Crossed modules, homotopy 2-types, knotted surfaces and welded knots

Topological Quantum Field Theory Club (IST, Lisbon)

30th October 2020

João Faria Martins (University of Leeds)

LEVERHULME
TRUST \qquad

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

Other Refs. on homotopy 2-types of $2 k n o t ~ c o m p l e m e n t s$

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349-390 (1981).
A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481-492 (1985).

Other Refs. on homotopy 2-types of 2 knot complements

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349-390 (1981).

Other Refs. on homotopy 2-types of 2 knot complements

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349-390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481-492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54-84 (1985)

Other Refs. on homotopy 2-types of 2 knot complements

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349-390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481-492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54-84 (1985).

Other Refs. on homotopy 2-types of 2 knot complements

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349-390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481-492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54-84 (1985).

Main refs. for this talk:

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.

Main refs. for this talk:

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via

Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.

Main refs. for this talk:

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.

Main refs. for this talk:

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

Main refs. for this talk:

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

Some references on combinatorial homotopy

```
> R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
    topology. Filtered spaces, crossed complexes, cubical
    homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)
| H. J. Baues: Combinatorial homotopy and 4-dimensional
complexes. Berlin etc.: Walter de Gruyter (1991)
```


Some references on combinatorial homotopy

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
 complexes. Berlin etc.: Walter de Gruyter (1991)

Some references on combinatorial homotopy

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)

Some references on combinatorial homotopy

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)

Some references on combinatorial homotopy

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)

Some references on combinatorial homotopy

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423-491 (2004).

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem:

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that:

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that:

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.
E.g.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell. (Frequenly omitted in model categories literature.)

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell. (Frequenly omitted in model categories literature.)
2. $\pi_{i}(X)=0$, if $i>n$.

Let $\{n$-types $\}$ be the category with objects the n-types.

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell.
(Frequenly omitted in model categories literature.)
2. $\pi_{i}(X)=0$, if $i>n$.

Let $\{n$-types $\}$ be the category with objects the n-types.
Given two n-types X and

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell.
(Frequenly omitted in model categories literature.)
2. $\pi_{i}(X)=0$, if $i>n$.

Let $\{n$-types $\}$ be the category with objects the n-types.
Given two n-types X and Y,

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell.
(Frequenly omitted in model categories literature.)
2. $\pi_{i}(X)=0$, if $i>n$.

Let $\{n$-types $\}$ be the category with objects the n-types.
Given two n-types X and Y, morphisms $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.

Well known theorem:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.

Well known theorem: The fundamental group functor

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$,

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types,

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem:
non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection. A relation for each crossing:

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Maps $f, f^{\prime}: X \rightarrow Y$, of 1-types, are pointed homotopic iff induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection. A relation for each crossing:

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$

Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}. (Any genus, any number of components, possibly non-orientable.) Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Theorem

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.
... To be explained later.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical.
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.
... To be explained later.
We will see 2-groups as being represented by crossed modules.

Crossed modules

Definition (Crossed module) A crossed module

Crossed modules

Definition (Crossed module)

Crossed modules

Definition (Crossed module)
A crossed module

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism)

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$.

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group".

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
$>$ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms, > such that the following conditions (Peiffer equations) hold:

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$,

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group.

Crossed modules

Definition (Crossed module)
A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms. We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.
- $\partial: A \rightarrow G$, map of abelian groups.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.
- $\partial: A \rightarrow G$, map of abelian groups. Action $g \triangleright_{\text {trivial }} a=a$.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) $\partial: E \rightarrow G$. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group. Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.
- $\partial: A \rightarrow G$, map of abelian groups. Action $g \triangleright_{\text {trivial }} a=a$.

Then $\mathcal{G}=\left(\partial: A \rightarrow G, \triangleright_{\text {trivial }}\right)$ is a crossed module.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E_{;}
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H)$.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. $(\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces.

