SYZ mirror symmetry for del Pezzo surfaces and rational elliptic surfaces

Tristan Collins

MIT

Joint w/ A. Jacob and Y.-S. Lin

Tristan Collins (MIT)

SYZ for del Pezzo and RES

October 20, 2020 1 / 38

$1\,$ del Pezzo surfaces and rational elliptic surfaces.

э

- $1\,$ del Pezzo surfaces and rational elliptic surfaces.
- 2 Mirror symmetry and divisor compliments.

< 1 k

э

- $1\,$ del Pezzo surfaces and rational elliptic surfaces.
- 2 Mirror symmetry and divisor compliments.
- 3 SYZ fibrations on del Pezzo pairs and applications.

- 1 del Pezzo surfaces and rational elliptic surfaces.
- 2 Mirror symmetry and divisor compliments.
- 3 SYZ fibrations on del Pezzo pairs and applications.
- 4 Calabi-Yau metrics on rational elliptic surfaces with an I_k fiber.

- 1 del Pezzo surfaces and rational elliptic surfaces.
- 2 Mirror symmetry and divisor compliments.
- 3 SYZ fibrations on del Pezzo pairs and applications.
- 4 Calabi-Yau metrics on rational elliptic surfaces with an I_k fiber.
- 5 SYZ fibrations on a rational elliptic surface with an I_k fiber.

- 1 del Pezzo surfaces and rational elliptic surfaces.
- 2 Mirror symmetry and divisor compliments.
- 3 SYZ fibrations on del Pezzo pairs and applications.
- 4 Calabi-Yau metrics on rational elliptic surfaces with an I_k fiber.
- 5 SYZ fibrations on a rational elliptic surface with an I_k fiber.
- 6 SYZ mirror symmetry for del Pezzo surfaces, rational elliptic surfaces and Hodge numbers.

 A projective surface Y is said to be del Pezzo if the anti-canonical bundle is ample ; -K_Y > 0.

< A >

- A projective surface Y is said to be del Pezzo if the anti-canonical bundle is ample ; -K_Y > 0.
- By classification of surfaces Y is either P¹ × P² or obtained from P² by blowing up 0 ≤ j < 9 (generic) points (for j ≠ 1). In this case Y has degree K²_Y = k = 9 − j

- A projective surface Y is said to be del Pezzo if the anti-canonical bundle is ample ; -K_Y > 0.
- By classification of surfaces Y is either P¹ × P² or obtained from P² by blowing up 0 ≤ j < 9 (generic) points (for j ≠ 1). In this case Y has degree K²_Y = k = 9 − j
- For degree k ≠ 8 there is one deformation family of del Pezzo surfaces.

- A projective surface Y is said to be del Pezzo if the anti-canonical bundle is ample ; -K_Y > 0.
- By classification of surfaces Y is either P¹ × P² or obtained from P² by blowing up 0 ≤ j < 9 (generic) points (for j ≠ 1). In this case Y has degree K²_Y = k = 9 − j
- For degree k ≠ 8 there is one deformation family of del Pezzo surfaces.
- For degree 8 there are two families given by the first Hirzebruch surface $\mathrm{Bl}_{\rho}\mathbb{P}^2$ and $\mathbb{P}^1\times\mathbb{P}^1$.

- A projective surface Y is said to be del Pezzo if the anti-canonical bundle is ample ; -K_Y > 0.
- By classification of surfaces Y is either P¹ × P² or obtained from P² by blowing up 0 ≤ j < 9 (generic) points (for j ≠ 1). In this case Y has degree K²_Y = k = 9 − j
- For degree k ≠ 8 there is one deformation family of del Pezzo surfaces.
- For degree 8 there are two families given by the first Hirzebruch surface $\operatorname{Bl}_{\rho}\mathbb{P}^2$ and $\mathbb{P}^1\times\mathbb{P}^1$.
- All del Pezzo surfaces admit a smooth divisor $D \in |-K_Y|$.

 A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.

- A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.
- Equivalently, Y is obtained from \mathbb{P}^2 by blowing up the base points of a pencil of cubics.

- A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.
- Equivalently, Y is obtained from \mathbb{P}^2 by blowing up the base points of a pencil of cubics.
- The anti-canonical bundle $-K_Y$ is effective, and any fiber of π is an element of $|-K_Y|$.

- A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.
- Equivalently, Y is obtained from \mathbb{P}^2 by blowing up the base points of a pencil of cubics.
- The anti-canonical bundle $-K_Y$ is effective, and any fiber of π is an element of $|-K_Y|$.
- The singular fibers of $\pi: Y \to \mathbb{P}^1$ are classified by Kodaira.

- A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.
- Equivalently, Y is obtained from \mathbb{P}^2 by blowing up the base points of a pencil of cubics.
- The anti-canonical bundle $-K_Y$ is effective, and any fiber of π is an element of $|-K_Y|$.
- The singular fibers of $\pi: Y \to \mathbb{P}^1$ are classified by Kodaira.
- A singular fiber "of type *I_k*" consists of a wheel of *k* (−2) rational curves (*k* ≥ 2), a nodal rational curve if *k* = 1, and a smooth fiber if *k* = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A rational elliptic surface (RES) is a surface Y admitting a relatively minimal elliptic fibration π : Y → P¹ that has a global holomorphic section σ : P¹ → Y.
- Equivalently, Y is obtained from \mathbb{P}^2 by blowing up the base points of a pencil of cubics.
- The anti-canonical bundle $-K_Y$ is effective, and any fiber of π is an element of $|-K_Y|$.
- The singular fibers of $\pi: Y \to \mathbb{P}^1$ are classified by Kodaira.
- A singular fiber "of type *I_k*" consists of a wheel of *k* (-2) rational curves (*k* ≥ 2), a nodal rational curve if *k* = 1, and a smooth fiber if *k* = 0.picture time!.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

del Pezzo surfaces and rational elliptic surfaces as Calabi-Yau pairs

Let Y be a RES or a del Pezzo surface, and D ∈ | − K_Y| a divisor. If s ∈ H⁰(Y, −K_Y) is a holomorphic section with {s = 0} = D, then ¹/_s is a holomorphic (2,0) form on Y \ D with a simple pole on D.

del Pezzo surfaces and rational elliptic surfaces as Calabi-Yau pairs

- Let Y be a RES or a del Pezzo surface, and D ∈ | − K_Y| a divisor. If s ∈ H⁰(Y, −K_Y) is a holomorphic section with {s = 0} = D, then ¹/_s is a holomorphic (2,0) form on Y \ D with a simple pole on D.
- Therefore, $Y \setminus D$ is a natural *non-compact* Calabi-Yau manifold.

del Pezzo surfaces and rational elliptic surfaces as Calabi-Yau pairs

- Let Y be a RES or a del Pezzo surface, and D ∈ | − K_Y| a divisor. If s ∈ H⁰(Y, −K_Y) is a holomorphic section with {s = 0} = D, then ¹/_s is a holomorphic (2,0) form on Y \ D with a simple pole on D.
- Therefore, $Y \setminus D$ is a natural *non-compact* Calabi-Yau manifold.
- The existence of a Ricci-flat Kähler metric does not follow from Yau's theorem, since Y \ D is non-compact.

• Mirror symmetry was originally discovered in string theory as a mysterious duality between different Calabi-Yau manifolds.

・ 同 ト ・ ヨ ト ・ ヨ

- Mirror symmetry was originally discovered in string theory as a mysterious duality between different Calabi-Yau manifolds.
- A central feature of this duality was that if X, X are mirror dual Calabi-Yau manifolds, then

{ Complex geometry on X} \longleftrightarrow { Symplectic geometry on \check{X} } and vice versa.

- Mirror symmetry was originally discovered in string theory as a mysterious duality between different Calabi-Yau manifolds.
- A central feature of this duality was that if X, X are mirror dual Calabi-Yau manifolds, then

{ Complex geometry on X} \longleftrightarrow { Symplectic geometry on \check{X} }

and vice versa.

• For example, an instantiation of this principle is

{ Cplx moduli of CY on X} \longleftrightarrow { Symp. moduli of CY on \check{X} }

comparing dimensions (using Tian-Todorov's Theorem, and Yau's solution of the Calabi conjecture) gives

$$H^{n-1,1}(X) = H^{1,1}(\check{X}).$$

- 4 回 ト 4 三 ト 4 三 ト

- Mirror symmetry was originally discovered in string theory as a mysterious duality between different Calabi-Yau manifolds.
- A central feature of this duality was that if X, X are mirror dual Calabi-Yau manifolds, then

{ Complex geometry on X} \longleftrightarrow { Symplectic geometry on \check{X} }

and vice versa.

