Schur positivity and ribbon shapes with interval support in the dominance lattice

O. Azenhas (joint work with R. Mamede)

CMUC, University of Coimbra

Lisbon, September 21, 2015

Outline

(Skew) Schur functions

• Schur functions s_{λ} , λ a partition, are considered to be the most important and interesting basis for the ring of symmetric functions $\mathbb{C}m_{\lambda}$ (the vector space spanned by all the m_{λ}).

 $m_{21} = m_{21}(x) = m_{\lambda}(x_1, x_2, \dots) = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + \cdots$

• Given partitions $\mu \subseteq \lambda$, $A := \lambda/\mu$.

• The skew-Schur function s_A is the generating function for SSYT T of shape A

$$s_A(x) = \sum_T x^T,$$

where the sum is over all SSYT T of shape A, $x^T = x_1^{\#1's \ inT} x_2^{\#2's \ inT} \dots$ is the monomial weight of T.

$$T = \begin{bmatrix} 2 & 2 & 4 & 4 \\ 1 & 3 \\ 3 \end{bmatrix} \qquad x^{T} = x_{1}x_{2}^{2}x_{3}^{2}x_{4}^{2} \quad U = \begin{bmatrix} 2 & 2 & 5 & 5 \\ 2 & 5 \\ 6 \end{bmatrix} \qquad x^{U} = x_{2}^{3}x_{5}^{3}x_{6}$$

The Littlewood-Richardson rule

 s_A is a symmetric function and can be expressed as a linear combination of Schur functions.

$$s_{A}=\sum_{\nu}c_{A}^{\nu}s_{\nu},$$

where $c_A^{\nu} := c_{\mu,\lambda}^{\nu} \ge 0$ is the number of SSYT of shape A and content ν , satisfying the Littlewood-Richardson rule.

• The LR rule. A SSYT *T* is said to be an LR-filling if, as we read the entries of T from right to left along rows and top to bottom, the number of appearances of *i* always stays ahead of the number of appearances of *i* + 1, for *i* = 1, 2,

Dominance order on partitions

 The dominance order ≤ on partitions of N, λ = (λ₁,..., λ_l), μ = (μ₁,..., μ_s) is defined by setting λ ≤ μ if

$$\lambda_1 + \dots + \lambda_i \leq \mu_1 + \dots + \mu_i,$$

for $i = 1, \ldots, l$, where we set $\mu_i = 0$ if i > l.

The set of partitions of size N equipped with the dominance order is a lattice with maximum element (N) and minimum element (1^N).

 λ ≤ μ if and only if the Young diagram of μ is obtained by "lifting" at least one box in the Young diagram of λ.

Schur interval

$$c_A^{\nu} > 0 \Rightarrow r(A) = 421 \preceq \nu \preceq c(A)' = 52$$

$$[r(A) = 421, c(A)' = 52] = \{421, 43, 511, 52\}.$$

Schur interval

 $[421, 52] = \{421, 43, 511, 52\}.$

O. Azenhas

۲

$s_{A} = \sum_{r(A) \leq \nu \leq c(A)'} c_{\mu,\lambda}^{\nu} s_{\nu} = s_{r(A)} + \dots + c_{A}^{\nu} s_{\nu} + \dots + s_{c(A)'} = s_{A^{\pi}}$ $s_{A'} = \sum_{c(A) \leq \nu' \leq r(A)'} c_{\mu,\lambda}^{\nu} s_{\nu'} = s_{c(A)} + \dots + c_{A}^{\nu} s_{\nu'} + \dots + s_{r(A)'}$

• The support of a skew shape A, suppA, considered as a subposet of the *dominance lattice*, has a top element and a bottom element uniquely defined by the shape A,

$$r(A), c(A)' \in \operatorname{supp} A = \{\nu : c_A^{\nu} > 0\} \subseteq [r(A), c(A)']$$
$$c(A), r(A)' \in \operatorname{supp} A' = \{\nu' : c_A^{\nu} > 0\} \subseteq [c(A), r(A)']$$

$$c_A^{c(A)'} = c_A^{r(A)} = 1$$

۲

$s_{A} = \sum_{r(A) \leq \nu \leq c(A)'} c_{\mu,\lambda}^{\nu} s_{\nu} = s_{r(A)} + \dots + c_{A}^{\nu} s_{\nu} + \dots + s_{c(A)'} = s_{A^{\pi}}$ $s_{A'} = \sum_{c(A) \leq \nu' \leq r(A)'} c_{\mu,\lambda}^{\nu} s_{\nu'} = s_{c(A)} + \dots + c_{A}^{\nu} s_{\nu'} + \dots + s_{r(A)'}$