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:
$\Pi_{2}(M, N, *)=(\partial$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=(\partial:
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow\right.
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *),\right.
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right)
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right)
$$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right)
$$

$-\Pi_{2}\left(D^{2}, S^{1}, *\right)=$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right) .
$$

- $\Pi_{2}\left(D^{2}, S^{1}, *\right)=$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right) .
$$

$-\Pi_{2}\left(D^{2}, S^{1}, *\right)=$

More examples of crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$
A group map $\partial: E \rightarrow G$. A left action \triangleright of G on E. With

$$
\begin{gathered}
\partial(g \triangleright e)=g \partial(e) g^{-1}, \text { where } g \in G, e \in E ; \\
\partial(e) \triangleright f=e f e^{-1}, \quad \text { where } e, f \in E .
\end{gathered}
$$

- Let H be any group. $G=\operatorname{Aut}(H) . \partial=\operatorname{Ad}: H \rightarrow \operatorname{Aut}(H)$. (Ad: $H \rightarrow \operatorname{Aut}(H), \triangleright)$ is a crossed module.
- Let $(M, N, *)$ be a pair of spaces. We have a crossed module:

$$
\Pi_{2}(M, N, *)=\left(\partial: \pi_{2}(M, N, *) \rightarrow \pi_{1}(N, *), \triangleright\right) .
$$

- $\Pi_{2}\left(D^{2}, S^{1}, *\right)=\left(\mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z}, \triangleright_{\text {trivial }}\right)$.

Free crossed modules

Let V be a set, G a group

Free crossed modules
Let V be a set,

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$.

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle
$$

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right)\right.
$$

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right)\right.
$$

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G\right.
$$

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Universal property

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Universal property
such that we have a
crossed module man.

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Universal property

such that we have a
crossed module map:

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Universal property

such that we have a crossed module map:

Free crossed modules

Let V be a set, G a group. Consider a set map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Universal property

Free crossed modules and Whitehead theorem

Free crossed modules and Whitehead theorem

Whitehead theorem:

Free crossed modules and Whitehead theorem

Whitehead theorem: If Y is obtained from X by attaching 2-cells,

Free crossed modules and Whitehead theorem

Whitehead theorem:
then $\Pi_{2}(Y, X)$ is free on the attaching maps

Free crossed modules and Whitehead theorem

Whitehead theorem: If Y is obtained from X by attaching 2-cells,
\square

Free crossed modules and Whitehead theorem

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_{2}(Y, X)$ is free on the attaching maps

Free crossed modules and Whitehead theorem

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_{2}(Y, X)$ is free on the attaching maps $\{2-$ cells $\} \xrightarrow{\partial_{0}} \pi_{1}(X)$.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$. Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow G^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow G^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$
Fact: We have category \{Cof-Crossed Modules\}

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category $\{$ Cof-Crossed Modules $\}$ / \cong.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules $\}$) is equivalent to \{2-types\}

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules\}) is equivalent to \{2-types\}

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules\}) is equivalent to $\{2$-types $\}$.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules\}) is equivalent to $\{2$-types $\}$.
I.e.:
the category
Cof-Crossed Modules\}/ \cong

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules\}) is equivalent to $\{2$-types $\}$.
I.e.:
the category $\{$ Cof-Crossed Modules $\} / \cong$
is equivalent to category of 2-types.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow \mathcal{G}^{\prime}\right), \exists$ notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
Fact: We have category \{Cof-Crossed Modules\}/ \cong. Objects are crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
Ho(\{Crossed Modules\}) is equivalent to $\{2$-types $\}$.
I.e.:
the category $\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$
Theorem Ho(\{Crossed Modules\}) $\cong\{2-$ types $\}$

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$ Theorem Ho $(\{$ Crossed Modules $\}) \cong\{2$-types $\}$

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$
Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$
Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e. $\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e. \{Cof-Crossed Modules $\}$ / \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e. $\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X,

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e. $\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e. $\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules $\}$ / \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules $\}$ / \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules $\}$ / \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes,

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules $\}$ / \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong$

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
$\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2 -types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow$ Cof-Crossed Modules $\} / \cong$.
Theorem (Whitehead / MacLane 1950 PNAS)

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow$ Cof-Crossed Modules $\} / \cong$.
Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π_{2} is an equivalence of categories.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2-type of X.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2-type of X. Hence

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right)
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2-type of X. Hence $\pi_{2}(X)=\operatorname{ker}(\partial)$,

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right) .
$$

- Let $\{$ CW-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2 -types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2-type of X. Hence $\pi_{2}(X)=\operatorname{ker}(\partial), \pi_{1}(X)=\operatorname{coker}(\partial)$,

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}(\{$ Crossed Modules $\}) \cong\{2$-types $\}$. I.e.
$\{$ Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2 -types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right) .
$$

- Let $\{$ CW-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2 -types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2 -type of X. Hence $\pi_{2}(X)=\operatorname{ker}(\partial), \pi_{1}(X)=\operatorname{coker}(\partial), k(X)=k\left(\Pi_{2}(X)\right)$.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

