{-cells}\right\} \stackrel{\mathcal{O}}{\to} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \left\{3\text{-cells}\right\}\right)$
 - Also Π_2 satisfies a van Kampen type property. (Brown-Higgins

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$
- is the free crossed module on the attaching maps of the 2-cells

$$\Pi_2(X^2, X^1) = \mathcal{U} \left\langle \left\{ 2\text{-cells} \right\} \stackrel{\partial}{\to} \pi_1(X^1) \right\rangle$$

- 3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$
 - by imposing a crossed module 2 relation for each 3 cr
- by imposing a crossed module z-relation for each 3-cen.
- $(x,x) = u \cdot (x \cos x) \cdot x \cdot (x \cos x) \cdot x$
 - Also Π_2 satisfies a van Kampen type property. (Brown-Higgins

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$ is the free crossed module on the attaching maps of the 2-cel

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\{ \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\}$$

3. $\Pi_2(X,X^1) = (\partial \colon \pi_2(X^3,X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cel

 $\Pi_2(X, X^1) = \mathcal{U}\left(\left\{2\text{-cells}\right\} \xrightarrow{\sigma} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \left\{3\text{-cells}\right\}\right)$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-ce

 $\Pi_2(X, X^1) = \mathcal{U}\left(\left\{2\text{-cells}\right\} \xrightarrow{o} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \left\{3\text{-cells}\right\}_{\mathcal{I}}\right)$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cell

 $\Pi_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial \colon \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-ce

 $\Pi_2(X, X^1) = \mathcal{U} \setminus \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\}$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$ is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cel

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to\pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cell

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{\text{3-cells}\}\right\rangle$$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle.$$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{\text{3-cells}\} \right\rangle.$$

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

- 1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X.
- 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$ is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \left\{ \text{2-cells} \right\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3.
$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X^3,X^1)\to \pi_1(X^1))$$
 is obtained from the free crossed module $\Pi_2(X^2,X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X,X^1) = \mathcal{U}\left\langle \{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{\text{3-cells}\} \right\rangle.$$

$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \left\{c_1, c_2\right\} \xrightarrow{c_1 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{\stackrel{C_1\mapsto 1}{c_2\mapsto 1}} (\mathbb{Z},+) \mid c_1=c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z},\triangleright_{\mathit{trivial}})$$

$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \left\{ c_1, c_2 \right\} \xrightarrow{c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{c_1\mapsto 1 \atop c_2\mapsto 1} (\mathbb{Z},+)\right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b)\mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3,S^1) = \mathcal{U}\left\langle \left\{c_1,c_2\right\} \xrightarrow{c_1\mapsto 1 \atop c_2\mapsto 1} (\mathbb{Z},+) \mid c_1=c_2\right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z},\triangleright_{\mathit{trivial}})$$

$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \left\{c_1,c_2\right\} \xrightarrow{\substack{c_1\mapsto 1\\c_2\mapsto 1}} (\mathbb{Z},+)\right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b)\mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{c_1\mapsto 1} (\mathbb{Z},+) \mid c_1=c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z},\triangleright_{trivial})$$

$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{c_1\mapsto 1} (\mathbb{Z},+) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b)\mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3,S^1)=\mathcal{U}\left\langle\{c_1,c_2\}\xrightarrow[c_2\mapsto 1]{c_1\mapsto 1}(\mathbb{Z},+)\mid c_1=c_2\right\rangle=(\mathbb{Z}\xrightarrow{\mathrm{id}}\mathbb{Z},\triangleright_{\mathit{trivial}})$$

$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \left\{c_1,c_2\right\} \xrightarrow[c_2\mapsto 1]{c_2\mapsto 1} (\mathbb{Z},+) \right\rangle = \left(\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b)\mapsto a+b} \mathbb{Z}, \triangleright_{trivial}\right)$$

$$\Pi_2(D^3,S^1)=\mathcal{U}\left\langle\{c_1,c_2\} \stackrel{c_1\mapsto 1}{\xrightarrow{c_2\mapsto 1}} (\mathbb{Z},+)\mid c_1=c_2
ight
angle=(\mathbb{Z}\stackrel{\mathrm{id}}{ o} \mathbb{Z}, rivial)$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) =$$
 # hom $(\Pi_2(X, X^1), \mathcal{G})$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. nterpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\mathrm{TOP}(X|B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\mathrm{TOP}(X,B_{\mathcal{G}}),f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G})$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $G = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G})$$

does not depend on the chosen CW-decomposition of X Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP (X, B_G) function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

