Quantum Modularity and 3-Manifolds

Miranda C. N. Cheng
University of Amsterdam

Universiteit van Amsterdam

Main Motivations:

- QMF
natural structure beyond modular forms;
- $\hat{Z}_{a}\left(M_{3} ; \tau\right)$
q-invariants for (closed) 3-manifolds;
- $\hat{Z}_{a}\left(M_{3} ; \tau\right)=$ susy index

3d SQFT, 3d-3d, and M-theory.

- $\hat{Z}_{a}\left(M_{3} ; \tau\right) \sim \chi_{R}^{\nu}(\tau)$

Novel types of vertex algebras and representations.

Based on:

- 3d Modularity, 1809.10148
w. S. Chun, F. Ferrari, S. Gukov, S. Harrison.
- 3d Modularity and log VOA, 20XX.XXXXX
w. S. Chun, B. Feigin, F. Ferrari, S. Gukov, S. Harrison.

- Three-Manifold Quantum Invariants and Mock Theta Functions, 1912.07997
w. F. Ferrari, G. Sgroi.
- Three Manifolds and Indefinite Theta Functions, 20XX. w. G. Sgroi.

Outline:

I. Background
II. A (True) False Theorem
III. A Mock-False Conjecture
IV. Going Deeper
V. Questions for Future

I. Background

I. 1 Quantum Modular Forms (QMF): the Upper-Half Plane \mathbb{H}

$$
\begin{aligned}
& \text { Symmetry: } \tau \mapsto \gamma \tau:=\frac{a \tau+b}{c \tau+d} \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{R}) \supset S L_{2}(\mathbb{Z})
\end{aligned}
$$

\mathbb{H} has natural boundary $\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{\infty\}$, the cusps of $S L_{2}(\mathbb{Z})$ which acts transitively.

I. 1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic $f n f$ on \mathbb{H}, G a discrete subgroup of $S L_{2}(\mathbb{Z})$.

Def (modular transf. of weight w): $\left.f\right|_{w} \gamma(\tau):=f(\gamma \tau)(c \tau+d)^{-w}$ Def (modular form of weight w for G): $\left.f\right|_{w} \gamma(\tau)=f(\tau) \forall \gamma \in G$

Many generalisations: non-trivial G-characters, vector-valued, non-holomorphic etc.

I. 1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic $f n f$ on \mathbb{H}, G a discrete subgroup of $S L_{2}(\mathbb{Z})$.

Def (modular transf. of weight w): $\left.f\right|_{w} \gamma(\tau):=f(\gamma \tau)(c \tau+d)^{-w}$
Def (modular form of weight w for G): $\left.f\right|_{w} \gamma(\tau)=f(\tau) \forall \gamma \in G$

Example: Lattice θ-functions

- $\Lambda=\mathbb{Z}, \theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}$, wt $1 / 2$
- $\Lambda=\sqrt{2 m} \mathbb{Z}, \wedge^{*} / \Lambda \cong \mathbb{Z} / 2 m$,
$\left(q:=e^{2 \pi i \tau}\right)$
$\theta_{m, r}^{0}(\tau)=\sum_{k \equiv r(2 m)} q^{\frac{k^{2}}{4 m}}$, wt $1 / 2$
$\theta_{m, r}^{1}(\tau)=\sum_{k \equiv r(2 m)} k q^{\frac{k^{2}}{4 m}}$, wt $3 / 2$

I. 1 Quantum Modular Forms (QMF): Modular Forms

Consider a holomorphic $f n f$ on \mathbb{H}, G a discrete subgroup of $S L_{2}(\mathbb{Z})$.

Def (modular transf. of weight w): $\left.f\right|_{w} \gamma(\tau):=f(\gamma \tau)(c \tau+d)^{-w}$
Def (modular form of weight w for G): $\left.f\right|_{w} \gamma(\tau)=f(\tau) \forall \gamma \in G$

Example: Lattice θ-functions

- $\Lambda=\mathbb{Z}, \theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, w t 1 / 2$
- $\wedge=\sqrt{2 m} \mathbb{Z}, \Lambda^{*} / \Lambda \cong \mathbb{Z} / 2 m$,
$\theta_{m, r}^{0}(\tau)=\sum_{k \equiv r(2 m)} q^{\frac{k^{2}}{4 m}}$,wt $1 / 2$
$\theta_{m, r}^{1}(\tau)=\sum_{k \equiv r(2 m)} k q^{\frac{k^{2}}{4 m}}$, wt $3 / 2$

I. 1 Quantum Modular Forms (QMF): Radial Limit

Consider a holomorphic fn f on \mathbb{H}.
Taking the radial limit:

$$
f\left(\frac{p}{q}\right):=\lim _{t \rightarrow 0^{+}} f\left(\frac{p}{q}+i t\right)
$$

defines a function on \mathbb{Q}.