• The support of a skew shape A, suppA, considered as a subposet of the *dominance lattice*, has a top element and a bottom element uniquely defined by the shape A,

$$r(A), c(A)' \in \operatorname{supp} A = \{\nu : c_A^{\nu} > 0\} \subseteq [r(A), c(A)']$$
$$c(A), r(A)' \in \operatorname{supp} A' = \{\nu' : c_A^{\nu} > 0\} \subseteq [c(A), r(A)']$$

$$c_A^{c(A)'} = c_A^{r(A)} = 1$$

• The support of s_A is the support of A.

Problems

Given the skew shape A and $\nu \in [r(A), c(A)']$

How does the shape of A govern the positivity of c^v_A?
 How does the shape of A govern the support of A?

Problems

Given the skew shape A and $\nu \in [r(A), c(A)']$

- How does the shape of A govern the positivity of c^{\u03c4}?
 How does the shape of A govern the support of A?
- **2** Under what conditions do we have $c_A^{\nu} > 0$ whenever $\nu \in [r(A), c(A)']$?

Problems

Given the skew shape A and $\nu \in [r(A), c(A)']$

- How does the shape of A govern the positivity of c^v_A?
 How does the shape of A govern the support of A?
- 3 Under what conditions do we have $c_A^{\nu} > 0$ whenever $\nu \in [r(A), c(A)']$?

Which skew shapes have interval support?

A., The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra (1999).

If A is a skew shape with two or more components and A has interval support, then the components of A are ribbon shapes.

Ribbon shapes and disjoint unions of ribbon shapes

• Which are the ribbon shapes with interval support?

Ribbon shapes and disjoint unions of ribbon shapes

• Which are the ribbon shapes with interval support? Which disjoint unions of ribbon shapes have interval support?

Ribbon shapes and disjoint unions of ribbon shapes

- Which are the ribbon shapes with interval support?
 Which disjoint unions of ribbon shapes have interval support?
 - Our answer. Ribbons whose column (row) lengths are at most two.

Disjoint union of similar ribbons

Example. (Disjoint union) Ribbons such that all columns and row lenghts differ by at most one.

O. Azenhas

 $0\leq 1-1, \quad 1\leq 2+1-2$

$$s_A = s_{321} + s_{411} + 0s_{33} + s_{42}$$

$$s_B = s_{321} + s_{411} + 0s_{33} + s_{42} + s_{51}$$

$$s_A = s_{321} + s_{411} + 0s_{33} + s_{42}$$

$$s_B = s_{321} + s_{411} + 0s_{33} + s_{42} + s_{51} \quad s_C = s_{321} + s_{411} + 1s_{33} + 2s_{42} + s_{51}$$

Stair ribbons and disjoint union of stair ribbon shapes

Definition

Let $\alpha = (\alpha_1, \ldots, \alpha_s)$ be a composition.

 R_{α} denotes a skew-shape consisting of s row strips (α_i) , $i = 1, \ldots, s$, right to left, so that any two of them overlap at most in one column, and the size of each column is at most two.

Let $0 \le p < s$ be the number of columns of size two. When p = s - 1, R_{α} is a ribbon and one writes $R_{\alpha} = <\alpha >$. Otherwise, it is a disjoint union of s - p ribbons.

 $\mathrm{supp}\,R_{\alpha}\subseteq [\alpha^+;(|\alpha|-\pmb{p},\pmb{p})],\;\alpha^+=(\alpha_1^+,\ldots,\alpha_s^+)\;\;\text{the decreasing rearrangement of }\alpha.$

Stair ribbons and disjoint union of stair ribbon shapes

Definition

Given the composition $lpha=(lpha_1,\ldots,lpha_s)$, and a skew shape R_lpha , let

$${\sf R}^1_lpha:={\sf R}_lpha, ext{ and } {\sf R}^{i+1}_lpha:={\sf R}^i_lphaackslash, ext{ } i=1,\ldots,{\sf s}-1,$$

giving priority to the rightmost row strip $\langle \alpha_i^+ \rangle$ of R_{α} , in case of equal size. The *overlapping sequence* of R_{α} is the non increasing sequence of nonnegative integers $p_1 = p, p_2, \ldots, p_{s-1}, p_s = 0$, where p_i is the number of columns with size two of R_{α}^i , $1 \le i \le s$. Note that $0 \le p_{i+1} \le p_i \le s - i \le \sum_{i=i+1}^s \alpha_i^+$, for $i = 1, \ldots, s - 1$.