Proposition Let $G = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G})$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_C is the classifying space of G. TOP(X, B_C) function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

Proposition Let $\mathcal{G}=(\partial\colon E o G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G})$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP(X, B_G) function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee = \Pi_2(Y,Y^1)$$

Proposition Let $G = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G})$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP(X, B_G) function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1) = \Pi_2(Y,Y^1)$$

Proposition Let $G = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{\mathsf{hom}}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1)$$

Proposition Let $G = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}).$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \operatorname{hom}(\Pi_2(X, X^1), \mathcal{G}).$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{C}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{C}})$ function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to \mathcal{G}, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}).$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of $\mathcal{G}.$ TOP $(X,B_{\mathcal{G}})$ function spaces

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$J_{\mathcal{G}}(X) =$$
 # hom $(\Pi_2(X, X^1), \mathcal{G})$,

does not depend on the chosen CW-decomposition of X.Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space..

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$J_{\mathcal{G}}(X) =$$
 # hom $(\Pi_2(X, X^1), \mathcal{G})$.

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{C}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{C}})$ function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) =$$
 # hom $(\Pi_2(X, X^1), \mathcal{G})$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{C}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{C}})$ function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) =$$
 # hom $(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP (X, B_G) function space.

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. nterpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP (X, B_G) function space

Up to homotopy $\Pi_2(X,X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m,n\in\mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X.

Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP (X, B_G) function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.

Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 B_G is the classifying space of G. TOP (X, B_G) function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\mathrm{number of 1-cells of X}}} \# \mathsf{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\mathrm{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\mathrm{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of X}}} \# \text{hom}(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.

Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\mathrm{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\mathrm{TOP}(X, B_{\mathcal{G}}), f)}$$

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface. (Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ

To simplify, suppose critical points appear in increasing order

Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order.

Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t"

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing orde

Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t"

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order.

Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t"

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- ▶ A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- ▶ A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ ir order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$. (Hence a free generator of the group $\pi_1(M^{(1)})$.)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$. (Hence a free crossed module generator of $\Pi_2(M^{(2)}, M^{(1)})$.)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above.

Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as::

Let $\Sigma\subset S^4$, oriented surface, Morse conditions as above.

Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above.

Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as::

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent There are relations between generators at different times. For R2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.

Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent There are relations between generators at different times. For R2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent There are relations between generators at different times. For R^2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent There are relations between generators at different times. For R2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R^2

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it: Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

There are relations between generators at different times. For R2:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it: Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2:

Let $\Sigma \subset S^4,$ oriented surface, Morse conditions as above.

Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it: Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above.

Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)},M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Bands are to be kept and evolve throughout the rest of the movie.

Each arc of a band in a projection gives element of $\pi_2(M^{(2)}, M^{(1)})$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an oriented maximal point looks like

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present.

Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present.

Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

In this case the 2-relations are as below:

2-relation:

$$e \ f \ (X^{-1} \triangleright e^{-1}) = 1$$

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

$$\partial(e) = 0$$

 $\partial(f) = 0$

$$\begin{aligned} & \mathcal{O}(g) = 1 \\ & \mathcal{O}(h) = XYX^{-1}Y^{-1} \\ & e^{-1} \left(X \triangleright f^{-1} \right) f = 1 \\ & X \triangleright f \right) f^{-1} = 1. \end{aligned}$$