$\tau \rightarrow \alpha \in \mathbb{Q}$

Remark: Later we will see:
q-series invariant $\rightarrow \rightarrow$ Chern-Simons (WRT) invariant

$$
q \rightarrow e^{2 \pi i \frac{1}{k}}
$$

I. 1 Quantum Modular Forms (QMF): Modular Forms

Consider a modular form f.

Taking the radial limit:

$$
f\left(\frac{p}{q}\right):=\lim _{t \rightarrow 0^{+}} f\left(\frac{p}{q}+i t\right)
$$

defines a function on \mathbb{Q}, satisfying

$$
f(x)-\left.f\right|_{w} \gamma(x)=0
$$

for all $x \in \mathbb{Q} \backslash\left\{\gamma^{-1}(\infty)\right\}$.

I. 1 Quantum Modular Forms (QMF): A First Definition

$$
\text { How to generalise } f(x)-\left.f\right|_{w} \gamma(x)=0 \text { ? }
$$

Here neither of the properties which are required of classical modular forms-analyticity and Γ-covariance-are reasonable things to require: the former because $\mathbb{P}^{1}(\mathbb{Q})$, viewed as the set of cusps of the action on Γ on \mathfrak{H}, is naturally equipped only with the discrete topology, not with its induced topology as a subset of $\mathbb{P}^{1}(\mathbb{R})$, so that any requirement of continuity or analyticity is vacuous; and the latter because Γ acts on $\mathbb{P}^{1}(\mathbb{Q})$ transitively or with only finitely many orbits, so that any requirement of Γ-covariance of a function on this set would lead to a trivial definition. So we do not demand either continuity/analyticity or modularity, but require instead that the failure of one precisely offsets the failure of the other. In other words, our quantum modular form should be a function $f: \mathbb{Q} \rightarrow \mathbb{C}$ for which the function $h_{\gamma}: \mathbb{Q} \backslash\left\{\gamma^{-1}(\infty)\right\} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
h_{\gamma}(x)=f(x)-\left(\left.f\right|_{k} \gamma\right)(x) \tag{2}
\end{equation*}
$$

has some property of continuity or analyticity (now with respect to the real topology) for every element $\gamma \in \Gamma$. This is purposely a little vague, since examples coming from different sources have somewhat different properties, and we want to consider all of them as being quantum modular forms.
[Don Zagier 2010]

I. 1 Quantum Modular Forms (QMF): Strong QMF

A strong quantum modular form - and most of our examples will belong to this category - is an object with a stronger (and more interesting) structure: it associates to each element of \mathbb{Q} a formal power series over \mathbb{C}, rather than just a complex number, with a correspondingly stronger requirement on its behavior under the action of Γ. To describe this, we write the power series in $\mathbb{C}[[\varepsilon]]$ associated to $x \in \mathbb{Q}$ as $f(x+i \varepsilon)$ rather than, say, $f_{x}(\varepsilon)$, so that f is now defined in the union of (disjoint!) formal infinitesimal neighborhoods of all points $x \in \mathbb{Q} \subset \mathbb{C}$. Since the function h_{γ} in (2) was required to be real-analytic on the complement of a finite subset S_{γ} of $\mathbb{P}^{1}(\mathbb{R})$, it extends holomorphically to a neighborhood of $\mathbb{P}^{1}(\mathbb{R}) \backslash S_{\gamma}$ in $\mathbb{P}^{1}(\mathbb{C})$, and in particular has a power series expansion (convergent in some disk of positive radius) around each point $x \in \mathbb{Q}$. Our stronger requirement is now that the equation

$$
\begin{equation*}
f(z)-\left(\left.f\right|_{k} \gamma\right)(z)=h_{\gamma}(z) \quad(\gamma \in \Gamma, \quad z \rightarrow x \in \mathbb{Q}) \tag{3}
\end{equation*}
$$

holds as an identity between countable collections of formal power series.
the power series $f(0+i t) \sim$ semi-classical $\frac{1}{k}$-expansion of WRT
\sim Ohtsuki series of 3-manifolds

I. 1 Quantum Modular Forms (QMF): Examples

Examples: False Theta Functions, Mock Modular Forms,... Applications: Kashaev invariants, log CFT characters, $\widehat{Z}_{a}(q), \ldots$

I. 1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a modular form g of weight w.
Def (Eichler integrals):

$$
\begin{aligned}
\tilde{g}(\tau) & :=\int_{\tau}^{i \infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}-\tau\right)^{w-2} d \tau^{\prime} \\
g^{*}(\tau) & :=\int_{-\bar{\tau}}^{i \infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}+\tau\right)^{w-2} d \tau^{\prime}
\end{aligned} \quad \text { (holomorphic) }
$$

$\mathbf{R k}: \tilde{g}-\left.\tilde{g}\right|_{2-w} \gamma$ and $g^{*}-\left.g^{*}\right|_{2-w} \gamma$ are period integrals \rightarrow quantum modularity.