• For example, an instantiation of this principle is

{ Cplx moduli of CY on X} \longleftrightarrow { Symp. moduli of CY on \check{X} }

comparing dimensions (using Tian-Todorov's Theorem, and Yau's solution of the Calabi conjecture) gives

$$H^{n-1,1}(X) = H^{1,1}(\check{X}).$$

• This is a particular case of mirror symmetry for the Hodge diamonds of X, \check{X} .

Tristan Collins (MIT)

• There are now several interpretations of mirror symmetry, which live at different levels of detail.

э

< □ > < 同 > < 回 > < 回 > < 回 >

- There are now several interpretations of mirror symmetry, which live at different levels of detail.
- Hodge theoretic mirror symmetry asks for pairs of Calabi-Yau manifolds with mirror symmetric hodge diamonds.

- There are now several interpretations of mirror symmetry, which live at different levels of detail.
- Hodge theoretic mirror symmetry asks for pairs of Calabi-Yau manifolds with mirror symmetric hodge diamonds.
- Homological mirror symmetry, proposed by Kontsevich, says that, for mirror symmetric pairs

$$D^bCoh(X) = D^bFuk(\check{X}).$$

- There are now several interpretations of mirror symmetry, which live at different levels of detail.
- Hodge theoretic mirror symmetry asks for pairs of Calabi-Yau manifolds with mirror symmetric hodge diamonds.
- Homological mirror symmetry, proposed by Kontsevich, says that, for mirror symmetric pairs

$$D^bCoh(X) = D^bFuk(\check{X}).$$

• The basic proposal for how to *construct* mirror symmetric pairs is due to Strominger-Yau-Zaslow (SYZ).

- There are now several interpretations of mirror symmetry, which live at different levels of detail.
- Hodge theoretic mirror symmetry asks for pairs of Calabi-Yau manifolds with mirror symmetric hodge diamonds.
- Homological mirror symmetry, proposed by Kontsevich, says that, for mirror symmetric pairs

$$D^bCoh(X) = D^bFuk(\check{X}).$$

- The basic proposal for how to *construct* mirror symmetric pairs is due to Strominger-Yau-Zaslow (SYZ).
- There are programs of Gross-Siebert and Kontsevich-Soibelman aimed at using the SYZ philosophy to construct (often formal) algebraic mirrors.

< □ > < 同 > < 三 > < 三 >

Definition (Harvey-Lawson)

Let (X, ω_{CY}) be a Calabi-Yau manifold with holomorphic volume form Ω . A (possibly immersed) submanifold $L \hookrightarrow X$ is said to be special Lagrangian if:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition (Harvey-Lawson)

Let (X, ω_{CY}) be a Calabi-Yau manifold with holomorphic volume form Ω . A (possibly immersed) submanifold $L \hookrightarrow X$ is said to be special Lagrangian if:

(i) L is Lagrangian: $\omega|_L = 0$, and

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition (Harvey-Lawson)

Let (X, ω_{CY}) be a Calabi-Yau manifold with holomorphic volume form Ω . A (possibly immersed) submanifold $L \hookrightarrow X$ is said to be special Lagrangian if:

- (i) L is Lagrangian: $\omega|_L = 0$, and
- (ii) there is a constant $\hat{\theta}$ such that $\operatorname{Im}(e^{-\sqrt{-1}\hat{\theta}}\Omega|_L) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Harvey-Lawson)

Let (X, ω_{CY}) be a Calabi-Yau manifold with holomorphic volume form Ω . A (possibly immersed) submanifold $L \hookrightarrow X$ is said to be special Lagrangian if:

(i) L is Lagrangian: $\omega|_L = 0$, and

(ii) there is a constant $\hat{\theta}$ such that $\operatorname{Im}(e^{-\sqrt{-1}\hat{\theta}}\Omega|_L) = 0$.

Remark

• Special Lagrangian submanifolds are automatically volume minimizing in their homology class (hence minimal).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Harvey-Lawson)

Let (X, ω_{CY}) be a Calabi-Yau manifold with holomorphic volume form Ω . A (possibly immersed) submanifold $L \hookrightarrow X$ is said to be special Lagrangian if:

(i) L is Lagrangian: $\omega|_L = 0$, and

(ii) there is a constant $\hat{\theta}$ such that $\operatorname{Im}(e^{-\sqrt{-1}\hat{\theta}}\Omega|_L) = 0$.

Remark

- Special Lagrangian submanifolds are automatically volume minimizing in their homology class (hence minimal).
- The notion makes sense for ω not the Calabi-Yau symplectic form, but in this case they are no longer volume minimizing.

イロト 不得 トイラト イラト 一日

 The SYZ conjecture predicts that (near a large complex structure limit) a Calabi-Yau (X, ω, Ω) manifold admits a special Lagrangian torus fibration π : X → B.

A (1) > A (2) > A

- The SYZ conjecture predicts that (near a large complex structure limit) a Calabi-Yau (X, ω, Ω) manifold admits a special Lagrangian torus fibration π : X → B.
- It was shown by Hitchin that the base *B* inherits both a symplectic and a complex affine structure from the fibration.

- The SYZ conjecture predicts that (near a large complex structure limit) a Calabi-Yau (X, ω, Ω) manifold admits a special Lagrangian torus fibration π : X → B.
- It was shown by Hitchin that the base *B* inherits both a symplectic and a complex affine structure from the fibration.
- The mirror Calabi-Yau (X, ω, Λ) is constructed by "T-duality" along the fibers.

- The SYZ conjecture predicts that (near a large complex structure limit) a Calabi-Yau (X, ω, Ω) manifold admits a special Lagrangian torus fibration π : X → B.
- It was shown by Hitchin that the base *B* inherits both a symplectic and a complex affine structure from the fibration.

- The SYZ conjecture predicts that (near a large complex structure limit) a Calabi-Yau (X, ω, Ω) manifold admits a special Lagrangian torus fibration π : X → B.
- It was shown by Hitchin that the base *B* inherits both a symplectic and a complex affine structure from the fibration.
- The *T*-dual fibrations exchange complex and symplectic affine structures on *B*.

Mirror symmetry beyond CYs

 If Y is not a compact Calabi-Yau manifold, then the mirror to be a (partial compactification of) a Landau-Ginzburg model: ie. a non-compact Kähler manifold M together with a holomorphic function W : M → C.

Mirror symmetry beyond CYs

- If Y is not a compact Calabi-Yau manifold, then the mirror to be a (partial compactification of) a Landau-Ginzburg model: ie. a non-compact Kähler manifold M together with a holomorphic function W : M → C.
- If Y is compact Kähler and $D \in |-K_Y|$ is a divisor, Auroux laid out a general picture for constructing the mirror to Y by applying SYZ mirror symmetry to the non-compact CY manifold $X = Y \setminus D$.

医静脉 医黄疸 医黄疸 医

• Mirror symmetry between del Pezzo surfaces of degree k and rational elliptic surfaces with an I_k fiber is well studied at the algebraic and homological levels.

- Mirror symmetry between del Pezzo surfaces of degree k and rational elliptic surfaces with an I_k fiber is well studied at the algebraic and homological levels.
- Auroux-Katzarkov-Orlov proved one direction of homological mirror symmetry (coherent sheaves on del Pezzo → Fukaya-Seidel category on RES). This was recently generalized by Hacking-Keating.

- Mirror symmetry between del Pezzo surfaces of degree k and rational elliptic surfaces with an I_k fiber is well studied at the algebraic and homological levels.
- Auroux-Katzarkov-Orlov proved one direction of homological mirror symmetry (coherent sheaves on del Pezzo → Fukaya-Seidel category on RES). This was recently generalized by Hacking-Keating.
- Gross-Hacking-Keel constructed synthetic mirrors along the lines of the Gross-Siebert program.

- Mirror symmetry between del Pezzo surfaces of degree k and rational elliptic surfaces with an I_k fiber is well studied at the algebraic and homological levels.
- Auroux-Katzarkov-Orlov proved one direction of homological mirror symmetry (coherent sheaves on del Pezzo → Fukaya-Seidel category on RES). This was recently generalized by Hacking-Keating.
- Gross-Hacking-Keel constructed synthetic mirrors along the lines of the Gross-Siebert program.
- Lunts-Przyjalkowski proved mirror symmetry for "Hodge numbers", as proposed by Katzarkov-Kontsevich-Pantev.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Mirror symmetry between del Pezzo surfaces of degree k and rational elliptic surfaces with an I_k fiber is well studied at the algebraic and homological levels.
- Auroux-Katzarkov-Orlov proved one direction of homological mirror symmetry (coherent sheaves on del Pezzo → Fukaya-Seidel category on RES). This was recently generalized by Hacking-Keating.
- Gross-Hacking-Keel constructed synthetic mirrors along the lines of the Gross-Siebert program.
- Lunts-Przyjalkowski proved mirror symmetry for "Hodge numbers", as proposed by Katzarkov-Kontsevich-Pantev.
- Doran-Thompson studied del Pezzo ↔ RES mirror symmetry at a lattice theoretic level.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The goal of this talk

In this talk I hope to:

- Explain a proof of SYZ mirror symmetry for del Pezzo surfaces of degree *k* and RES with an *I_k* fiber.
- Explain mirror symmetry for Hodge numbers in terms of moduli of complete CY metrics.