P(g) = 1 $P(h) = XYX^{-1}Y^{-1}$ $P(h) = XYX^{-1}Y^{-1}$ P(h) = 1 P(h) = 1P(

 $X, Y \in \pi_1(M^{(1)});$

 $\begin{array}{l} \beta(g) = 1 \\ \beta(h) = XYX^{-1}Y^{-1} \\ e e^{-1}(X \triangleright f^{-1}) f = 1 \\ (X \triangleright f) f^{-1} = 1. \end{array}$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} & \theta(g) = 1 \\ & \theta(h) = XYX^{-1}Y^{-1} \\ & e e^{-1} \left(X \triangleright f^{-1} \right) f = 1 \\ & \left(X \triangleright f \right) f^{-1} = 1. \end{aligned}$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\mathcal{D}(g) = 1$ $\partial(h) = XYX^{-1}Y^{-1}$ $e e^{-1}(X \triangleright f^{-1}) f = 1$ $(X \triangleright f) f^{-1} = 1.$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} &\partial(g) = 1\\ &\partial(h) = XYX^{-1}Y^{-1}\\ &e\ e^{-1}\left(X\triangleright f^{-1}\right)\ f = 1\\ &\left(X\triangleright f\right)f^{-1} = 1. \end{aligned}$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\partial(g) = 1$ $\partial(h) = XYX^{-1}Y^{-1}$ $e e^{-1}(X \triangleright f^{-1}) f = 1$ $(X \triangleright f)f^{-1} = 1$.

Σ = Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{ e, f, g, h \right\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\left\{ X, Y \right\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e,f,g, by the relation f=X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$\Sigma = \mathsf{Knotted}\ T^2 \sqcup T^2 \ \mathsf{above}.\ M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / < f = X.f > 0$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e,f,g, by the relation f=X.f.

If $\mathcal{G} = (E
ightarrow \mathcal{G}, riangle)$ is finite and $\partial(E) = \{1_{\mathcal{G}}\}$ then

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma = \mathsf{Knotted}\ T^2 \sqcup T^2 \ \mathsf{above}.\ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > 0.$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X, f.

If $\mathcal{G}=(E o G, riangle)$ is finite and $\partial(E)=\{1_G\}$ then

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma = \mathsf{Knotted}\ T^2 \sqcup T^2 \ \mathsf{above}.\ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$$
, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/\langle f = X.f \rangle.$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E o G, riangle)$ is finite and $\partial(E) = \{1_G\}$ then

$$I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma = \mathsf{Knotted}\ T^2 \sqcup T^2 \ \mathsf{above}.\ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E o G, riangle)$ is finite and $\partial(E) = \{1_G\}$ then

$$I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma = \mathsf{Knotted}\ T^2 \sqcup T^2 \ \mathsf{above}.\ M = S^4 \setminus \Sigma$$

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma$$
= Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E)$$

$$\Sigma$$
= Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$$

$$\Sigma$$
= Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{\substack{f \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/\langle f = X.f \rangle.$$

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$$

Σ = Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\left\{e, f, g, h\right\} \xrightarrow{f \mapsto 1 \atop g \mapsto 1} \mathcal{F}(\left\{X, Y\right\}) \mid f = X \triangleright f\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/\langle f = X.f \rangle.$$

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\{(X,Y,f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$$

Another example $\Sigma' = \mathsf{Spun}\ \mathsf{Hopf}\ \mathsf{Link}$, a knotted $T^2 \sqcup T^2$

$$\begin{split} &\partial(e)=1\\ &\partial(f)=1\\ &\partial(g)=YXY^{-1}X^{-1}\\ &\partial(h)=XYX^{-1}Y^{-1}\\ &(Y\rhd e)\,e^{-1}\,(X\rhd f^{-1})\,f= \end{split}$$

Another example $\Sigma' = \mathsf{Spun} \; \mathsf{Hopf} \; \mathsf{Link}$, a knotted $T^2 \sqcup T^2$ Final stage:

$$\begin{aligned} &\partial(e) = 1 \\ &\partial(f) = 1 \\ &\partial(g) = YXY^{-1}X^{-1} \\ &\partial(h) = XYX^{-1}Y^{-1} \end{aligned}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 0$$

Another example $\Sigma' = \mathsf{Spun}\ \mathsf{Hopf}\ \mathsf{Link},\ \mathsf{a}\ \mathsf{knotted}\ \mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