Let X be a reduced CW-complex.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}(1$-cells $)$: free group on the set of 1 -cells of X.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}(1$-cells $)$: free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2 -cells.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}$ (1-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}(1$-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2 -cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}(1$-cells $)$: free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}$ (1-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is obtained from the free crossed module $\Pi_{2}\left(X^{2}, X^{1}\right)$

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}$ (1-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is obtained from the free crossed module $\Pi_{2}\left(X^{2}, X^{1}\right)$ by imposing a crossed module 2 -relation for each 3 -cell.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}(1$-cells $)$: free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2 -cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is obtained from the free crossed module $\Pi_{2}\left(X^{2}, X^{1}\right)$ by imposing a crossed module 2 -relation for each 3 -cell.
$\Pi_{2}\left(X, X^{1}\right)=\mathcal{U}\left\langle\{2\right.$-cells $\left.\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right| \partial(c)=1$ for each $c \in\{3$-cells $\left.\}\right\rangle$.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}$ (1-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is obtained from the free crossed module $\Pi_{2}\left(X^{2}, X^{1}\right)$ by imposing a crossed module 2 -relation for each 3 -cell.
$\Pi_{2}\left(X, X^{1}\right)=\mathcal{U}\left\langle\{2\right.$-cells $\left.\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right| \partial(c)=1$ for each $c \in\{3$-cells $\left.\}\right\rangle$.
Also Π_{2} satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

$\Pi_{2}\left(S^{2}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \rightarrow 1 \\ c_{2} \rightarrow 1}}(\mathbb{Z},+)\right\rangle=\left(\mathbb{Z} 0 \mathbb{Z} \xrightarrow{(a, b) \rightarrow a+b}, \mathbb{Z}, D_{\text {thrival }}\right)$

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

$\Pi_{2}\left(S^{2}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \rightarrow 1 \\ c \rightarrow 1}}(\mathbb{Z},+)\right\rangle=\left(\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a, b) \rightarrow a+b} \mathbb{Z}, D_{\text {trivial }}\right)$

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

$\Pi_{2}\left(S^{2}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \mapsto 1 \\ c_{1} \mapsto 1}}(\mathbb{Z},+)\right\rangle=\left(\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a, b) \mapsto a+b} \mathbb{Z}, \triangleright_{\text {trivial }}\right)$
$\Pi_{2}\left(D^{3}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \mapsto 1 \\ c_{2} \mapsto 1}}(\mathbb{Z},+) \mid c_{1}=c_{2}\right\rangle=\left(\mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z}, \triangleright_{\text {trivial }}\right)$

Presentation of $\Pi_{2}\left(D^{3}, S^{1}\right)$ by generators and relations

$\Pi_{2}\left(S^{2}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \mapsto 1 \\ c_{2} \mapsto 1}}(\mathbb{Z},+)\right\rangle=\left(\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a, b) \mapsto a+b} \mathbb{Z}, \triangleright_{\text {trivial }}\right)$
$\Pi_{2}\left(D^{3}, S^{1}\right)=\mathcal{U}\left\langle\left\{c_{1}, c_{2}\right\} \xrightarrow{\substack{c_{1} \mapsto 1 \\ c_{2} \mapsto 1}}(\mathbb{Z},+) \mid c_{1}=c_{2}\right\rangle=\left(\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{\text {trivial }}\right)$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

The homotopy invariant $I_{\mathcal{G}}$.
Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

$$
\Pi_{2}\left(X, X^{1}\right) \quad=\Pi_{2}\left(Y, Y^{1}\right)
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \quad=\Pi_{2}\left(Y, Y^{1}\right)
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \quad=\Pi_{2}\left(Y, Y^{1}\right)
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right) \quad=\Pi_{2}\left(Y, Y^{1}\right)
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right)
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module.
Let X be a finite reduced CW-complex.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module.
Let X be a finite reduced CW-complex. The quantity:

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
I_{\mathcal{G}}(X)=
$$

$$
\# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right),
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
I_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
I_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $\mathscr{I}_{\mathcal{G}}(X)$ is a homotopy invariant of X.
Interpretation:

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$
I_{\mathcal{G}}(X)=\sum_{f \in \pi_{0}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right)\right)}
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.
Interpretation:

$$
I_{\mathcal{G}}(X)=\sum_{f \in \pi_{0}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right)\right)} \frac{1}{\# \pi_{1}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right), f\right)}
$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.
Interpretation:

$$
I_{\mathcal{G}}(X)=\sum_{f \in \pi_{0}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right)\right)} \frac{1}{\# \pi_{1}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right), f\right)}
$$

$B_{\mathcal{G}}$ is the classifying space of \mathcal{G}.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathscr{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.
Interpretation:

$$
I_{\mathcal{G}}(X)=\sum_{f \in \pi_{0}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right)\right)} \frac{1}{\# \pi_{1}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right), f\right)}
$$

$B_{\mathcal{G}}$ is the classifying space of $\mathcal{G} . \operatorname{TOP}\left(X, B_{\mathcal{G}}\right)$ function space.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface

(Any genus, any number of components.)

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface
Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.
(Any genus, any number of components.)

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface
Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.
(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ. To simplify, suppose critical points appear in increasing order.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface
Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.
(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface

Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.
(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.
To simplify, suppose critical points appear in increasing order.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface

 Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.
To simplify, suppose critical points appear in increasing order.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface

 Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.
To simplify, suppose critical points appear in increasing order. Let $\Sigma_{t}=\Sigma \cap\left(\mathbb{R}^{3} \times\{t\}\right)$, called the "still of Σ at t ".

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1 -handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$.

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$.

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$. (Hence a free crossed module generator of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$.)

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$. (Hence a free crossed module generator of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$.)
- A maximal point in Σ yields a 3-handle of $S^{4} \backslash \Sigma$.

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$. (Hence a free crossed module generator of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$.)
- A maximal point in Σ yields a 3-handle of $S^{4} \backslash \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ in order to get to $\Pi_{2}\left(M, M^{(1)}\right)$.)

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$. (Hence a free crossed module generator of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$.)
- A maximal point in Σ yields a 3-handle of $S^{4} \backslash \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ in order to get to $\Pi_{2}\left(M, M^{(1)}\right)$.)
A presentation for $\Pi_{2}\left(M, M^{(1)}\right)$ can be derived from a 'movie' of Σ.

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points Let $\Sigma \subset S^{4}$, oriented surface,

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$.
Locally, an oriented minimal point looks like:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points
Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.
Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like: \qquad

A minimal point yields a 1-handle of M.

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:
øー

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like: \qquad

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent.

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent.

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent. There are relations between generators at different times.

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent. There are relations between generators at different times. For $R 2$:

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent. There are relations between generators at different times. For $R 2$:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:
This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points Locally, an (oriented) saddle point looks like:

\qquad

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$$
\partial(e)=X^{-1} Y
$$

Bands are to be kept and evolve throughout the rest of the movie.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$$
\partial(e)=X^{-1} Y
$$

Bands are to be kept and evolve throughout the rest of the movie.

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$$
\partial(e)=X^{-1} Y
$$

Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

Maximal points

Locally, an oriented maximal point looks like:

Maximal points

Locally, an oriented maximal point looks like:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present.
Before maximal point, configuration looks like:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present.
Before maximal point, configuration looks like:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present.
Before maximal point, configuration looks like:

In this case the 2-relations are as below:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

In this case the 2-relations are as below:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

In this case the 2-relations are as below:

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

In this case the 2-relations are as below:

2-relation:

$$
e f\left(X^{-1} \triangleright e^{-1}\right)=1
$$

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

A movie for a knotted union Σ of two tori

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$\Sigma=\mathrm{Knotted} T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$$
X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right) .
$$

$\Sigma=\mathrm{Knotted} T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$$
X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right) .
$$

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$$
X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right) .
$$

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; \quad e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \rightarrow 1 \\ \wp \rightarrow|X|, Y\}}} \mathcal{H}(\{X, Y\}) \mid f=X \triangleright f\rangle
$$

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M}(\{X, Y\})|f=X \triangleright f\rangle
$$

$$
\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle \text {, free abelian group on } X \text { and } Y \text {. }
$$

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M}(\{X, Y\})|f=X \triangleright f\rangle
$$

$$
\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle \text {, free abelian group on } X \text { and } Y .
$$

Quotient of the free module over the algebra of Laurent

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent
polynomials in X and Y, on the generators e, f, g,

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g,

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation $f=X . f$.