The goal of this talk

In this talk I hope to:

- Explain a proof of SYZ mirror symmetry for del Pezzo surfaces of degree *k* and RES with an *I_k* fiber.
- Explain mirror symmetry for Hodge numbers in terms of moduli of complete CY metrics.
- Describe applications to existence of some new CY metrics, a question of Yau, etc.

The first ingredient we need is a fundamental result of Tian-Yau, which in our case gives

Theorem (Tian-Yau)

Let Y be a del Pezzo surface, $D \in |-K_Y|$ a smooth elliptic curve. Let Ω be a holomorphic volume form with a simple pole on D.

The first ingredient we need is a fundamental result of Tian-Yau, which in our case gives

Theorem (Tian-Yau)

Let Y be a del Pezzo surface, $D \in |-K_Y|$ a smooth elliptic curve. Let Ω be a holomorphic volume form with a simple pole on D. Then there exists a $\sqrt{-1}\partial\overline{\partial}$ -exact, complete, Calabi-Yau metric ω_{TY} on $Y \setminus D$ satisfying the Monge-Ampère equation

$$2\omega_{TY}^2 = \Omega \wedge \overline{\Omega}.$$

(人間) トイヨト イヨト ニヨ

The first ingredient we need is a fundamental result of Tian-Yau, which in our case gives

Theorem (Tian-Yau)

Let Y be a del Pezzo surface, $D \in |-K_Y|$ a smooth elliptic curve. Let Ω be a holomorphic volume form with a simple pole on D. Then there exists a $\sqrt{-1}\partial\overline{\partial}$ -exact, complete, Calabi-Yau metric ω_{TY} on $Y \setminus D$ satisfying the Monge-Ampère equation

$$2\omega_{TY}^2 = \Omega \wedge \overline{\Omega}.$$

and such that ω_{TY} is asymptotic to the Calabi model (with estimates...)

Remark

The Tian-Yau theorem holds in all dimensions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (The Calabi model)

• Let (D, Ω_D) be an elliptic curve, $E \to D$ an ample line bundle.

< (17) > < (17) > <

Example (The Calabi model)

- Let (D, Ω_D) be an elliptic curve, $E \to D$ an ample line bundle.
- Let *h* be a hermitian metric on *E* so that $-\sqrt{-1}\partial\overline{\partial}\log(h)$ is a flat Kähler metric.

Example (The Calabi model)

- Let (D, Ω_D) be an elliptic curve, $E \rightarrow D$ an ample line bundle.
- Let h be a hermitian metric on E so that -√-1∂∂ log(h) is a flat Kähler metric. Let w be a coordinate on E and define

$$\mathcal{C} := \{\xi \in E : 0 < |\xi|_h < 1\}, \qquad \Omega_{\mathcal{C}} := \Omega_D \wedge \frac{dw}{w}.$$
 $\omega_{\mathcal{C}} = \frac{2}{3}\sqrt{-1}\partial\overline{\partial}\left(-\log|\xi|_h^2\right)^{\frac{3}{2}}.$

Example (The Calabi model)

- Let (D, Ω_D) be an elliptic curve, $E \to D$ an ample line bundle.
- Let h be a hermitian metric on E so that -√-1∂∂ log(h) is a flat Kähler metric. Let w be a coordinate on E and define

$$\mathcal{C} := \{\xi \in E : 0 < |\xi|_h < 1\}, \qquad \Omega_{\mathcal{C}} := \Omega_D \wedge rac{dw}{w}.$$
 $\omega_{\mathcal{C}} = rac{2}{3}\sqrt{-1}\partial\overline{\partial}\left(-\log|\xi|_h^2
ight)^{rac{3}{2}}.$

Then $(\mathcal{C}, \Omega_{\mathcal{C}}, \omega_{\mathcal{C}})$ is Calabi-Yau, and furthermore complete at $0 \subset E$.

• The Riemannian geometry of (C, Ω_C, ω_C) can be visualized by considering the level sets

$$\pi: \mathcal{C}_{\varepsilon} := \{\xi \in E : |\xi|_h = \varepsilon\} \to D$$

are S^1 bundles over D, fibering C.

• The Riemannian geometry of (C, Ω_C, ω_C) can be visualized by considering the level sets

$$\pi: \mathcal{C}_{\varepsilon} := \{\xi \in E: |\xi|_h = \varepsilon\} \to D$$

are S^1 bundles over D, fibering C.

As ε → 0, the S¹ fibers of C_ε collapse, while the base D expands in such a way that Vol(C_ε) = const.

 The Riemannian geometry of (C, Ω_C, ω_C) can be visualized by considering the level sets

$$\pi: \mathcal{C}_{\varepsilon} := \{\xi \in E: |\xi|_h = \varepsilon\} \to D$$

are S^1 bundles over D, fibering C.

- As ε → 0, the S¹ fibers of C_ε collapse, while the base D expands in such a way that Vol(C_ε) = const.
- It is straightforward to see that if $L \subset D$ is sLag (ie. a closed geodesic), then $M_{\varepsilon} = \pi^{-1}(L) \cap C_{\varepsilon}$ are sLag, topologically $L \times S^1$, all with the same volume.

 The Riemannian geometry of (C, Ω_C, ω_C) can be visualized by considering the level sets

$$\pi: \mathcal{C}_{\varepsilon} := \{\xi \in E: |\xi|_h = \varepsilon\} \to D$$

are S^1 bundles over D, fibering C.

- As ε → 0, the S¹ fibers of C_ε collapse, while the base D expands in such a way that Vol(C_ε) = const.
- It is straightforward to see that if $L \subset D$ is sLag (ie. a closed geodesic), then $M_{\varepsilon} = \pi^{-1}(L) \cap C_{\varepsilon}$ are sLag, topologically $L \times S^1$, all with the same volume. Picture time!

Using this model geometry we prove:

Theorem (C.-Jacob-Lin)

Let Y be a del Pezzo surface, D a smooth elliptic curve, and equip $X = Y \setminus D$ with the Tian-Yau metric ω_{TY} .

Using this model geometry we prove:

Theorem (C.-Jacob-Lin)

Let Y be a del Pezzo surface, D a smooth elliptic curve, and equip $X = Y \setminus D$ with the Tian-Yau metric ω_{TY} . Then (X, ω_{TY}, Ω) admits a special Lagrangian fibration $\pi : X \to \mathbb{R}^2$.

Using this model geometry we prove:

Theorem (C.-Jacob-Lin)

Let Y be a del Pezzo surface, D a smooth elliptic curve, and equip $X = Y \setminus D$ with the Tian-Yau metric ω_{TY} . Then (X, ω_{TY}, Ω) admits a special Lagrangian fibration $\pi : X \to \mathbb{R}^2$.

Remark

In fact, X admits countably many distinct special Lagrangian fibrations, one for each choice of simple closed loop $\gamma \in H_1(D, \mathbb{Z})$.

(人間) トイヨト イヨト ニヨ

Outline of the proof:

1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.

э

- 1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.
- 2 By taking circle bundles over translates of γ , we get a special Lagrangian fibration of the Calabi model (with bundle $E = -K_Y|_D$).

- 1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.
- 2 By taking circle bundles over translates of γ , we get a special Lagrangian fibration of the Calabi model (with bundle $E = -K_Y|_D$).
- 3 We can transplant this (by diffeomorephism and Moser's trick) to a Lagrangian fibration of a neighborhood of ∞ in (X, ω_{TY}) .

- 1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.
- 2 By taking circle bundles over translates of γ , we get a special Lagrangian fibration of the Calabi model (with bundle $E = -K_Y|_D$).
- 3 We can transplant this (by diffeomorephism and Moser's trick) to a Lagrangian fibration of a neighborhood of ∞ in (X, ω_{TY}) .
- 4 Using the estimates for the Tian-Yau metric we get control of the geometry of the fibers.