Support criterion for a disjoint union of stair ribbons

Theorem

Given the composition $\alpha = (\alpha_1, \ldots, \alpha_s)$, consider R_{α} with overlapping sequence $(p_1, \ldots, p_{s-1}, 0)$. Then

$$c_{R_{lpha}}^{
u} > 0 ext{ if and only if } \begin{cases}
u \in [lpha^+; (|lpha| - p, p)] \Leftrightarrow lpha^+ \preceq
u \preceq (|lpha| - p, p) \\
u_i \leq \sum_{j=i}^{s} lpha_j^+ - p_i, \ i = 1, \dots, s. \end{cases}$$

Support criterion for a disjoint union of stair ribbons

Theorem

Given the composition $\alpha = (\alpha_1, \ldots, \alpha_s)$, consider R_{α} with overlapping sequence $(p_1, \ldots, p_{s-1}, 0)$. Then

$$c_{R_{\alpha}}^{\nu} > 0 ext{ if and only if } \begin{cases}
u \in [\alpha^+; (|\alpha| - p, p)] \Leftrightarrow \alpha^+ \preceq \nu \preceq (|\alpha| - p, p) \\
u_i \leq \sum_{j=i}^{s} \alpha_j^+ - p_i, \ i = 1, \dots, s. \end{cases}$$

Equivalently, $c_{R_{\alpha}}^{\nu} > 0$ if and only if, $\nu \in [\alpha^+; (|\alpha| - p, p)]$, and

$$0 \leq \epsilon_i \leq \sum_{j=i+1}^{s} \alpha_j^+ - p_i, \ i = 1, \dots, s-1,$$

where ϵ_i is the number of lifted boxes from the last s - i rows of α^+ to the *i*th row α_i^+ .

Sketch of proof for the "only if part"

$$c_{R_{\alpha}}^{\nu} > 0 \hspace{0.2cm} ext{only if} \hspace{0.2cm} \left\{ egin{array}{ll}
u \in [lpha^+;(|lpha|-p,p)] \\
u_i \leq \sum\limits_{j=i}^{s} lpha_j^+ - p_i, \hspace{0.2cm} i=1,\ldots,s. \end{array}
ight.$$

By induction on $s \ge 1$. If s = 1, then p = 0, and $\nu = (\alpha_1) = \alpha^+ = (|\alpha|)$. Let $s \ge 2$ and assume the claim true for α with $1 \le k < s$ parts. Fix a $\nu = (\nu_1, \ldots, \nu_u, 0^{s-u})$ LR filling of R_{α} . If u = 1, then p = 0, $\nu = (|\alpha|)$ and there is nothing to prove.

Otherwise, $u \ge 2$ and delete all the boxes of R_{α} filled with 1.

Sketch of proof

The first row will disappear and some other rows will be shortened. We get another disjoint union of similar ribbons, $R_{\tilde{\alpha}}$, $\tilde{\alpha} = (\tilde{\alpha}_1, \ldots, \tilde{\alpha}_t)$, $1 \le u \le t < s$, filled in the alphabet $\{2, \ldots, u\}$. Subtracting one unity to each entry of $R_{\tilde{\alpha}}$, we get a $\tilde{\nu} = (\nu_2, \ldots, \nu_u, 0^{s-u})$ LR filling of $R_{\tilde{\alpha}}$. By induction

$$\nu_i \leq \sum_{j=i}^t \tilde{\alpha}_j^+ - \tilde{p}_i \leq \sum_{j=i}^s \alpha_j^+ - p_i, \ i = 2, \dots, s$$

Horn-Klyachko linear inequalities

• Let $N = \{1, 2, \dots, n\}$, then for fixed d, with $1 \le d \le n$, let $I = \{i_1 > i_2 > \dots > i_d\} \subseteq N$.