$$
\begin{aligned}
\left(\left.\tilde{g}\right|_{2-w} \gamma\right)(\tau) & =(c \tau+d)^{-2+w} \int_{\tau}^{\gamma^{-1} \infty} g\left(\gamma \tau^{\prime}\right)\left(\gamma \tau^{\prime}-\gamma \tau\right)^{w-2} d\left(\gamma \tau^{\prime}\right) \\
& =\int_{\tau}^{\gamma^{-1} \infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}-\tau\right)^{w-2} d \tau^{\prime} \\
\Rightarrow\left(\tilde{g}-\left.\tilde{g}\right|_{2-w} \gamma\right)(\tau) & =\int_{\gamma^{-1} \infty}^{\infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}-\tau\right)^{w-2} d \tau^{\prime}
\end{aligned}
$$

I. 1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a modular form g of weight w.
Def (Eichler integrals):
$\begin{array}{rr}\tilde{g}(\tau) & :=\int_{\tau}^{i \infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}-\tau\right)^{w-2} d \tau^{\prime} \\ g^{*}(\tau) & :=\int_{-\bar{\tau}}^{i \infty} g\left(\tau^{\prime}\right)\left(\tau^{\prime}+\tau\right)^{w-2} d \tau^{\prime}\end{array} \quad$ (holomorphic) \quad (non-holomorphic)

Example: False θ-function

$$
\begin{aligned}
& \theta_{m, r}^{1}(\tau)=\sum_{k \equiv r(2 m)} k q^{\frac{k^{2}}{4 m}}, \text { wt } 3 / 2 \\
& \widetilde{\theta_{m, r}^{1}}(\tau)=\sum_{\substack{k \in \mathbb{Z} \\
k \equiv r(2 m)}} \frac{\operatorname{sgn}(k)}{\searrow_{\text {false }}^{k^{2} / 4 m}}
\end{aligned}
$$

I. 1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a holomorphic $f n f$ on \mathbb{H}.
Def (mock modular forms, mmf) [Zwegers '02]:
f is a mmf of weight w if there exists a modular form $g=\operatorname{shad}(f)$ (the shadow) of weight $2-w$ such that $\hat{f}:=f-g^{*}$ satisfies $\hat{f}=\left.\hat{f}\right|_{w} \gamma \quad \forall \gamma \in G$.
$\mathbf{R k}: \hat{f}=\left.\hat{f}\right|_{w} \gamma \Rightarrow f-\left.f\right|_{w} \gamma=g^{*}-\left.g^{*}\right|_{w} \gamma \rightarrow$ quantum modularity.

I. 1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a holomorphic $f n f$ on \mathbb{H}.
Def (mock modular forms, mmf) [Zwegers '02]:
f is a mmf of weight w if there exists a modular form $g=\operatorname{shad}(f)$ (the shadow) of weight $2-w$ such that $\hat{f}:=f-g^{*}$ satisfies $\hat{f}=\left.\hat{f}\right|_{w} \gamma \quad \forall \gamma \in G$.

Example: modular forms
Example : Ramanujan's Mock θ Functions

$$
\begin{aligned}
F_{0}(\tau) & =\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}=1+q+q^{3}+q^{4}+O\left(q^{5}\right) \\
\operatorname{shad}\left(F_{0}\right)(\tau) & =\sum_{\substack{i \in \mathbb{Z} / 42 \\
i^{2} \equiv 1(42)}}\left(\frac{i}{21}\right) \theta_{42, i}^{1}(\tau)
\end{aligned}
$$

I. 1 Quantum Modular Forms (QMF): Examples

Questions?

I. Background

main ref. [Gukov-Pei-Putrov-Vafa '17]

$\widehat{Z}_{a}\left(M_{3} ; \tau\right)$ and $Z_{C S}$

$Z_{\mathrm{CS}}\left(M_{3} ; k\right) ; k \in \mathbb{Z}$ is the (effective) level.
Question: Can we go from \mathbb{Z} to \mathbb{H} :
a q-series inv. for 3 -man. extending Z_{CS} ?

Idea: q-series $\xrightarrow[q \rightarrow e^{2 \pi i / k}]{\text { radial limit }} Z_{C S}(k)$

Remarks: 1. cf. previous work by Habiro. 2. (*) is not sufficient to fix the q-series.

$\widehat{Z}_{a}\left(M_{3} ; \tau\right)$: Mathematical Definition

M_{3} : Plumbed 3-manifold, determined by its plumbing graph Γ.

$$
\text { weighted graph } \Gamma:=(V, E, a), a: V \rightarrow \mathbb{Z} .
$$

$\widehat{Z}_{2}\left(M_{3} ; \tau\right)$: Mathematical Definition

M_{3} : Plumbed 3-manifold, determined by its plumbing graph Γ.