- 1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.
- 2 By taking circle bundles over translates of γ , we get a special Lagrangian fibration of the Calabi model (with bundle $E = -K_Y|_D$).
- 3 We can transplant this (by diffeomorephism and Moser's trick) to a Lagrangian fibration of a neighborhood of ∞ in (X, ω_{TY}) .
- 4 Using the estimates for the Tian-Yau metric we get control of the geometry of the fibers.
- technical issue: The geometry of the Lagrangian fibers degenerates near ∞: they are collapsing circle bundles with fixed volume and unbounded diameter.

Outline of the proof:

- 1 Fix a simple closed geodesic (ie. a special Lagrangian) γ in D.
- 2 By taking circle bundles over translates of γ , we get a special Lagrangian fibration of the Calabi model (with bundle $E = -K_Y|_D$).
- 3 We can transplant this (by diffeomorephism and Moser's trick) to a Lagrangian fibration of a neighborhood of ∞ in (X, ω_{TY}) .
- 4 Using the estimates for the Tian-Yau metric we get control of the geometry of the fibers.
- technical issue: The geometry of the Lagrangian fibers degenerates near ∞: they are collapsing circle bundles with fixed volume and unbounded diameter.
- key point: The degeneration of the geometry is *polynomial* in the distance to a fixed point, while the mean curvature decays *exponentially*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline of the proof:

5 Now we run the Lagrangian mean curvature flow (LMCF). By establishing effective estimates we show that if the initial Lagrangian lies outside of a large compact set, then the LMCF converges smoothly to a special Lagrangian.

- 5 Now we run the Lagrangian mean curvature flow (LMCF). By establishing effective estimates we show that if the initial Lagrangian lies outside of a large compact set, then the LMCF converges smoothly to a special Lagrangian.
- 6 In fact, using Floer theory, we show that the LMCF deforms the Lagrangian fibration to a special Lagrangian fibration.

- 5 Now we run the Lagrangian mean curvature flow (LMCF). By establishing effective estimates we show that if the initial Lagrangian lies outside of a large compact set, then the LMCF converges smoothly to a special Lagrangian.
- 6 In fact, using Floer theory, we show that the LMCF deforms the Lagrangian fibration to a special Lagrangian fibration.
- 7 Now the main issue is to extend the fibration into the interior of X.

Outline of the proof:

8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.

- 8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.
- 9 By deformation theory, a neighborhood of every smooth fiber has a fibration. The main issue is to deal with singular fibers.

- 8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.
- 9 By deformation theory, a neighborhood of every smooth fiber has a fibration. The main issue is to deal with singular fibers.
- 10 The theory of *J*-holomorphic curves allows us to take limits of smooth curves.

- 8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.
- 9 By deformation theory, a neighborhood of every smooth fiber has a fibration. The main issue is to deal with singular fibers.
- 10 The theory of *J*-holomorphic curves allows us to take limits of smooth curves. All singular limits can be classified (after Kodaira).

- 8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.
- 9 By deformation theory, a neighborhood of every smooth fiber has a fibration. The main issue is to deal with singular fibers.
- 10 The theory of *J*-holomorphic curves allows us to take limits of smooth curves. All singular limits can be classified (after Kodaira). Using arguments from the theory of *J*-holomorphic curves (specifically deformation and moduli) together with intersection theory we can show:

Outline of the proof:

- 8 By a hyperKähler rotation we can make the special Lagrangian tori become holomorphic curves.
- 9 By deformation theory, a neighborhood of every smooth fiber has a fibration. The main issue is to deal with singular fibers.
- 10 The theory of *J*-holomorphic curves allows us to take limits of smooth curves. All singular limits can be classified (after Kodaira). Using arguments from the theory of *J*-holomorphic curves (specifically deformation and moduli) together with intersection theory we can show:
- 11 In every compact set $K \subset X$ there can be only countably many singular holomorphic curves obtained as limits of smooth fibers. From this it follows easily that the fibration extends to a global fibration. Picture time!

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (C.-Jacob-Lin)

Let Y be del Pezzo of degree k, $D \in |-K_Y|$ smooth, and $X = Y \setminus D$. Let $\pi_{SYZ} : X \to \mathbb{R}^2$ be a SYZ fibration of (X, ω_{TY}) .

Theorem (C.-Jacob-Lin)

Let Y be del Pezzo of degree k, $D \in |-K_Y|$ smooth, and $X = Y \setminus D$. Let $\pi_{SYZ} : X \to \mathbb{R}^2$ be a SYZ fibration of (X, ω_{TY}) . Then after HK rotating so that $\pi_{SYZ} : X \to \mathbb{C}$ is a holomorphic torus fibration, we have:

Theorem (C.-Jacob-Lin)

Let Y be del Pezzo of degree k, $D \in |-K_Y|$ smooth, and $X = Y \setminus D$. Let $\pi_{SYZ} : X \to \mathbb{R}^2$ be a SYZ fibration of (X, ω_{TY}) . Then after HK rotating so that $\pi_{SYZ} : X \to \mathbb{C}$ is a holomorphic torus fibration, we have: There is a rational elliptic surface $\check{\pi} : \check{Y} \to \mathbb{P}^1$ with an I_k singular fiber \check{D} such that

 $\pi_{SYZ}: X \to \mathbb{C}$

is the restriction of $\check{\pi}$ to $\check{Y} \setminus \check{D}$.

Theorem (C.-Jacob-Lin)

Let Y be del Pezzo of degree k, $D \in |-K_Y|$ smooth, and $X = Y \setminus D$. Let $\pi_{SYZ} : X \to \mathbb{R}^2$ be a SYZ fibration of (X, ω_{TY}) . Then after HK rotating so that $\pi_{SYZ} : X \to \mathbb{C}$ is a holomorphic torus fibration, we have: There is a rational elliptic surface $\check{\pi} : \check{Y} \to \mathbb{P}^1$ with an I_k singular fiber \check{D} such that

$$\pi_{SYZ}: X \to \mathbb{C}$$

is the restriction of $\check{\pi}$ to $\check{Y} \setminus \check{D}$.

Question (Yau \sim 80s): What is the symplectic form for the HK rotated Tian-Yau metric?

- 4 回 ト 4 三 ト 4 三 ト

Some Remarks

 The Lagrangian mean curvature flow argument works in all dimensions and applies to Fano manifolds Y, with D ∈ | − K_Y| assuming D has a special Lagrangian submanifold with respect to the CY metric in c₁(Y)|_D.

Some Remarks

- The Lagrangian mean curvature flow argument works in all dimensions and applies to Fano manifolds Y, with D ∈ | − K_Y| assuming D has a special Lagrangian submanifold with respect to the CY metric in c₁(Y)|_D.
- We also prove analogous results for Y a rational elliptic surface with $D \in |-K_Y|$ a smooth fiber. These have complete CY metrics due to Tian-Yau and we show they admit SYZ fibrations and their HK rotations can be compactified to another RES by adding a smooth fiber.

Some Remarks

- The Lagrangian mean curvature flow argument works in all dimensions and applies to Fano manifolds Y, with D ∈ | − K_Y| assuming D has a special Lagrangian submanifold with respect to the CY metric in c₁(Y)|_D.
- We also prove analogous results for Y a rational elliptic surface with $D \in |-K_Y|$ a smooth fiber. These have complete CY metrics due to Tian-Yau and we show they admit SYZ fibrations and their HK rotations can be compactified to another RES by adding a smooth fiber.
- If Y = P² or a generic rational elliptic surface we can identify the singular fibers of the SYZ fibration as the appropriate number of nodal special Lagrangian spheres verifying some conjectures of Auroux.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We'd like to prove similar results for a RES Y with an I_k singular fiber D.

We'd like to prove similar results for a RES Y with an I_k singular fiber D. The first thing we need to discuss is the existence of Calabi-Yau metrics.

We'd like to prove similar results for a RES Y with an I_k singular fiber D. The first thing we need to discuss is the existence of Calabi-Yau metrics. We need to have an ansatz near an I_k fiber.

The model geometry: Let $\Delta^* = \{z \in \mathbb{Z} : 0 < |z| < 1\}$, consider

$$X_{mod} = (z, x) \in \Delta^* imes \mathbb{C} / (\mathbb{Z} + rac{k}{2\pi \sqrt{-1}} \log(z) \cdot \mathbb{Z})$$

We'd like to prove similar results for a RES Y with an I_k singular fiber D. The first thing we need to discuss is the existence of Calabi-Yau metrics. We need to have an ansatz near an I_k fiber.

The model geometry: Let $\Delta^* = \{z \in \mathbb{Z} : 0 < |z| < 1\}$, consider

$$egin{aligned} X_{mod} &= (z,x) \in \Delta^* imes \mathbb{C} ig/ (\mathbb{Z} + rac{k}{2\pi \sqrt{-1}} \log(z) \cdot \mathbb{Z}) \ \Omega &= rac{\kappa(z) dx \wedge dz}{z} \qquad \kappa(z) : \Delta o \mathbb{C} ext{ hol'c }, \quad \kappa(0)
eq 0 \end{aligned}$$

Let's assume: $\kappa = 1$ for simplicity.