Another example $\Sigma' = \mathsf{Spun}\ \mathsf{Hopf}\ \mathsf{Link}$, a knotted $\mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\begin{aligned} &\partial(\mathbf{e}) = 1\\ &\partial(f) = 1\\ &\partial(g) = YXY^{-1}X^{-1}\\ &\partial(h) = XYX^{-1}Y^{-1} \end{aligned}$$

 $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$

Another example $\Sigma' = \operatorname{\mathsf{Spun}}\nolimits \operatorname{\mathsf{Hopf}}\nolimits \operatorname{\mathsf{Link}}\nolimits$, a knotted $\mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\begin{aligned} &\partial(e) = 1\\ &\partial(f) = 1\\ &\partial(g) = YXY^{-1}X^{-1}\\ &\partial(h) = XYX^{-1}Y^{-1} \end{aligned}$$

 $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$

Another example $\Sigma' = \operatorname{\mathsf{Spun}}\nolimits \operatorname{\mathsf{Hopf}}\nolimits \operatorname{\mathsf{Link}}\nolimits$, a knotted $\mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 1$$

Another example $\Sigma' = \mathsf{Spun}\ \mathsf{Hopf}\ \mathsf{Link},\ \mathsf{a}\ \mathsf{knotted}\ \mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\begin{aligned} \partial(e) &= 1\\ \partial(f) &= 1\\ \partial(g) &= YXY^{-1}X^{-1}\\ \partial(h) &= XYX^{-1}Y^{-1}\\ (Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 1 \end{aligned}$$

Another example $\Sigma' = \operatorname{\mathsf{Spun}}\nolimits \operatorname{\mathsf{Hopf}}\nolimits \operatorname{\mathsf{Link}}\nolimits$, a knotted $\mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\begin{aligned} \partial(e) &= 1\\ \partial(f) &= 1\\ \partial(g) &= YXY^{-1}X^{-1}\\ \partial(h) &= XYX^{-1}Y^{-1}\\ (Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f &= 1 \end{aligned}$$

Another example $\Sigma' = \operatorname{\mathsf{Spun}}\nolimits \operatorname{\mathsf{Hopf}}\nolimits \operatorname{\mathsf{Link}}\nolimits$, a knotted $\mathcal{T}^2 \sqcup \mathcal{T}^2$ Final stage:

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 1$$

 $\partial(e) = 1$ $\partial(f) = 1$

$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\{e, f, g, h\} \stackrel{\substack{g \mapsto 1 \\ h \mapsto [X, Y]}}{\longrightarrow} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ = 1 \end{array} \right\}$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX}, \right\}$$

 I_G can distinguish Σ' from $\Sigma=$ knotted $T^2\sqcup T^2$ above

$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\{\{e, f, g, h\} \stackrel{f \mapsto 1}{\overset{f \mapsto 1}{\mapsto 1}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array}\right\}$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E o\mathcal{G}, riangle)$ is finite and $\partial(E)=\{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX}, \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathcal{T}^2\sqcup\mathcal{T}^2$ above

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \stackrel{\substack{e \mapsto 1 \\ f \mapsto 1 \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}}{\longrightarrow} \mathcal{F}(X, Y) \mid \stackrel{(Y \triangleright e) e^{-1}}{(X \triangleright f^{-1}) f} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E o G, riangle)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e)-e-(X \triangleright f)}{XY = YX,} \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathcal{T}^2\sqcup\mathcal{T}^2$ above..

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \stackrel{\substack{f \mapsto 1 \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}}{\longrightarrow} \mathcal{F}(X, Y) \mid \stackrel{(Y \triangleright e) e^{-1}}{(X \triangleright f^{-1}) f} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G}=(E o G, riangle)$ is finite and $\partial(E)=\{1_G\}$ then:

$$l_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e)-e-(X \triangleright f)+f=0}{\overset{XY=YX,}{\bigoplus}} \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathcal{T}^2\sqcup\mathcal{T}^2$ above.

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \stackrel{\substack{e \mapsto 1 \\ f \mapsto 1 \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}}{\longrightarrow} \mathcal{F}(X, Y) \mid \stackrel{(Y \triangleright e) e^{-1}}{(X \triangleright f^{-1}) f} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e)-e-(X \triangleright f)}{XY = YX,} \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathcal{T}^2\sqcup\mathcal{T}^2$ above.