plumbing graph 「

glue (disk b dee
over $\left.s^{2} w . X=a_{i}\right)$
$M_{4}(T)$
adjacency matrix M

$$
M=\left(\begin{array}{cccccc}
a_{1} & 0 & 1 & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 & 0 & 0 \\
1 & 1 & a_{3} & 1 & 0 & 0 \\
0 & 0 & 1 & a_{4} & 1 & 1 \\
0 & 0 & 0 & 1 & a_{5} & 0 \\
0 & 0 & 0 & 1 & 0 & a_{6}
\end{array}\right)
$$

$\widehat{Z}_{2}\left(M_{3} ; \tau\right):$ Mathematical Definition

M_{3} : Plumbed 3-manifold, determined by its plumbing graph Γ.

$$
\begin{aligned}
& \text { glue (disk b dhe } \\
& \text { over } \left.s^{2} \text { w. } x=a_{i}\right)
\end{aligned}
$$

$$
M_{4}(T)
$$

take b dy
plumbed $M_{3, \Gamma}$

$$
H_{1}\left(M_{3, \Gamma} ; \mathbb{Z}\right) \cong \mathbb{Z}^{|V|} / M \mathbb{Z}^{|V|}(\text { Coker } M)
$$

$\widehat{Z}_{a}\left(M_{3} ; \tau\right):$ Mathematical Definition

M_{3} : Plumbed 3-manifold, determined by its plumbing graph Γ.

$\widehat{Z}_{a}\left(M_{3} ; \tau\right):$ Mathematical Definition

Def: For a weighted graph Γ with a neg.-def. M, and for a given $a \in \operatorname{Cork}(M)$, define the theta function

$$
\Theta_{a}^{M}(\tau ; \mathbf{z}):=\sum_{\ell \in 2 M \mathbb{Z}^{|V|} \pm a} q^{-\ell^{T} M^{-1} \ell} \mathbf{z}^{\ell}
$$

$$
\widehat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right):=(\pm) q^{\Delta} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})
$$

$$
\sim\left[\mathbf{z}^{0}\right]\left(\prod_{v \in V}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})\right)
$$

Def: For a weighted graph Γ with a neg.-def. M, and for a given $a \in \operatorname{Cork}(M)$, define the theta function

$$
\hat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right):=(\pm) q^{\Delta} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})
$$

$$
\sim\left[\mathbf{z}^{0}\right]\left(\prod_{v \in V}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})\right)
$$

Remarks:

1. a set of q-invariants;
2. $a \in \operatorname{Cork}(M) \cong H_{1}\left(M_{3}, \mathbb{Z}\right) \cong\{\text { inequiv. } S U(2) A b \text {. flat connections }\}^{*}$;
3. neg.-def. $M^{* *} \Leftrightarrow$ pos.-def. lattice $\Leftrightarrow \Theta$ and hence \widehat{Z}_{a} converges when
$\tau \in \mathbb{H}$;
4. $q^{c} \widehat{Z}_{a}(\tau) \in \mathbb{Z}[[q]]$ for a $c \in \mathbb{Q}$ dependening only on M_{3}.

* up to Weyl group \mathbb{Z}_{2} action
** this condition can be relaxed: M^{-1} only needs to be neg.-def. in the subspace spanned by the vertices with at least 3 edges

$\widehat{Z}_{2}\left(M_{3} ; \tau\right)$: Mathematical Definition

$$
M_{3, \Gamma}=\Sigma(2,3,7)=\left\{x^{2}+y^{3}+z^{7}=0\right\} \cap S^{5}
$$

Questions?

Quantum Modular Form (QMF)

Applications:

Quantum modularity

- helps to determine the q-invariants;
- leads to new ways of retrieving topological information;
- gives hints about the physical theories.

Quantum Modular Form (QMF)

See also important previous and ongoing work on a related topic (Kashaev invariants of knots):
Zagier '10, Garoufalidis-Zagier '13 and new, DimofteGaroufalidis '15, Hikami-Lovejoy '14,
I. Background
II. A (True) False Theorem
III. A Mock-False Conjecture
IV. Going Deeper
V. Questions for Future

First we focus on the most tractable family of examples:
$\Gamma=3$-pronged star

A False Theorem

Theorem : Negative three-stars are false.
[MC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas '18]
For any three-pronged star weighted graph 「 of negative type, the functions $\widehat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right)$ are false theta functions. In particular, there exists an $m=m(\Gamma) \in \mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$
q^{c} \widehat{Z}_{a}(\tau) \in \operatorname{span}_{\mathbb{Z}}\left\{\widetilde{\theta_{m, r}^{1}}, r \in \mathbb{Z} / 2 m\right\} \quad \forall a .
$$

Rk: See also earlier work by [Lawrence-Zagier '99] and Hikami in the context of CS inv.