Calabi-Yau metrics on a RES with an I_k fiber The model geometry: Let $\Delta^* = \{z \in \mathbb{Z} : 0 < |z| < 1\}$, consider

$$X_{mod} := \Delta^* imes \mathbb{C} / (\mathbb{Z} + rac{k}{2\pi \sqrt{-1}} \log(z) \cdot \mathbb{Z}), \quad \Omega = rac{dx \wedge dz}{z}$$

 If π : X → Δ is an elliptic fibration with π⁻¹(0) an I_k fiber, then for any choice of section σ : Δ* → X \ π⁻¹(0), we get F_σ : X → X_{mod}.

Calabi-Yau metrics on a RES with an I_k fiber The model geometry: Let $\Delta^* = \{z \in \mathbb{Z} : 0 < |z| < 1\}$, consider

$$X_{mod} := \Delta^* imes \mathbb{C} / (\mathbb{Z} + rac{k}{2\pi \sqrt{-1}} \log(z) \cdot \mathbb{Z}), \quad \Omega = rac{dx \wedge dz}{z}$$

- If π : X → Δ is an elliptic fibration with π⁻¹(0) an I_k fiber, then for any choice of section σ : Δ* → X \ π⁻¹(0), we get F_σ : X → X_{mod}.
- Greene-Shapere-Vafa-Yau wrote down a Calabi-Yau metric on X_{mod} which is *flat* along the fibers (called a semi-flat metric).

Calabi-Yau metrics on a RES with an I_k fiber The model geometry: Let $\Delta^* = \{z \in \mathbb{Z} : 0 < |z| < 1\}$, consider

$$X_{mod} := \Delta^* imes \mathbb{C} / (\mathbb{Z} + rac{k}{2\pi \sqrt{-1}} \log(z) \cdot \mathbb{Z}), \quad \Omega = rac{dx \wedge dz}{z}$$

- If π : X → Δ is an elliptic fibration with π⁻¹(0) an I_k fiber, then for any choice of section σ : Δ* → X \ π⁻¹(0), we get F_σ : X → X_{mod}.
- Greene-Shapere-Vafa-Yau wrote down a Calabi-Yau metric on X_{mod} which is *flat* along the fibers (called a semi-flat metric). Explicitly

$$\begin{split} \omega_{sf,\varepsilon} &= \sqrt{-1} \frac{k |\log |z||}{2\pi\varepsilon} \frac{dz \wedge d\bar{z}}{|z|^2} \\ &+ \frac{\sqrt{-1}}{2} \frac{2\pi\varepsilon}{k |\log |z||} \left(dx + B(x,z)dz \right) \wedge \overline{\left(dx + B(x,z)dz \right)} \end{split}$$

where $B(x,z) = -\frac{\operatorname{Im}(x)}{\sqrt{-1}|\log |z||}$, $\varepsilon =$ volume of the fibers.

• The metric $\omega_{sf,\sigma,\varepsilon} = F_{\sigma}^* \omega_{sf,\varepsilon}$ is Ricci-flat and complete near the I_k fiber. Standard semi-flat metric with respect to σ .

- The metric $\omega_{sf,\sigma,\varepsilon} = F_{\sigma}^* \omega_{sf,\varepsilon}$ is Ricci-flat and complete near the I_k fiber. Standard semi-flat metric with respect to σ .
- Note: for every 0 < r < 1, the "bad cycle"

 $C_r := \{ |z| = r, \text{Im}(x) = const \}$ is special Lagrangian.

- The metric $\omega_{sf,\sigma,\varepsilon} = F_{\sigma}^* \omega_{sf,\varepsilon}$ is Ricci-flat and complete near the I_k fiber. Standard semi-flat metric with respect to σ .
- Note: for every 0 < r < 1, the "bad cycle" $C_r := \{|z| = r, \operatorname{Im}(x) = const\}$ is special Lagrangian.

Theorem (Hein)

Let $\pi : Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let [C] denote the homology class of the "bad cycle".

- The metric $\omega_{sf,\sigma,\varepsilon} = F_{\sigma}^* \omega_{sf,\varepsilon}$ is Ricci-flat and complete near the I_k fiber. Standard semi-flat metric with respect to σ .
- Note: for every 0 < r < 1, the "bad cycle" $C_r := \{|z| = r, \operatorname{Im}(x) = const\}$ is special Lagrangian.

Theorem (Hein)

Let $\pi : Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let [C] denote the homology class of the "bad cycle". Let ω_0 a Kähler metric on $X = Y \setminus D$ such that $[\omega_0].[C] = 0$, and $\int_X \omega_0^2 < +\infty$, let $\varepsilon = [\omega_0].[Fiber]$.

< □ > < □ > < □ > < □ > < □ > < □ >

- The metric $\omega_{sf,\sigma,\varepsilon} = F_{\sigma}^* \omega_{sf,\varepsilon}$ is Ricci-flat and complete near the I_k fiber. Standard semi-flat metric with respect to σ .
- Note: for every 0 < r < 1, the "bad cycle" $C_r := \{|z| = r, \text{Im}(x) = const\}$ is special Lagrangian.

Theorem (Hein)

Let $\pi: Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let [C] denote the homology class of the "bad cycle". Let ω_0 a Kähler metric on $X = Y \setminus D$ such that $[\omega_0].[C] = 0$, and $\int_X \omega_0^2 < +\infty$, let $\varepsilon = [\omega_0].[Fiber]$. Given this data, there exists a section $\sigma: \Delta^* \to \pi^{-1}(\Delta^*)$ and and $\alpha_0 > 0$ such that such that:

For all $\alpha > \alpha_0$ there exists a CY metric in the Bott-Chern cohomology class of ω_0 converging exponentially fast to $\alpha \omega_{sf,\sigma,\frac{\varepsilon}{\alpha}}$ at infinity (with very precise estimates to all orders)

This applies, for example, to Kähler metrics restricted from Y.

Theorem (Hein)

Let $\pi: Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let [C] denote the homology class of the "bad cycle". Let ω_0 a Kähler metric on $X = Y \setminus D$ such that $[\omega_0].[C] = 0$, and $\int_X \omega_0^2 < +\infty$, let $\varepsilon = [\omega_0].[Fiber]$. Given this data, there exists a section $\sigma: \Delta^* \to \pi^{-1}(\Delta^*)$ and and $\alpha_0 > 0$ such that such that:

For all $\alpha > \alpha_0$ there exists a CY metric in the Bott-Chern cohomology class of ω_0 converging exponentially fast to $\alpha \omega_{sf,\sigma,\frac{s}{\alpha}}$ at infinity (with very precise estimates to all orders).

Theorem (Hein)

Let $\pi: Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let [C] denote the homology class of the "bad cycle". Let ω_0 a Kähler metric on $X = Y \setminus D$ such that $[\omega_0].[C] = 0$, and $\int_X \omega_0^2 < +\infty$, let $\varepsilon = [\omega_0].[Fiber]$. Given this data, there exists a section $\sigma: \Delta^* \to \pi^{-1}(\Delta^*)$ and and $\alpha_0 > 0$ such that such that:

For all $\alpha > \alpha_0$ there exists a CY metric in the Bott-Chern cohomology class of ω_0 converging exponentially fast to $\alpha \omega_{sf,\sigma,\frac{\varepsilon}{\alpha}}$ at infinity (with very precise estimates to all orders).

Main problem: If we want to understand the Kähler moduli (to do mirror symmetry, define Hodge numbers etc.) on a RES pair (Y, D) in terms of moduli of Calabi-Yau metrics, then we need a parameter space.

イロト 不得 トイヨト イヨト 二日

Outstanding questions from Hein's theorem:

• $H^2_{dR}(X,\mathbb{R})$ has dimension 11 - k.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Outstanding questions from Hein's theorem:

 H²_{dR}(X, ℝ) has dimension 11 − k. The condition [ω].[C] = 0 cuts out a 10 − k dimensional hyperplane. Are there Calabi-Yau metrics in the remaining de Rham classes?

