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Motivation

Arrow plot

Figure: Silva-Fortes et al. (2012)
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ROC (Receiver Operating Characteristic)

Evaluates the accuracy of a binary classification system.
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ROC curve

The ROC curve results from the
relationship between the
proportion of true positives
(sensitivity) and proportion of
false positives (1-specificity)
obtained for each cut-o� point
of the variable of decision.

These proportions depend from
the classification rule.
Traditionally high values of the
decision variable, correspond to
the presence of the artifact of
interest.
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AUC - Area Under Curve

Index of global accuracy
evaluation.
AUC ∈ [0.5,1].
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ROC curve in the Arrow plot
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Special genes vs. AUC

Special Genes
Genes non DE

AUC≈ 0.5.
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OVL - Overlapping Coefficient

OVL is the common area
shared by the two densities,
Weitzman (1970).
OVL(X, Y) =∫ +∞
−∞ min[fX(c),gY(c)]dc

OVL ∈ [0, 1]
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OVL vs. AUC
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OVL vs. AUC
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Arrow Plot

Figure: Silva-Fortes et al. (2012)
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Arrow Plot

Figure: Silva-Fortes et al. (2012)
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Methodology



Simulation Study
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Simulation Study

Scenario Control Experimental OVL AUC
Bi-normal N(0,1) N(0,0.1) 0.2 0.5
µ fixed N(0,1) N(0,0.4) 0.4 0.5

N(0,1) N(0,2.4) 0.6 0.5
N(0,1) N(0,1.5) 0.8 0.5

Bi-normal N(0,1) N(2.55,1) 0.2 0.96
σ fixed N(0,1) N(1.65,1) 0.4 0.89

N(0,1) N(1.04,1) 0.6 0.77
N(0,1) N(0.5,1) 0.8 0.64

Bi-Lognormal LN(0,1) LN(0,0.1) 0.2 0.5
LN(0,1) LN(1.65,1) 0.4 0.87
LN(0,1) LN(1.04,1) 0.6 0.77
LN(0,1) LN(0.5,1) 0.8 0.64

Bi-Exponential Exp(1) Exp(0.05) 0.2 0.95
Exp(1) Exp(0.15) 0.4 0.87
Exp(1) Exp(0.32) 0.6 0.76
Exp(1) Exp(0.58) 0.8 0.63



Some considerations

Consider fX e gY the probability density functions (PDF)
associated to the controls and experimental condition
respectively;

FX e GY their related distribution functions;
Each cut-o� point t defines a binary classification rule and
FX(t) > GY(t).
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Monte Carlo simulations

For each scenario, samples of equal dimensions were
simulated in the two conditions for n = 15, 30, 50, 100.
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Non-parametric estimation methods of AUC

Empirical
The empirical distribution functions FX e FY are given
respectively by:

F̂X(t) =
1
n0

n0∑
j=1

I[Xj ≤ t], (1)

F̂Y(t) =
1
n1

n1∑
k=1

I[Yk ≤ t], (2)

where I is the indicator function.
The empirical estimator of the AUC corresponds to the
Mann-Whitney statistic (McNeil e Hanley, 1984):

ÂUC =
1

n0n1

n0∑
j=1

n1∑
k=1

(
I[Xj < Yk] +

1
2 I[Xj = Yk]

)
. (3)
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Non-parametric estimation methods of AUC

Kernel
f̃X and f̃Y represent the kernel estimators of fX e fY :

f̃X(t) =
1

n0h0

n0∑
i=1

K
(
t− Xi
h0

)
, (4)

f̃Y(t) =
1

n1h1

n1∑
j=1

K
( t− Yj

h1

)
. (5)

Lloyd (1997) showed that when a Gaussian kernel is considered,
the AUC is estimated as:

ÃUC =
1

n0n1

n0∑
i=1

n1∑
j=1

Φ

(
Yj − Xi√
h2

0 + h2
1

)
. (6)
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Non-parametric estimation methods of AUC

Estimation methods for the bandwith h
[BW = nrd0] Silverman (1992) [12] considers the following
expression as an optimal bandwidth when the kernel is
Gaussian:

h =

(
4
3

) 1
5
×min

(
s, R

1.34

)
n−

1
5 , (7)

where R is the interquartile range and s the empirical
standard deviation.
[BW = nrd] Scott (1992) considers the following expression
when a Gaussian kernel is used.:

h = 1.06× sn−
1
5 , (8)

[BW = SJ] Sheather e Jones (1991) proposed the plug-in
method solve-the-equation for the optimal bandwidth.
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Parametric Bootstrap estimates

It was considered B=1000 bootstrap replicates in each
scenario.
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Bootstrap estimator of AUC

ÂUCB =
1

1000

1000∑
i=1

ÂUC
∗
i , (9)

where ÂUC
∗
i is the AUC estimate (empirical or kernel) in each

bootstrap replicate.
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Bootstrap estimator of the standard error (SE)
of the AUC

ŝeB(ÂUC) =

√√√√ 1
999

1000∑
i=1

( ÂUC
∗
i − ÂUCB)

2
. (10)
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Bootstrap estimator of the bias of the bootstrap
AUC

The bootstrap estimate of the bias of ÂUC is given by:

v̂iésB(ÂUC) = ÂUCB − AUC, (11)

where AUC corresponds to the exact value.
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Bootstrap estimator of the root mean squared
error (RMSE) of the AUC

r̂mseB(ÂUC) =

√√√√ 1
1000

1000∑
i=1

( ÂUC
∗
i − AUC)

2
. (12)
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Scheme of the simulation procedure

Figure: Silva et al. (2020)
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Results



Boostrap AUC

Figure: Silva et al. (2020)
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AUC Bias

Figure: Silva et al. (2020)
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SE of AUC

Figure: Silva, C. et al. (2020)
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Conclusions



Conclusions

Non-parametric methods for estimating AUC showed similar
behaviors both in terms of bias and precision;

When n increases the bias decreases and the precision
increases.
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Considering high values of OVL (≥ 0.6)

Greater variability in the results obtained for bias.

Less variability in results obtained for accuracy.
For small n dimensions there is a tendency to overestimate
AUC when Bi-Normal and Bi-Lognormal distributions are
considered and an underestimation for Exponential
distributions.
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Considering low values of OVL (≤ 0.4)

Tendency for AUC be underestimate.

Less precision when considering Bi-Normal distributions
when mean value is fixed.
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Conclusions

Precision is higher for small values of OVL, however this is
not true when AUC values are around 0.5 and are obtained
from distributions with the same mean value, leading to not
proper ROC curves.

Figure: Silva et al. (2020)
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Future Work

Simulations considering discrete distributions.
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