Recall: (false) theta functions

$$
\begin{aligned}
& \theta_{m, r}^{1}=\sum_{k \equiv r(2 m)} k q^{\frac{k^{2}}{4 m}} \\
& \widetilde{\theta_{m, r}^{1}}=\sum_{k \equiv r(2 m)} \operatorname{sgn}(k) q^{\frac{k^{2}}{4 m}}
\end{aligned}
$$

$\hat{Z}_{a}=\mathbf{Q M F}$

$$
\widehat{Z}_{a}(\tau)=\left(\widetilde{\theta_{m, r}^{1}}+\widetilde{\theta_{m, r^{\prime}}^{1}}+\widetilde{\theta_{m, r^{\prime \prime}}^{1}}+\ldots\right), r, r^{\prime}, \cdots \in \mathbb{Z} / 2 m
$$

Recall that the false theta functions like $\widetilde{\theta_{m, r}^{1}}$ are quantum modular forms, which means

$$
\left(\hat{Z}_{a}-\left.\hat{Z}_{a}\right|_{1 / 2} \gamma\right)(\tau) \quad(*)
$$

when the radially limit is properly taken, has analytic properties.

$$
\widehat{Z}_{a}(\tau) \underset{\text { summed over a }}{\text { radial limit }} Z_{\mathrm{CS}}
$$

$$
\tau \rightarrow \frac{1}{k}
$$

$$
\begin{aligned}
& \quad(*) \Rightarrow \\
& Z_{C S}(k) \sim \widehat{Z}\left(\frac{1}{k}\right)=\widehat{Z}(-k)+\text { pert. series in } \frac{1}{k} \\
& \text { sadd. pnt contr. from } S L(2, \mathbb{C}) \text { flat connections }
\end{aligned}
$$

$\widehat{Z}_{a}=$ Log Characters

Theorem : Negative three-stars are false.
[MC-Chun-Ferrari-Gukov-Harrison, Bringmann-Mahlburg-Milas '18]
For any three-pronged star weighted graph Г of negative type, the functions $\hat{Z}_{a}\left(M_{3, \Gamma ; \tau)}\right.$ are false theta functions. In particular, there exists an $m=m(\Gamma) \in \mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$
\begin{aligned}
q^{c} \widehat{Z}_{a}(\tau) & \in \operatorname{span}_{\mathbb{Z}}\left\{\widetilde{\theta_{m, r}^{1}}, r \in \mathbb{Z} / 2 m\right\} \quad \forall a . \\
& \sim \log \text { VOA character }
\end{aligned}
$$

Log VOAs:

- contain modules not decomposable into irreducibles;
- a nice playground to study the mathematical properties of non-rational vertex algebras.

A Simple Log VOA: the ($1, m$) Algebra

Given a positive integer m, let $\alpha_{ \pm}= \pm \sqrt{2 m^{ \pm 1}}, \alpha_{0}=\alpha_{+}+\alpha_{-}$ free boson : $\varphi(z) \varphi(w) \sim \log (z-w)$
stress energy tensor: $T=\frac{1}{2}(\partial \varphi)^{2}+\frac{\alpha_{0}}{2} \partial^{2} \varphi, c=1-3 \alpha_{0}^{2}$
screening charges : $Q_{-}=\left(e^{\alpha_{-} \varphi}\right)_{0}$

$$
\begin{aligned}
& \text { triplet }(1, m) \text { algebra: } \mathcal{W}(m):=\operatorname{ker}_{\mathcal{V}_{L}} Q_{-} \\
& \text {singlet }(1, m) \text { algebra: } \mathcal{M}(m):=\operatorname{ker}_{H} Q_{-}
\end{aligned}
$$

where $\mathcal{V}_{L}=$ lattice VOA for $L=\sqrt{2 m} \mathbb{Z}, H=$ Heisenberg algebra.

$$
\begin{array}{ccc}
H & \subset \mathcal{V} \\
\cup & & \cup \\
\mathcal{M}(m) & \subset \mathcal{W}(m)
\end{array}
$$

A Simple Log VOA: the $(1, m)$ Algebra

The triplet $(1, m)$ algebra $\mathcal{W}(m)$ has $2 m$ irreducible modules.
We are especially interested in m of them, with graded character

$$
\begin{gathered}
\chi_{s}^{\mathcal{W}(m)}=\frac{1}{\eta(\tau)} \sum_{n \in \mathbb{Z}} q^{\frac{(2 m n+m-s)^{2}}{4 m}} \frac{z^{2 n+1}-z^{-2 n-1}}{z-z^{-1}}, s=1, \ldots, m . \\
\frac{\widehat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})
\end{gathered}
$$

\hat{Z}_{a} and Log VOA Characters

$$
\frac{\hat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z})
$$

Integrate over all but the central node z_{c}

closely related to the algebra of bdry op.?

Questions?