Outstanding questions from Hein's theorem:

- $H^2_{dR}(X, \mathbb{R})$ has dimension 11 k. The condition $[\omega].[C] = 0$ cuts out a 10 k dimensional hyperplane. Are there Calabi-Yau metrics in the remaining de Rham classes?
- Recall that Bott-Chern cohomology is a refinement of de Rham cohomology given by

$$H^{p,q}_{BC} := \frac{\{\operatorname{Ker} d : \Lambda^{p,q} \to \Lambda^{p+1,q} \oplus \Lambda^{p,q+1}\}}{\{\operatorname{Im}(\sqrt{-1}\partial\overline{\partial} : \Lambda^{p-1,q-1} \to \Lambda^{p,q})\}}$$

Outstanding questions from Hein's theorem:

- $H^2_{dR}(X, \mathbb{R})$ has dimension 11 k. The condition $[\omega].[C] = 0$ cuts out a 10 k dimensional hyperplane. Are there Calabi-Yau metrics in the remaining de Rham classes?
- Recall that Bott-Chern cohomology is a refinement of de Rham cohomology given by

$$H^{p,q}_{BC} := \frac{\{\operatorname{Ker} d : \Lambda^{p,q} \to \Lambda^{p+1,q} \oplus \Lambda^{p,q+1}\}}{\{\operatorname{Im}(\sqrt{-1}\partial\overline{\partial} : \Lambda^{p-1,q-1} \to \Lambda^{p,q})\}}$$

Hein's theorem depends on a construction which leaves open the possibility of (infinitely many) distinct CY metrics *even in a fixed Bott-Chern class*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• By Leray spectral sequence calculations one can show that

$$H^{1,1}_{BC}(X) \sim H^2_{dR}(X) imes H^0(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$$

< A IN

• By Leray spectral sequence calculations one can show that

$$H^{1,1}_{BC}(X) \sim H^2_{dR}(X) imes H^0(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$$

So even if we knew there was a unique CY metric in every Bott-Chern class, the parameter space is infinite dimensional.

• By Leray spectral sequence calculations one can show that

$$H^{1,1}_{BC}(X) \sim H^2_{dR}(X) imes H^0(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$$

So even if we knew there was a unique CY metric in every Bott-Chern class, the parameter space is infinite dimensional.

• This already shows Hodge numbers (in the sense of Bott-Chern cohomology) are not well-defined.

• By Leray spectral sequence calculations one can show that

$$H^{1,1}_{BC}(X) \sim H^2_{dR}(X) imes H^0(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$$

So even if we knew there was a unique CY metric in every Bott-Chern class, the parameter space is infinite dimensional.

- This already shows Hodge numbers (in the sense of Bott-Chern cohomology) are not well-defined.
- Katzarkov-Kontsevich-Pantev gave a proposal for a definition of Hodge numbers in terms of purely algebraic data (sheaves of logarithmic forms, weight filtrations, perverse sheaves).

• By Leray spectral sequence calculations one can show that

$$H^{1,1}_{BC}(X) \sim H^2_{dR}(X) imes H^0(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$$

So even if we knew there was a unique CY metric in every Bott-Chern class, the parameter space is infinite dimensional.

- This already shows Hodge numbers (in the sense of Bott-Chern cohomology) are not well-defined.
- Katzarkov-Kontsevich-Pantev gave a proposal for a definition of Hodge numbers in terms of purely algebraic data (sheaves of logarithmic forms, weight filtrations, perverse sheaves).
- Lunts-Przyjalkowski computed these Hodge numbers for del Pezzos of degree k and RES with an I_k fiber, and obtained 10 k on both sides (proving mirror symmetry at the level of KKP Hodge numbers).

< □ > < □ > < □ > < □ > < □ > < □ >

• a section $\sigma: \Delta^* \to X_{mod}$ can be written as

$$\sigma(z) = h(z) + \frac{a}{2\pi\sqrt{-1}}\log z + \frac{b}{(2\pi\sqrt{-1})^2}(\log(z))^2$$

where $h: \Delta^* \to \mathbb{C}$ is holomorphic, $\frac{2b}{k} \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

• a section $\sigma: \Delta^* o X_{mod}$ can be written as

$$\sigma(z) = h(z) + \frac{a}{2\pi\sqrt{-1}}\log z + \frac{b}{(2\pi\sqrt{-1})^2}(\log(z))^2$$

where $h : \Delta^* \to \mathbb{C}$ is holomorphic, $\frac{2b}{k} \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

• Consider the case when $\frac{2b}{k} \in \mathbb{Q}$ (resp. \mathbb{R}) and $a + b \in \mathbb{Q}$ (resp. \mathbb{R}). These are multi-valued sections

• a section $\sigma: \Delta^* \to X_{mod}$ can be written as

$$\sigma(z) = h(z) + \frac{a}{2\pi\sqrt{-1}}\log z + \frac{b}{(2\pi\sqrt{-1})^2}(\log(z))^2$$

where $h: \Delta^* \to \mathbb{C}$ is holomorphic, $\frac{2b}{k} \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

- Consider the case when ^{2b}/_k ∈ Q (resp. ℝ) and a + b ∈ Q (resp. ℝ). These are multi-valued sections (finitely many valued for Q, infinitely many valued for ℝ).
- Key point: Pulling back the semi-flat metric by a *multivalued* section still yields a well-defined, semi-flat, Calabi-Yau metric.

$$ullet$$
 a section $\sigma:\Delta^* o X_{mod}$ can be written as

$$\sigma(z) = h(z) + \frac{a}{2\pi\sqrt{-1}}\log z + \frac{b}{(2\pi\sqrt{-1})^2}(\log(z))^2$$

where $h : \Delta^* \to \mathbb{C}$ is holomorphic, $\frac{2b}{k} \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

- Consider the case when ^{2b}/_k ∈ Q (resp. ℝ) and a + b ∈ Q (resp. ℝ). These are multi-valued sections (finitely many valued for Q, infinitely many valued for ℝ).
- Key point: Pulling back the semi-flat metric by a *multivalued* section still yields a well-defined, semi-flat, Calabi-Yau metric. We call these non-standard semi-flat metrics and say they are quasi-regular in the \mathbb{Q} case, and irregular in the \mathbb{R} case.

If ω_{σ,sf,ε} is a quasi-regular semi-flat metric, then there is still a family of special Lagrangian "bad cycles" C_r ⊂ X_{mod}, r ∈ (0, 1), but C_r covers the circle |z| = r in the base more than once.

- If ω_{σ,sf,ε} is a quasi-regular semi-flat metric, then there is still a family of special Lagrangian "bad cycles" C_r ⊂ X_{mod}, r ∈ (0, 1), but C_r covers the circle |z| = r in the base more than once.
- Irregular semi-flat metrics *cannot* admit a special Lagrangian due to cohomological obstructions.

- If ω_{σ,sf,ε} is a quasi-regular semi-flat metric, then there is still a family of special Lagrangian "bad cycles" C_r ⊂ X_{mod}, r ∈ (0, 1), but C_r covers the circle |z| = r in the base more than once.
- Irregular semi-flat metrics *cannot* admit a special Lagrangian due to cohomological obstructions.

Theorem (C.-Jacob-Lin)

Let $\pi : Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let ω_0 be a Kähler metric on $X = Y \setminus D$.

A I > A I > A

- If ω_{σ,sf,ε} is a quasi-regular semi-flat metric, then there is still a family of special Lagrangian "bad cycles" C_r ⊂ X_{mod}, r ∈ (0, 1), but C_r covers the circle |z| = r in the base more than once.
- Irregular semi-flat metrics *cannot* admit a special Lagrangian due to cohomological obstructions.

Theorem (C.-Jacob-Lin)

Let $\pi : Y \to \mathbb{P}^1$ be a rational elliptic surface, $D = \pi^{-1}(\infty)$ an I_k fiber and let ω_0 be a Kähler metric on $X = Y \setminus D$. Let $\varepsilon = [\omega_0]$.[Fiber]. Then there exists a multivalued section $\sigma : \Delta^* \to \pi^{-1}(\Delta^*)$ and an $\alpha_0 > 0$ such that such that:

For all $\alpha > \alpha_0$ there exists a unique CY metric in the Bott-Chern cohomology class of ω_0 converging exponentially fast to $\alpha \omega_{sf,\sigma,\frac{\varepsilon}{\alpha}}$ (with very precise estimates to all orders)

イロト 不得 トイヨト イヨト 二日

• The existence part follows from Hein's work, once the model metrics are identified (together with a minor improvement to remove the finite volume assumption).

- The existence part follows from Hein's work, once the model metrics are identified (together with a minor improvement to remove the finite volume assumption).
- The uniqueness is a new result, which follows from a nearly optimal uniqueness theorem (which will appear again below).

- The existence part follows from Hein's work, once the model metrics are identified (together with a minor improvement to remove the finite volume assumption).
- The uniqueness is a new result, which follows from a nearly optimal uniqueness theorem (which will appear again below).
- Shows that the parameter space for CY metrics asymptotic to semi-flat metrics is the cone of Kähler classes in $H^{1,1}_{BC}(X,\mathbb{R})$ (still infinite dimensional....).

