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The Symplectic Embedding Problem

When is there a symplectic embedding (My, w1) < (Ma, w2)?

» Tremendously difficult question!

» Major driving force in Symplectic Topology.

> Goes back to Gromov's celebrated nonsqueezing theorem

Gromov’ s non squeezing theorem (1985):

If and only if
R=r

BZM(R)
Z"(r) = B (r)xC" !

N)
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The McDuff-Schlenk Infinite Fibonacci stairs

7T|21|2 + 7T|22|2

E(a,b):= {(21,22) e C? | b

<1}
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The McDuff-Schlenk Infinite Fibonacci stairs

|72 7|z|?
E(a,b)::{(zl,22)€C2| ‘al| + |b2| <1}

Define the ellipsoid embedding function to the ball by

cla) == inf{y >0 E(La) B4(y)}
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The McDuff-Schlenk Infinite Fibonacci stairs

|72 7|z|?
E(a,b)::{(zl,22)€C2| |al| + |b2| <1}

Define the ellipsoid embedding function to the ball by
c(a) == inf{y >0 E(1,a) < B4(y)}

Note: One has c(a) > y/a by the volume obstruction

a=2 ‘“Symplectic Rigidity"

| ‘ : a=4 "Symplectic Flexibility"
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Question: For an open set U C IR* find the optimal r, R such that

B*r] < U < B[R]
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Symplectic Inner and Outer Radii

Question: For an open set U C IR* find the optimal r, R such that

B*[r] < U < B[R]

Note: Very little is known already in the case of a rotated cube.

Question: Which class of domains is “natural" to study?
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Consider the Lagrangian splitting: R?" = R © RY
Let K C RZ be a centrally symmetric convex body «~ ||x||
Let T C IR} be a centrally symmetric convex body «~ ||y|| T

Consider IR?" as the p-sum of two normed spaces, i.e.,

P AR
Ix[I% +lyll5)  forl<p<oo

Ix. 0l =
max{[[xllic. Iy}, for p = oo
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Inner and Outer Radii of the £,-sum of Disks
Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let Xp = {(x,y) € RZ xRZ | [x|P +|y[P <1}, for1 < p <o

Denote by r(Xp) and R(X,) the symplectic inner and outer radii

2n(H)YP, for1 <p<2
r(Xp) = { 4r+3)?

W, for2§p
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Inner and Outer Radii of the £,-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let Xp = {(x,y) € RZ xRZ | [x|P +|y[P <1}, for1 < p <o

Denote by r(Xp) and R(X,) the symplectic inner and outer radii

2n(H)YP, for1 <p<2

r(Xp) = { ar+1y
1"(17+§)’ for2 <p
152
%, for1<p<?2
P
R(Xp) = Q2 (2)1/p, for2 < p<9/2

“complicated function of p" , for9/2 <p

Remark: The case p = oo was previously studied by V. Ramos,

and is closely related with billiard dynamics! s
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A toric domain X, in C? is the preimage of the region Q) C ]Rzzo
under the map (z1, z) — (7t|z1|?, 7| 22]?).

11/23



Toric Domains

A toric domain X, in C? is the preimage of the region Q) C ]Rzzo
under the map (z1, z) — (7t|z1|?, 7| 22]?).

Example (Cylinder) Example (Ellipsoid)
m|z|? m|22[?
b
5 7|z 3 m|z[?
Z(a) := {(z1,2) € C?|w|z1|* < a} E(a,b) := {(21,22) eC?| W‘ZTHZ + Lﬁlz < 1}
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Toric Domains

A toric domain X, in C? is the preimage of the region Q) C ]Rzzo
under the map (z1, z) — (7t|z1|?, 7| 22]?).

Example (Cylinder) Example (Ellipsoid)
7|z m|22[?
b
5 7|z 3 m|z[?
2@) = {(2) Clnaf <a}  Eb)={(zz) e | T2E 4 gl <1}

Theorem (O, Ramos)
Xp={(xy) EREXR] | [x|P+|y[P <1}, for1<p<oo
is symplectomorphic to a convex/concave toric domain Xa,-
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The £,-sum of Disks as a Toric Domain
Theorem (O, Ramos)

Xp < Xa, where Q)p C 1R220 is bounded by the axes and the curve

{(27rv—|—gp(v),gp(v)), for v € [0, (1/4)"/P] }
(gp(—v), —27v +gp(—v)), for v e [—(1/4)Y/7P,0]

where g, : [0, (1/4)'/P] — R is given by

% —7vP t/p v2
—2/ (1—rP)2/P — —dr.
% 1/vap )i/p r

12 3 4 5

(a)p=1 (b)p=2 (c)p=6

Figure 1: The set €, for different values of p
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The Rigidity and Flexibility of the Embeddings

Let X; and X> be subdomains in R*.

> X1 <> X, is said to be rigid if Xi < aXo < X1 C aXo

> X <y X> is said to be torically rigid if X; = Xq,. and the
embedding Xq, < Xq, is rigid.