I. Background
II. A (True) False Theorem
III. A Mock-False Conjecture
IV. Going Deeper
V. Questions for Future

A Puzzle

$$
\begin{aligned}
& \text { Recall } \\
& \qquad \widehat{Z}_{a}(\tau) \xrightarrow[\text { summed over } a]{\tau \rightarrow \frac{1}{k}} \xrightarrow[\mathrm{CS}]{\text { radial limit }}
\end{aligned}
$$

Upon flipping orientation, we have

$$
Z_{\mathrm{CS}}\left(-M_{3} ; k\right)=Z_{\mathrm{CS}}\left(M_{3} ;-k\right)
$$

A Puzzle

Recall

$$
\hat{Z}_{\mathrm{a}}(\tau) \xrightarrow[\text { summed over a }]{\tau \rightarrow \frac{1}{k}} \underset{\mathrm{CS}}{\text { radial limit }}
$$

Upon flipping orientation, we have

$$
Z_{\mathrm{CS}}\left(-M_{3} ; k\right)=Z_{\mathrm{CS}}\left(M_{3} ;-k\right)
$$

From $(k \leftrightarrow-k) \Leftrightarrow(\tau \leftrightarrow-\tau) \Leftrightarrow\left(q \leftrightarrow q^{-1}\right)$, we expect

$$
\widehat{Z}_{a}\left(-M_{3} ; \tau\right)=\widehat{Z}_{a}\left(M_{3} ;-\tau\right)
$$

But what's this? Can we define $\widehat{Z}_{a}\left(M_{3} ; \tau\right)$ for both $(|q|<1 \Leftrightarrow \tau \in \mathbb{H})$ and $\left(|q|>1 \Leftrightarrow \tau \in \mathbb{H}_{-}\right)$?

Going to the Other Side

Troubles with Thetas

$$
\begin{aligned}
& \hat{z}_{a}\left(M_{3, \Gamma} ; \tau\right):=(\pm) q^{\Delta} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z}) \\
& \Theta_{a}^{M}(\tau ; \mathbf{z}):=\sum_{\ell \in 2 M z|V| \pm a} q^{-\ell^{\top} M^{-1} \ell} \mathbf{z}^{\ell} . \\
& M_{3} \leftrightarrow-M_{3} \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow \text { flipping the lattice signature } M \leftrightarrow-M \\
& \text { no longer convergent for }|q|<1!
\end{aligned}
$$

The definition for $\widehat{Z}_{a}(\tau)$ no longer applies after $M_{3} \rightarrow-M_{3}$.

A Small Miracle

$$
\begin{aligned}
& \qquad \begin{aligned}
\operatorname{shad}\left(F_{0}\right) & (\tau)
\end{aligned}=\sum_{\substack{i \in \mathbb{Z} / 42 \\
i^{2} \equiv 1(42)}}\left(\frac{i}{21}\right) \widetilde{\theta_{42, i}^{1}}(\tau)=q^{-\frac{83}{168}} \hat{Z}_{0}(\Sigma(2,3,7), \tau) \\
& \text { It admits an expression as } q \text {-hypergeometric series } \\
& \\
& =q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}
\end{aligned}
$$

A Small Miracle

It admits an expression as q-hypergeometric series

$$
=q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}
$$

which moreover converges both inside and outside (but not on) the unit circle:

$$
=q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{q^{-n^{2}}}{\prod_{k=1}^{n}\left(1-q^{-(n+k)}\right)}
$$

$|q|>1$

A Small Miracle

Recall : Ramanujan's Mock θ Functions

$$
\begin{aligned}
F_{0}(\tau) & =\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}=1+q+q^{3}+q^{4}+O\left(q^{5}\right) \\
\operatorname{shad}\left(F_{0}\right)(\tau) & =\sum_{\substack{i \in \mathbb{Z} / 42 \\
i^{2} \equiv 1(42)}}\left(\frac{i}{21}\right) \theta_{42, i}^{1}(\tau)
\end{aligned}
$$

A Small Miracle

$$
\begin{array}{r}
q^{-\frac{83}{168}} \hat{Z}_{0}(\Sigma(2,3,7), \tau)=\sum_{\substack{i \in \mathbb{Z} / 42 \\
i^{2}=1(42)}}\left(\frac{i}{21}\right) \widetilde{\theta_{42, i}^{1}}(\tau) \\
=q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}=q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{q^{-n^{2}}}{\prod_{k=1}^{n}\left(1-q^{-(n+k)}\right)} \\
\text { Fel }_{0}(-\tau)
\end{array}
$$

cf. Ramanujan's mock theta function

$$
F_{0}(\tau)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-q^{n+k}\right)}=1+q+q^{3}+q^{4}+O\left(q^{5}\right)
$$

A Small Miracle

The q-hypergeometric series defines a function $F: \mathbb{H} \cup \mathbb{H}^{-} \rightarrow \mathbb{C}$, satisfying

$$
F(\tau)= \begin{cases}\widetilde{\operatorname{shad}\left(F_{0}\right)(\tau)} & \text { when } \tau \in \mathbb{H} \\ F_{0}(-\tau) & \text { when } \tau \in \mathbb{H}^{-} .\end{cases}
$$

Moreover, it gives the same asymptotic expansion as $\tau \rightarrow \pm i t$ \Rightarrow they lead to the same quantum modular form.