$\Sigma=\operatorname{Knotted} T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation $f=X . f$.
If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$\Sigma=\operatorname{Knotted} T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation $f=X . f$.
If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$$
I_{\mathcal{G}}(M)=\#\{(X, Y, f) \in G \times G \times E \mid X Y=Y X, f=X \triangleright f\}(\# E) .
$$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$

Final stage:

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$

Final stage:

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$\partial(e)=1$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$$
\begin{aligned}
& \partial(e)=1 \\
& \partial(f)=1
\end{aligned}
$$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$\partial(e)=1$
$\partial(f)=1$
$\partial(g)=Y X Y^{-1} X^{-1}$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$$
\begin{aligned}
& \partial(e)=1 \\
& \partial(f)=1 \\
& \partial(g)=Y X Y^{-1} X^{-1} \\
& \partial(h)=X Y X^{-1} Y^{-1}
\end{aligned}
$$

$(Y \triangleright e) e^{-1}\left(X \triangleright f^{-1}\right) f=1$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$\partial(e)=1$
$\partial(f)=1$
$\partial(g)=Y X Y^{-1} X^{-1}$
$\partial(h)=X Y X^{-1} Y^{-1}$
$(Y \triangleright e) e^{-1}\left(X \triangleright f^{-1}\right) f=1$

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\left\langle\{e, f, g, h\} \xrightarrow{\substack{e \rightarrow 1 \\
\begin{subarray}{c}{\begin{subarray}{c}{f \\
h \rightarrow[X, X]} }} \end{subarray}} \\
{\longrightarrow}\end{subarray}} \mathcal{Y}(X, Y) \left\lvert\, \begin{array}{c}
(Y \triangleright e) e^{-1} \\
\left(X_{\triangleright f-1}\right) f \\
=1
\end{array}\right.\right\rangle
$$

$$
\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle \text {, free abelian group on } X \text { and } Y \text {. }
$$

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\left\langle\{e, f, g, h\} \xrightarrow{\substack{e \rightarrow 1 \\
g \mapsto \rightarrow(X) X] \\
h \mapsto[X]}} \mathcal{F}(X, Y) \left\lvert\, \begin{array}{c}
(Y \triangleright e) e^{-1} \\
\left(X \triangleright f f^{-1}\right) f \\
=1
\end{array}\right.\right\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\left\langle\{e, f, g, h\} \xrightarrow{\substack{e \rightarrow 1 \\
\begin{subarray}{c}{\begin{subarray}{c}{f \\
h \rightarrow[X, X]} }} \end{subarray}} \\
{\longrightarrow}\end{subarray}} \mathcal{Y}(X, Y) \left\lvert\, \begin{array}{c}
(Y \triangleright e) e^{-1} \\
\left(X_{\triangleright f-1}\right) f \\
=1
\end{array}\right.\right\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$$
\pi_{2}(M)=\frac{\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, m\}}{\langle(Y \triangleright e)-e-(X \triangleright f)+f=0\rangle} .
$$

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\left\langle\{e, f, g, h\} \xrightarrow{\substack { e \rightarrow 1 \\
\begin{subarray}{c}{f \rightarrow[Y \\
h \mapsto[X]{ e \rightarrow 1 \\
\begin{subarray} { c } { f \rightarrow [Y \\
h \mapsto [X] } }\end{subarray}} \mathcal{Y}(X, Y) \left\lvert\, \begin{array}{c}
(Y \triangleright e) e^{-1} \\
\left(X \triangleright f f^{-1}\right) f \\
=1
\end{array}\right.\right\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$$
\pi_{2}(M)=\frac{\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, m\}}{\langle(Y \triangleright e)-e-(X \triangleright f)+f=0\rangle} .
$$

If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence
$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$$
\pi_{2}(M)=\frac{\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, m\}}{\langle(Y \triangleright e)-e-(X \triangleright f)+f=0\rangle} .
$$

If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$$
\mathcal{I}_{\mathcal{G}}(M)=\#\left\{(X, Y, e, f) \in G^{2} \times\left. E^{2}\right|_{(Y \triangleright e)-e-(X \triangleright f)+f=0} ^{X Y=Y X}\right\} .
$$

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence
$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$$
\pi_{2}(M)=\frac{\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, m\}}{\langle(Y \triangleright e)-e-(X \triangleright f)+f=0\rangle} .
$$

If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$$
I_{\mathcal{G}}(M)=\#\left\{(X, Y, e, f) \in G^{2} \times\left. E^{2}\right|_{(Y \triangleright e)-e-(X \triangleright f)+f=0} ^{X Y=Y X}, \quad .\right.
$$

$I_{\mathcal{G}}$ can distinguish Σ^{\prime} from $\Sigma=$ knotted $T^{2} \sqcup T^{2}$ above.