- The existence part follows from Hein's work, once the model metrics are identified (together with a minor improvement to remove the finite volume assumption).
- The uniqueness is a new result, which follows from a nearly optimal uniqueness theorem (which will appear again below).
- Shows that the parameter space for CY metrics asymptotic to semi-flat metrics is the cone of Kähler classes in $H^{1,1}_{BC}(X,\mathbb{R})$ (still infinite dimensional....).
- As we will see, the quasi-regular metrics are important for mirror symmetry.

Theorem (C.-Jacob-Lin)

Let (Y, D) be a del Pezzo pair, $\gamma \in H_1(D, \mathbb{Z})$, and $(X, g_{TY}, \omega_{TY}, J)$ be the Tian-Yau Ricci-flat Kähler structure on X.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (C.-Jacob-Lin)

Let (Y, D) be a del Pezzo pair, $\gamma \in H_1(D, \mathbb{Z})$, and $(X, g_{TY}, \omega_{TY}, J)$ be the Tian-Yau Ricci-flat Kähler structure on X. Let $\pi_{\gamma} : X \to \mathbb{R}^2$ be the SYZ fibration induced by this data, and let $(X, g_{TY}, \omega_{\gamma}, I)$ be the hyper-Kähler rotated space so that $\pi_{\gamma} : X \to \mathbb{C}$ is holomorphic.

Theorem (C.-Jacob-Lin)

Let (Y, D) be a del Pezzo pair, $\gamma \in H_1(D, \mathbb{Z})$, and $(X, g_{TY}, \omega_{TY}, J)$ be the Tian-Yau Ricci-flat Kähler structure on X. Let $\pi_{\gamma} : X \to \mathbb{R}^2$ be the SYZ fibration induced by this data, and let $(X, g_{TY}, \omega_{\gamma}, I)$ be the hyper-Kähler rotated space so that $\pi_{\gamma} : X \to \mathbb{C}$ is holomorphic. Then

• ω_{γ} is the symplectic form of the Ricci-flat metric produced by the previous theorem.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (C.-Jacob-Lin)

Let (Y, D) be a del Pezzo pair, $\gamma \in H_1(D, \mathbb{Z})$, and $(X, g_{TY}, \omega_{TY}, J)$ be the Tian-Yau Ricci-flat Kähler structure on X. Let $\pi_{\gamma} : X \to \mathbb{R}^2$ be the SYZ fibration induced by this data, and let $(X, g_{TY}, \omega_{\gamma}, I)$ be the hyper-Kähler rotated space so that $\pi_{\gamma} : X \to \mathbb{C}$ is holomorphic. Then

- ω_{γ} is the symplectic form of the Ricci-flat metric produced by the previous theorem.
- ω_{γ} is asymptotic to a non-standard semi-flat metric unless D is the torus with fundamental domain determined by the lattice $\mathbb{Z} + \sqrt{-1}\lambda\mathbb{Z}$ for $\lambda \in \mathbb{R}_{>0}$, and γ is one of the cycles generating the lattice. Generically, ω_{γ} is irregular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$,

▲ 同 ▶ → ● ▶

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$

く 凸 ト く 三 ト

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$. Suppose that ω_1, ω_2 converge (at a polynomial rate) to the same semi-flat metric $\omega_{sf,\varepsilon}$ at ∞ .

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$. Suppose that ω_1, ω_2 converge (at a polynomial rate) to the same semi-flat metric $\omega_{sf,\varepsilon}$ at ∞ . Then there exists a fiber preserving map $F : X \to X$, which is homotopic to the identity such that $F^*\omega_1 = \omega_2$.

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$. Suppose that ω_1, ω_2 converge (at a polynomial rate) to the same semi-flat metric $\omega_{sf,\varepsilon}$ at ∞ . Then there exists a fiber preserving map $F : X \to X$, which is homotopic to the identity such that $F^*\omega_1 = \omega_2$.

Corollary

If we define the Kähler moduli to be

 $\mathcal{M}_{K\ddot{a}h} := \{ CY \text{ metrics asymptotic to } \omega_{sf,\varepsilon} \} / \operatorname{Aut}_0(X) \}$

where $\operatorname{Aut}_0(X)$ are automorphisms homotopic to the identity. Then $\mathcal{M}_{K\ddot{a}h}$ is a cone with non-empty interior in $H^2_{dR}(X,\mathbb{R}) \sim \mathbb{R}^{11-k}$.

イロト 不得 トイヨト イヨト 二日

Theorem (C.-Jacob-Lin)

Suppose Y is a RES, and D an I_k fiber. Suppose ω_1, ω_2 are Calabi-Yau metrics with $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$. Suppose that ω_1, ω_2 converge (at a polynomial rate) to the same semi-flat metric $\omega_{sf,\varepsilon}$ at ∞ . Then there exists a fiber preserving map $F : X \to X$, which is homotopic to the identity such that $F^*\omega_1 = \omega_2$.

Corollary

If we define the Kähler moduli to be

 $\mathcal{M}_{K\ddot{a}h} := \{ CY \text{ metrics asymptotic to } \omega_{sf,\varepsilon} \} / Aut_0(X) \}$

where $\operatorname{Aut}_0(X)$ are automorphisms homotopic to the identity. Then $\mathcal{M}_{K\ddot{a}h}$ is a cone with non-empty interior in $H^2_{dR}(X,\mathbb{R}) \sim \mathbb{R}^{11-k}$.

 \Rightarrow we have a hope to define the Hodge numbers in terms of moduli of Calabi-Yau metrics.

Tristan Collins (MIT)

SYZ for del Pezzo and RES

October 20, 2020 32 / 38

With this discussion of CY metrics out of the way, we can return to the discussion of SYZ mirror symmetry for RES.

▲ □ ▶ ▲ □ ▶ ▲ □

With this discussion of CY metrics out of the way, we can return to the discussion of SYZ mirror symmetry for RES.

Theorem (C.-Jacob-Lin)

Let Y be a RES, D an I_k fiber, and ω_{CY} a Calabi-Yau metric on $X = Y \setminus D$ asymptotic to a standard or quasi-regular semi-flat metric.

▲ □ ▶ ▲ □ ▶ ▲ □

With this discussion of CY metrics out of the way, we can return to the discussion of SYZ mirror symmetry for RES.

Theorem (C.-Jacob-Lin)

Let Y be a RES, D an I_k fiber, and ω_{CY} a Calabi-Yau metric on $X = Y \setminus D$ asymptotic to a standard or quasi-regular semi-flat metric. Then

(i) there is a special Lagrangian torus fibration $\pi: X \to \mathbb{R}^2$,

- 4 回 ト - 4 回 ト

With this discussion of CY metrics out of the way, we can return to the discussion of SYZ mirror symmetry for RES.

Theorem (C.-Jacob-Lin)

Let Y be a RES, D an I_k fiber, and ω_{CY} a Calabi-Yau metric on $X = Y \setminus D$ asymptotic to a standard or quasi-regular semi-flat metric. Then

- (i) there is a special Lagrangian torus fibration $\pi: X \to \mathbb{R}^2$,
- (ii) after HK rotating so that the fibration becomes holomorphic $\pi: X \to \mathbb{C}$, X can be compactified to another rational elliptic surface by adding an I_k fiber.

< □ > < □ > < □ > < □ > < □ > < □ >

With this discussion of CY metrics out of the way, we can return to the discussion of SYZ mirror symmetry for RES.

Theorem (C.-Jacob-Lin)

Let Y be a RES, D an I_k fiber, and ω_{CY} a Calabi-Yau metric on $X = Y \setminus D$ asymptotic to a standard or quasi-regular semi-flat metric. Then

- (i) there is a special Lagrangian torus fibration $\pi: X \to \mathbb{R}^2$,
- (ii) after HK rotating so that the fibration becomes holomorphic $\pi : X \to \mathbb{C}$, X can be compactified to another rational elliptic surface by adding an I_k fiber.
 - argument is the same as that for del Pezzo surfaces using the "bad cycle" of the quasi-regular semi-flat metric as the model.

イロト 不得下 イヨト イヨト 二日

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces.

< A >

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

(0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

- (0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).
- (1) Constructing the topological mirror (\check{Y}, \check{D}) .

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

- (0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).
- (1) Constructing the topological mirror (\check{Y}, \check{D}) .
- (2) Identifying the correct complex structure on (\check{Y}, \check{D})

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

- (0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).
- (1) Constructing the topological mirror (\check{Y}, \check{D}) .
- (2) Identifying the correct complex structure on (\check{Y}, \check{D})
- (3) Constructing a special Lagrangian fibration on (\check{Y}, \check{D}) .