Conjecture:

$$
\begin{aligned}
\hat{Z}_{0}(-\Sigma(2,3,7), \tau) & =\hat{Z}_{0}(\Sigma(2,3,7),-\tau) \\
& =q^{-\frac{1}{2}} F_{0}(\tau)=q^{-\frac{1}{2}}\left(1+q+q^{3}+q^{4}+O\left(q^{5}\right)\right)
\end{aligned}
$$

A Mock-False Conjecture

Theorem :* [MC-Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $\mathrm{SL}_{2}(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^{-}, satisfying

A Mock-False Conjecture

Theorem :* [MC-Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $\mathrm{SL}_{2}(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^{-}, satisfying

A Mock-False Conjecture

The False-Mock Conjecture: [CCFGH'18]
If $q^{-c} \widehat{Z}_{a}\left(M_{3} ; \tau\right)=\widetilde{\theta}(\tau)$ for some $c \in \mathbb{Q}$ is a false theta function, then

$$
q^{c} \widehat{Z}_{a}\left(-M_{3} ; \tau\right)=f(\tau)
$$

is a mock theta function with $\operatorname{shad}(f)=\theta$.

False-Mock Conjecture: A Test Case

Conjecture:

$$
\begin{aligned}
\hat{Z}_{0}(-\Sigma(2,3,7), \tau) & =\hat{Z}_{0}(\Sigma(2,3,7),-\tau) \\
& =q^{-\frac{1}{2}} F_{0}(\tau)=q^{-\frac{1}{2}}\left(1+q+q^{3}+q^{4}+O\left(q^{5}\right)\right)
\end{aligned}
$$

Independent verification: [Gukov-Manolescu '19]
Using $-\Sigma(2,3,7)=S_{-1}^{3}$ (figure 8) and the surgery formula, one obtains

$$
\widehat{Z}_{0}(-\Sigma(2,3,7), \tau)=q^{-\frac{1}{2}}\left(1+q+q^{3}+q^{4}+q^{5}+2 q^{7}+\ldots\right)
$$

Nice! But is there a way to obtain the mock answer from a more direct definition?

Defining $\widehat{Z}_{a}\left(-M_{3}\right)$

$$
\begin{aligned}
& \widehat{Z}_{a}\left(M_{3, \Gamma} ; \tau\right):=(\pm) q^{\Delta} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau ; \mathbf{z}) \\
& \Theta_{a}^{M}(\tau ; \mathbf{z}):=\sum_{\ell \in 2 M \mathbb{Z}^{|V|} \pm a} q^{-\ell^{T} M^{-1} \ell} \mathbf{z}^{\ell} . \\
& \downarrow
\end{aligned}
$$

$M_{3} \leftrightarrow-M_{3} \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow$ flipping the lattice signature $M \leftrightarrow-M$ no longer convergent for $|q|<1$!

Regularised θ-function: [Zwegers '02]

$$
\Theta_{a}^{-M, \operatorname{reg}}(\tau ; \mathbf{z}):=\sum_{\ell \in a+2 M \mathbb{Z}|V|} \rho(\ell) q^{+\left(\ell, M^{-1} \ell\right)} \mathbf{z}^{\ell}
$$

Indefinite Theta Functions

Regularised θ-function:

$$
\Theta_{a}^{-M, \text { reg }}(\tau ; \mathbf{z}):=\sum_{\ell \in 2 M \mathbb{Z}|V|_{ \pm a}} \rho(\ell) q^{\left(\ell, M^{-1} \ell\right)} \mathbf{z}^{\ell}
$$

$$
=\sum_{\substack{\ell \in 2 M \mathbb{Z}|V| \\ \ell \in V}} q^{\left(\ell, M^{-1} \ell\right)} \mathbf{z}^{\ell}
$$

Defining $\widehat{Z}_{a}\left(-M_{3}\right)$

Regularised θ-function:

$$
\Theta_{a}^{-M, \mathrm{reg}}(\tau ; \mathbf{z}):=\sum_{\ell \in a+2 M \mathbb{Z}|V|} \rho(\ell) q^{+\left(\ell, M^{-1} \ell\right)} \mathbf{z}^{\ell}
$$

$$
\widehat{Z}_{a}\left(-M_{3, \Gamma} ; q\right):=(\pm) q^{\Delta} \oint \prod_{v \in V} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\operatorname{deg}(v)} \Theta_{a}^{-M, \operatorname{reg}}(\tau ; \mathbf{z})
$$

Using the above definition:

$$
\widehat{Z}_{0}(-\Sigma(2,3,7), \tau)=q^{-\frac{1}{2}} F_{0}(\tau)=q^{-\frac{1}{2}}\left(1+q+q^{3}+q^{4}+O\left(q^{5}\right)\right)
$$

What we have seen:

- Explicit examples of QMF play the role of 3-manifold inv.;
- Modularity considerations lead to new examples of q-series inv. ;
- What is the physical meaning of the regularisation?

Questions?