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \stackrel{\substack{e \mapsto 1 \\ f \mapsto 1 \\ g \mapsto [Y, X]}}{\longrightarrow} \mathcal{F}(X, Y) \mid \stackrel{(Y \triangleright e) e^{-1}}{\longrightarrow} \left\langle X \mid f \mid f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f)}{XY = YX,} \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathcal{T}^2\sqcup\mathcal{T}^2$ above

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \xrightarrow{\substack{g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid (X \triangleright f^{-1}) f \\ = 1 \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f)}{XY = YX}, \atop (Y \triangleright e) - e - (X \triangleright f) + f = 0 \right\}$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma =$ knotted $T^2 \sqcup T^2$ above

$$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{e, f, g, h\right\} \xrightarrow{\substack{g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid (X \triangleright f^{-1}) f \\ = 1 \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $G = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \underset{(Y \rhd e)-e-(X \rhd f)}{XY = YX,} \right\}.$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $\mathit{T}^2\sqcup\mathit{T}^2$ above

$\Sigma' = \text{Spun Hopf Link}. \ M = S^4 \setminus \Sigma$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\{\{e, f, g, h\} \stackrel{\substack{f \mapsto 1 \\ p \mapsto [Y, X] \\ h \mapsto [X, Y]}}{\longrightarrow} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array}\right\}$$

$$\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$$
, free abelian group on X and Y .

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \# \left\{ (X,Y,e,f) \in G^2 \times E^2 \mid \substack{XY = YX, \ (Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma = \text{knotted } T^2 \sqcup T^2 \text{ above.}$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \mathsf{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma\mapsto I_{\mathcal{G}}(S^4\setminus\Sigma)$$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \mathsf{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

Recall that Welded knots are virtual knot diagrams like:

Recall that Welded knots are virtual knot diagrams like:

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

► Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

► Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

► Recall Shin Satoh's "tube-map"

 $\textit{Tube} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori in } S^4 \}$

► Recall Shin Satoh's "tube-map"

 $\textit{Tube} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori in } \mathcal{S}^4 \}$

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$ The welded knot invariant

$$K \mapsto l_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set G imes A:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G$, $a,b\in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$ The welded knot invariant

$$K \mapsto l_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set G imes A:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G,\ a,b\in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $G = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto l_{\mathcal{G}}(S^4 \setminus Tube(K))$$

s computed from a biquandle with underlying set G imes A:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G,\ a,b\in A$.. Proof essentially in:

Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto l_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set G imes A:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G$, $a,b\in A$.. Proof essentially in:

► Recall Shin Satoh's "tube-map"

$$\textit{Tube} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori in } S^4 \}$$

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set G imes A:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G$, $a,b\in A$.. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose
$$\mathcal{G} = (A \to G, \triangleright)$$
 is finite and $\partial(A) = \{1_G\}$.

The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set G imes A:

$$(w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G$, $a,b\in A$.. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z,w\in G,\ a,b\in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G,\ a,b\in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z,w\in G$, $a,b\in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z,w\in G$, $a,b\in A$. Proof essentially in:

Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$.

Proof essentially in

► Recall Shin Satoh's "tube-map"

Tube: {Welded links}
$$\rightarrow$$
 {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

So A is an abelian G-module, $z, w \in G$, $a, b \in A$.

Proof essentially in:

The biquandle below (A an abelian G-module):

$$(w, b)$$

$$(w, a + b - w^{-1} \triangleright a) \qquad (w^{-1}zw, w^{-1} \triangleright a)$$

has since been revisited in:

Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topologica (3+1)-dimensional Higher Gauge Theory.

Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1}\triangleright a) \qquad (w^{-1}zw,w^{-1}\triangleright a)$$

has since been revisited in:

▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

has since been revisited in:

▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

has since been revisited in:

▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

has since been revisited in:

▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

has since been revisited in:

▶ Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

The biquandle below (A an abelian G-module):

$$(x,a) \qquad (w,b)$$

$$(w,a+b-w^{-1} \triangleright a) \qquad (w^{-1}zw,w^{-1} \triangleright a)$$

has since been revisited in:

Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

▶ Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