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

- (0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).
- (1) Constructing the topological mirror (\check{Y}, \check{D}) .
- (2) Identifying the correct complex structure on (\check{Y}, \check{D})
- (3) Constructing a special Lagrangian fibration on (\check{Y}, \check{D}) .
- (4) Showing that mirror symmetry exchanges the complex and symplectic affine structures on $X = Y \setminus D$ and $\check{X} = \check{Y} \setminus \check{D}$.

- 本間 と く ヨ と く ヨ と 二 ヨ

Using these results we can prove SYZ mirror symmetry for del Pezzo surfaces. This consists of:

- (0) Finding a special Lagrangian fibration on a del Pezzo pair (Y, D).
- (1) Constructing the topological mirror (\check{Y}, \check{D}) .
- (2) Identifying the correct complex structure on (\check{Y}, \check{D})
- (3) Constructing a special Lagrangian fibration on (\check{Y}, \check{D}) .
- (4) Showing that mirror symmetry exchanges the complex and symplectic affine structures on $X = Y \setminus D$ and $\check{X} = \check{Y} \setminus \check{D}$.

- 本間 と く ヨ と く ヨ と 二 ヨ

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

3

< □ > < □ > < □ > < □ > < □ > < □ >

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

Given a del Pezzo pair (Y, D) of degree k, with holomorphic volume form Ω, let X = Y \ D, and α, β ∈ H₁(D, Z) be primitive classes with α.β = m ∈ Z.

3

< 日 > < 同 > < 三 > < 三 >

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

- Given a del Pezzo pair (Y, D) of degree k, with holomorphic volume form Ω, let X = Y \ D, and α, β ∈ H₁(D, Z) be primitive classes with α.β = m ∈ Z.
- Identify α, β with the classes of their S^1 bundles in $H_2(X)$, and normalize Ω such that $\text{Im}(\Omega).\alpha = 0$.

- 4 回 ト 4 三 ト 4 三 ト

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

- Given a del Pezzo pair (Y, D) of degree k, with holomorphic volume form Ω, let X = Y \ D, and α, β ∈ H₁(D, Z) be primitive classes with α.β = m ∈ Z.
- Identify α, β with the classes of their S^1 bundles in $H_2(X)$, and normalize Ω such that $\text{Im}(\Omega).\alpha = 0$.
- Let (Y', D') be the RES with an I_k fiber obtained by HK rotating along the SYZ fibration induced by β.

- 本間 と く ヨ と く ヨ と 二 ヨ

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

- Given a del Pezzo pair (Y, D) of degree k, with holomorphic volume form Ω, let X = Y \ D, and α, β ∈ H₁(D, Z) be primitive classes with α.β = m ∈ Z.
- Identify α, β with the classes of their S^1 bundles in $H_2(X)$, and normalize Ω such that $\text{Im}(\Omega).\alpha = 0$.
- Let (Y', D') be the RES with an I_k fiber obtained by HK rotating along the SYZ fibration induced by β .
- For $k \neq 8$ there is a unique deformation family of RES with an I_k fiber. For k = 8 there are two families, but these can be distinguished topologically.

イロト 不得下 イヨト イヨト 二日

We can now explain how to obtain SYZ mirror symmetry for del Pezzo surfaces.

- Given a del Pezzo pair (Y, D) of degree k, with holomorphic volume form Ω, let X = Y \ D, and α, β ∈ H₁(D, Z) be primitive classes with α.β = m ∈ Z.
- Identify α, β with the classes of their S^1 bundles in $H_2(X)$, and normalize Ω such that $\text{Im}(\Omega).\alpha = 0$.
- Let (Y', D') be the RES with an I_k fiber obtained by HK rotating along the SYZ fibration induced by β .
- For $k \neq 8$ there is a unique deformation family of RES with an I_k fiber. For k = 8 there are two families, but these can be distinguished topologically.
- Using the Torelli theorem of Gross-Hacking-Keel there is a distinguished pair (Y_e, D_e) in the deformation family (Y', D') with trivial periods. This pair was also used by Hacking-Keating to study HMS for log CY surfaces.

Tristan Collins (MIT)

SYZ for del Pezzo and RES

October 20, 2020 35 / 38

• Up to identifications, α induces a bad cycle in (Y_e, D_e)

э

4 E b

< /□ > < 三

Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base m ≥ 1 times).

3

(4 何) トイヨト イヨト

- Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base $m \ge 1$ times).
- We use the mirror map proposed by Gross to identify the Kähler class

 $[\check{\omega}] = \operatorname{Im}(\Omega)$

on (Y_e, D_e) (modulo scaling).

- Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base $m \ge 1$ times).
- We use the mirror map proposed by Gross to identify the Kähler class

$$[\check{\omega}] = \operatorname{Im}(\Omega)$$

on (Y_e, D_e) (modulo scaling). The full mirror map is more sophisticated than this and defined on the complexified Kähler moduli.

- Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base $m \ge 1$ times).
- We use the mirror map proposed by Gross to identify the Kähler class

$$[\check{\omega}] = \operatorname{Im}(\Omega)$$

on (Y_e, D_e) (modulo scaling). The full mirror map is more sophisticated than this and defined on the complexified Kähler moduli.

• Modulo fiber preserving automorphisms there is a unique CY metric $\check{\omega}_{CY}$ on $X_e = Y_e \setminus D_e$ in $[\check{\omega}]$ which is asymptotic to a (quasi-regular) semi-flat metric.

- Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base $m \ge 1$ times).
- We use the mirror map proposed by Gross to identify the Kähler class

$$[\check{\omega}] = \operatorname{Im}(\Omega)$$

on (Y_e, D_e) (modulo scaling). The full mirror map is more sophisticated than this and defined on the complexified Kähler moduli.

- Modulo fiber preserving automorphisms there is a unique CY metric $\check{\omega}_{CY}$ on $X_e = Y_e \setminus D_e$ in $[\check{\omega}]$ which is asymptotic to a (quasi-regular) semi-flat metric.
- Moreover, $(X_e, \check{\omega}_{CY})$ admits an SYZ fibration with fibers in the class α .

- Up to identifications, α induces a bad cycle in (Y_e, D_e) (which will cover a loop in the base $m \ge 1$ times).
- We use the mirror map proposed by Gross to identify the Kähler class

$$[\check{\omega}] = \operatorname{Im}(\Omega)$$

on (Y_e, D_e) (modulo scaling). The full mirror map is more sophisticated than this and defined on the complexified Kähler moduli.

- Modulo fiber preserving automorphisms there is a unique CY metric $\check{\omega}_{CY}$ on $X_e = Y_e \setminus D_e$ in $[\check{\omega}]$ which is asymptotic to a (quasi-regular) semi-flat metric.
- Moreover, $(X_e, \check{\omega}_{CY})$ admits an SYZ fibration with fibers in the class α .
- By direct calculation, the SYZ fibrations on Y \ D and Y_e \ D_e are dual, in the sense that they exchange the complex and symplectic affine structures on the base ℝ², and that their volumes are inverse to one another.

Tristan Collins (MIT)

 Finally, since the K\u00e4hler class always lies in a 10 - k dimensional subspace pairing to zero with some quasi-bad cycle, the K\u00e4hler moduli is 10 - k dimensional.

- Finally, since the K\u00e4hler class always lies in a 10 k dimensional subspace pairing to zero with some quasi-bad cycle, the K\u00e4hler moduli is 10 - k dimensional.
- On the complex side, the Torelli theorem of McMullen also gives a 10 k dimensional complex moduli of degree k del Pezzo pairs (Y, D).

- Finally, since the K\u00e4hler class always lies in a 10 k dimensional subspace pairing to zero with some quasi-bad cycle, the K\u00e4hler moduli is 10 - k dimensional.
- On the complex side, the Torelli theorem of McMullen also gives a 10 - k dimensional complex moduli of degree k del Pezzo pairs (Y, D). These geometric Hodge numbers agree with the KKP Hodge numbers.

- Finally, since the K\u00e4hler class always lies in a 10 k dimensional subspace pairing to zero with some quasi-bad cycle, the K\u00e4hler moduli is 10 - k dimensional.
- On the complex side, the Torelli theorem of McMullen also gives a 10 - k dimensional complex moduli of degree k del Pezzo pairs (Y, D). These geometric Hodge numbers agree with the KKP Hodge numbers.
- Comparing the *complex* moduli of rational elliptic surfaces with the *symplectic* moduli of del Pezzos is an interesting question for future work.

- 4 回 ト 4 三 ト 4 三 ト

The End

æ

・ロト ・四ト ・ヨト ・ヨト