I. Background
II. A (True) False Theorem
III. A Mock-False Conjecture
IV. Going Deeper
V. Questions for Future

The ($1, m$) Algebra for Lie Algebra \mathfrak{g}

Given a positive integer m, let $\alpha_{ \pm}= \pm \sqrt{2 m^{ \pm 1}}, \alpha_{0}=\alpha_{+}+\alpha_{-}$ free boson : $\varphi(z) \varphi(w) \sim \log (z-w)$
stress energy tensor : $T=\frac{1}{2}(\partial \varphi)^{2}+\frac{\alpha_{0}}{2} \partial^{2} \varphi, c=1-3 \alpha_{0}^{2}$ screening charges : $Q_{-}=\left(e^{\alpha-\varphi}\right)_{0}$

$$
\begin{aligned}
& \text { triplet }(1, m) \text { algebra: } \mathcal{W}(m):=\operatorname{ker}_{\mathcal{V}_{L}} Q_{-} \\
& \text {singlet }(1, m) \text { algebra: } \mathcal{M}(m):=\operatorname{ker}_{H} Q_{-}
\end{aligned}
$$

where $\mathcal{V}_{L}=$ lattice VOA for $L=\sqrt{2 m} \mathbb{Z}, H=$ Heisenberg algebra. $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots c_{1}$

The ($1, m$) Algebra for Lie Algebra \mathfrak{g}

Given a positive integer m, let $\alpha_{ \pm}= \pm \sqrt{2 m^{ \pm 1}}, \alpha_{0}=\alpha_{+}+\alpha_{-}$ free boson: $\varphi(z) \varphi(w) \sim \log (z-w)$
stress energy tensor : $T=\frac{1}{2}(\partial \varphi)^{2}+\frac{\alpha_{0}}{2} \partial^{2} \varphi, c=1-3 \alpha_{0}^{2}$
screening charges: $Q_{-}=\left(e^{\alpha_{-} \varphi}\right)_{0}$

$$
\begin{aligned}
& \text { triplet }(1, m) \text { algebra: } \mathcal{W}(m):=\operatorname{ker}_{\mathcal{V}_{L}} Q_{-} \\
& \text {singlet }(1, m) \text { algebra: } \mathcal{M}(m):=\operatorname{ker}_{H} Q_{-}
\end{aligned}
$$

where $\mathcal{V}_{L}=$ lattice VOA for $L=\sqrt{2 m} \mathbb{Z}, H=$ Heisenberg algebra.
\Rightarrow corresponding to $\mathfrak{g}=A_{1}$

More generally, we have $r=\operatorname{rank}(\mathfrak{g})$ bosons, and $L=\sqrt{m} \Lambda_{\text {root }}$.

$\widehat{Z}_{a}^{G}(\tau)$ and \mathfrak{g}-Log VOA Characters

From the M-theory origin of \hat{Z}_{a}, it is clear that there is a higher rank generalisation $\widehat{Z}_{a}^{G}(\tau)$.

Integrate over all but the central node \vec{z}_{c}

$$
\frac{\hat{Z}_{a}^{G}\left(M_{3, \Gamma ; \tau)}\right.}{\eta^{r}(\tau)}
$$

$$
=\left[\left(\vec{z}_{c}\right)^{0}\right](\text { triplet } \mathfrak{g} \text {-Log VOA characters })
$$

$=$ singlet \mathfrak{g}-Log VOA characters

Another generalisation: $\left(p, p^{\prime}\right)$ Log VOA

When $p \neq 1$, the corresponding minimal model is non-trivial.
(p, p^{\prime}) min. model \sim the cohomology of screening op.
(p, p^{\prime}) log model \sim the kernel of screening op.

They correspond to 4-pronged stars in the $\widehat{Z}_{a}-\mathrm{VOA}$ correspondence.

More General Quantum Modularity

Def (Depth 1 QMF): $f: \mathbb{Q} \rightarrow \mathbb{C}$ s.t. $h_{\gamma}:=f-\left.f\right|_{w} \gamma$ have some properties of analyticity $\forall \gamma \in G$.
Def (Depth N QMF): a function $f \in \mathbb{Q}$ such that $h_{\gamma}:=f-\left.f\right|_{w} \gamma$ is a sum of QMFs of depth less than N (multiplied by some real-analytic functions) $\forall \gamma \in G$.

- $\widehat{Z}_{a}^{A_{2}}(\tau)$ is a QMF of depth 2 when M_{3} is given by a 3-pronged star.
- $\hat{Z}_{a}(\tau)$ is a sum of QMFs of different weights when M_{3} is given by a 4-pronged star.
[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.] and see earlier work by Bringmann, Milas, Kaszian ('17-'18).

Questions?

I. Background
II. A (True) False Theorem
III. A Mock-False Conjecture
IV. Going Deeper
V. Questions for Future

Future Questions

just the beginning ...

- a mathematical definition for more families of 3-manifolds;
- boudary algebra of $\mathcal{T}\left[M_{3}\right]$;
- mock and false are exceptionally simple, more involved quantum modularity for general M_{3};
- what does quantum modularity say about physics/topology?