> X; <> Xp is said to be non rigid if neither (1) or (2).

Theorem (O, Ramos)

> B*[r] < X, is torically rigid for 1 < p 5%

> B*[r] S X, is rigid for 1 < p <2 e\ doeertonst o
P giatorl=p= 2<=p<=9/2

» X, < B*[r] is torically rigid for 1 < p < 3 °f

» X, < B4[r] is rigid for2 < p < 3 ‘I

> X, <> B*[r] is non rigid for 3 < p 't
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Theorem (Arnold-Liouville)

» If ¢ regular, and F~1(c) comp. & conn., then F~*(c) ~ T".

» U C M open s.t. F(U) simply connected without crit. values.
For c € F(U), let {7%,..., 7S} generating Hi(F~1(c)), and
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Theorem (Arnold-Liouville)

» If ¢ regular, and F~1(c) comp. & conn., then F~*(c) ~ T".

» U C M open s.t. F(U) simply connected without crit. values.
For c € F(U), let {7%,..., 7S} generating Hi(F~1(c)), and

q)(c):( A/ /\), w=dA on U.
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Then, ¢ is a diff with image B, and there is symp ® such that
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Integrable systems and toric domains
Let (M,w), and F = (Hi,...,Hs) : M = R" s.t. {H;, H;} =0.

Theorem (Arnold-Liouville)

» If ¢ regular, and F~1(c) comp. & conn., then F~*(c) ~ T".

» U C M open s.t. F(U) simply connected without crit. values.
For c € F(U), let {7%,..., 7S} generating Hi(F~1(c)), and

p(c) = ( A/ /\), w=dA on U.
71 7h
Then, ¢ is a diff with image B, and there is symp ® such that
U —% BxT"
JF Jm
F(U) —*- B
Remark: B C ]Rzzo and Xpg is a toric domain!
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The £,-sum of Disks as a Toric Domain

Let Xp = {(x,y) € RZX R | [x|P+[y[P <1}, for 1< p < oo

We have one natural Hamiltonian function
Hp(x,y) = [x|P +[y[?
A commuting Hamiltonian function is the angular momentum:
V(x,y) =x®@y = y1xo — yaxa

Note: One should be careful with certain regularity issues when
applying the Arnold-Liouville theorem in this case!

Conclusion: By a careful computation of the action-angle

. . . s .
coordinates, one gets the identification X, ~ XQP, where XQP is
the concave/convex domain mentioned above.

17/23



Toric Domains in Disguise

18/23
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» The Lagrangian bidisc D& D C RZ ® RZ (the domain Xo,) is
symplectomorphic to a concave toric domain (Ramos, 2015).
Here the dynamics on the boundary 9(D @ D) correspond to
billiard dynamics in the disc D.
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Toric Domains in Disguise

» The Lagrangian bidisc D& D C RZ ® RZ (the domain Xo,) is
symplectomorphic to a concave toric domain (Ramos, 2015).
Here the dynamics on the boundary 9(D @ D) correspond to
billiard dynamics in the disc D.

» The Lagrangian product of a hypercube and a “symmetric"
region in IR?" is symplectomorphic to a toric domain (Ramos
and Sepe, 2019).

» The Lagrangian product of an equilateral triangle and a
sufficiently symmetric region in IR? is symplectomorphic to a
toric domain (O-Ramos-Sepe, in progress).

Question: Are there convex sets which are not symplectomorphic
to toric domains?
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Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: R*” = R} ® R}

Let K C R? be a centrally symmetric convex body «~ ||x||k
Let T C R) be a centrally symmetric convex body «~ ||y| 7
Consider the Lagrangian product K x T C RE® R}

The dynamics on d(K x T) may be interpreted as Finsler Bililard
dynamics, where K plays the role of a billiard table, and T defines
a Minkowski geometry, which controls the billaird dynamics in K.
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Characteristic foliation on d(K x T)

Consider H(x,y) = max{||x||. |lyllT} (singular function)
The 1-level set is 0(K x T).

(VH)’HT 0), (x,y)€int(K)xaT,

Xp(x,y) = (0 —V||x||x). (X y) € aK >< int(T),
(?,?) (x,y) K)xa(T)
w2 = V2|

vi=Vlpllr

ws = V||gs]lk

= Vlpallr
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Let K C RY be a centrally symmetric convex body «~ || x|k
Let T C IR} be a centrally symmetric convex body «~ ||y|| 7
Consider the Lagrangian product K x T C RE® R}

Remark I: Lagrangian products is a “natural" class to test
symplectic embedding questions, since one (sometimes) has some
“geometric understanding" of the corresponding dynamics.

Remark Il: In particular, if one can show that the symplectic
inradius of K x K* is 4, this would settle an 80-years old open
conjecture in convex geometry known as “Mahler Conjecture"

(but this is a story for a different lecture...).

THANK YOU VERY MUCH!
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