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a finite crossed module.
Recall $I_{\mathcal{G}}(M)=\frac{1}{\# E^{b_{1}\left(M^{1}\right)}} \# \operatorname{hom}\left(\Pi_{2}\left(M, M^{1}\right), \mathcal{G}\right)$

- The invariant of knotted surfaces:

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a finite crossed module.
Recall $I_{\mathcal{G}}(M)=\frac{1}{\# E^{b_{1}\left(M^{1}\right)}} \# \operatorname{hom}\left(\Pi_{2}\left(M, M^{1}\right), \mathcal{G}\right)$

- The invariant of knotted surfaces:

is able to separate between pairs of knotted surfaces with different knot groups.

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a finite crossed module.
Recall $I_{\mathcal{G}}(M)=\frac{1}{\# E^{b_{1}\left(M^{1}\right)}} \# \operatorname{hom}\left(\Pi_{2}\left(M, M^{1}\right), \mathcal{G}\right)$

- The invariant of knotted surfaces:

$$
\Sigma \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)
$$

is able to separate between pairs of knotted surfaces with different knot groups.

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a finite crossed module.
Recall $I_{\mathcal{G}}(M)=\frac{1}{\# E^{b_{1}\left(M^{1}\right)}} \# \operatorname{hom}\left(\Pi_{2}\left(M, M^{1}\right), \mathcal{G}\right)$

- The invariant of knotted surfaces:

$$
\Sigma \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)
$$

is able to separate between pairs of knotted surfaces with different knot groups.

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a finite crossed module.
Recall $I_{\mathcal{G}}(M)=\frac{1}{\# E^{b_{1}\left(M^{1}\right)}} \# \operatorname{hom}\left(\Pi_{2}\left(M, M^{1}\right), \mathcal{G}\right)$

- The invariant of knotted surfaces:

$$
\Sigma \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)
$$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G}.)

Welded knots

Recall that Welded knots are virtual knot diagrams like:

Welded knots

Recall that Welded knots are virtual knot diagrams like:

Welded knots

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

Welded knots

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

Welded knots

Recall that Welded knots are virtual knot diagrams like:

Modulo relations:

The tube map

- Recall Shin Satoh's "tube-map"

Tube

The tube map

- Recall Shin Satoh's "tube-map"

Tube: \{Welded links\}

The tube map

- Recall Shin Satoh's "tube-map"

Tube: \{Welded links\}

The tube map

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$

The tube map

- Recall Shin Satoh's "tube-map"

$$
\text { Tube : }\{\text { Welded links }\} \rightarrow\left\{\text { Knotted Tori in } S^{4}\right\}
$$

The tube map

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$

S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), 531-542.

The tube map

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$

S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), 531-542.

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: \{Welded links\}

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$.
The welded knot invariant

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$ The welded knot invariant

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$.

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

$$
\text { Tube : }\{\text { Welded links }\} \rightarrow\left\{\text { Knotted Tori in } S^{4}\right\}
$$

Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G, a, b \in A$.

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G, a, b \in A$.
Proof essentially in:

Biquandles and $I_{\mathcal{G}}$

- Recall Shin Satoh's "tube-map"

Tube: $\{$ Welded links $\} \rightarrow\left\{\right.$ Knotted Tori in $\left.S^{4}\right\}$
Theorem: Suppose $\mathcal{G}=(A \rightarrow G, \triangleright)$ is finite and $\partial(A)=\left\{1_{G}\right\}$. The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \operatorname{Tube}(K)\right)
$$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G, a, b \in A$. Proof essentially in:
JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Comp. Math. 2008

Biquandles and $I_{\mathcal{G}}$
The biquandle below (A an abelian G-module):

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

has since been revisited in:

- Bullivant A, Martin P. and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.
Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

has since been revisited in:

- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.

> Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological
> (3+1)-dimensional Higher Gauge Theory.

representation to loop braid groups. arXiv:1912.11898

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

has since been revisited in:

- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.
Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

has since been revisited in:

- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.
Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.
- Damiani C, JFM , Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

Biquandles and $I_{\mathcal{G}}$

The biquandle below (A an abelian G-module):

has since been revisited in:

- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. ATMP 2019.
Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.
- Damiani C, JFM , Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.
A higher order version of Artin representation defined.

THANKS!