Horn-Klyachko linear inequalities

- Let $N = \{1, 2, \dots, n\}$, then for fixed d, with $1 \le d \le n$, let $I = \{i_1 > i_2 > \dots > i_d\} \subseteq N$.
- Let $I, J, K \subseteq N$ with #I = #J = #K = d and ordered decreasingly. One defines the partitions

$$\alpha(I) = I - (d, \dots, 2, 1),$$

 $\beta(J) = J - (d, \dots, 2, 1),$
 $\gamma(K) = K - (d, \dots, 2, 1).$

Horn-Klyachko linear inequalities

- Let $N = \{1, 2, ..., n\}$, then for fixed *d*, with $1 \le d \le n$, let $I = \{i_1 > i_2 > \cdots > i_d\} \subseteq N$.
- Let $I, J, K \subseteq N$ with #I = #J = #K = d and ordered decreasingly. One defines the partitions

$$\alpha(I) = I - (d, \dots, 2, 1),$$

 $\beta(J) = J - (d, \dots, 2, 1),$
 $\gamma(K) = K - (d, \dots, 2, 1).$

• Let T_d^n be the set of all triples (I, J, K) with $I, J, K \subseteq N$ and #I = #J = #K = d such that $c_{\alpha(I),\beta(J)}^{\gamma(K)} > 0$.

Horn-Klyachko linear inequalities and Littlewood-Richardson coefficients

• $c^{\lambda}_{\mu,
u} > 0$ if and only if the Horn-Klyachko inequalities are satisfied

$$\sum_{k=1}^{n} \lambda_k = \sum_{i=1}^{n} \mu_i + \sum_{j=1}^{n} \nu_j$$
$$\sum_{k \in K} \lambda_k \le \sum_{i \in I} \mu_i + \sum_{j \in J} \nu_j$$

for all triples $(I, J, K) \in T_d^n$ with $d = 1, \ldots, n-1$.

• Lidskii- Wielandt inequalities and the dominance order

$$\sum_{i \in I} \lambda_i \leq \sum_{i \in I} \mu_i + \sum_{i \leq d} \nu_i,$$
$$\sum_{i \in I} (\lambda_i - \mu_i) \leq \sum_{i \leq d} (\lambda_i - \mu_i)^+ \leq \sum_{i \leq d} \nu_i,$$
for all $I \subseteq \{1, \dots, n\}$ with $\#I = d$.

•
$$R = < 662322 > p = 5$$

 $\alpha^{+} = (663222) \leq (777) \leq (876) \leq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, \quad p_{3} = 3 \Rightarrow (777) \notin \operatorname{supp} R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, \quad p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, \quad p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \operatorname{supp} R$

•
$$R = \langle 662322 \rangle p = 5$$

 $\alpha^{+} = (663222) \preceq (777) \preceq (876) \preceq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, p_{3} = 3 \Rightarrow (777) \notin \operatorname{supp} R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \operatorname{supp} R$

•
$$R = \langle 662322 \rangle p = 5$$

 $\alpha^{+} = (663222) \preceq (777) \preceq (876) \preceq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, p_{3} = 3 \Rightarrow (777) \notin \operatorname{supp} R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \operatorname{supp} R$

•
$$R = < 662322 > p = 5$$

 $\alpha^{+} = (663222) \leq (777) \leq (876) \leq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, \quad p_{3} = 3 \Rightarrow (777) \notin \text{supp}R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, \quad p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, \quad p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \text{supp}R$

•
$$R = < 662322 > p = 5$$

 $\alpha^{+} = (663222) \leq (777) \leq (876) \leq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, \quad p_{3} = 3 \Rightarrow (777) \notin \text{supp}R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, \quad p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, \quad p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \text{supp}R$

•
$$R = < 662322 > p = 5$$

 $\alpha^{+} = (663222) \leq (777) \leq (876) \leq (21, 21 - 5)$
 $4 > \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3 = 3, \quad p_{3} = 3 \Rightarrow (777) \notin \text{supp}R$
 $\epsilon_{3} = 3 = \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{3} = 2 + 2 + 2 - 3, \quad p_{3} = 3$
 $\epsilon_{2} = 1 < \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{2} = 3 + 2 + 2 + 2 - 3, \quad p_{2} = 3$
 $\epsilon_{1} = 2 < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+} + \alpha_{5}^{+} + \alpha_{6}^{+} - p_{1} = 6 + 3 + 2 + 2 + 2 - 5, p_{1} = 5$
 $\Rightarrow (876) \in \text{supp}R$

Classification of products of stair ribbon Schur functions with interval support

Theorem

Given the composition $\alpha = (\alpha_1, \ldots, \alpha_s)$, consider R_{α} with overlapping sequence $(p_1, \ldots, p_{s-1}, 0)$. $\operatorname{supp} R_{\alpha} \subsetneq [\alpha^+; (|\alpha| - p, p)]$ if and only if for some $1 \le i \le s - 2$ with $p_{i+1} \ge 1$, there exist integers $g_1, \ldots, g_i \ge 0$ with $\sum_{i=1}^i g_i \le p_{i+1} - 1$, such that

$$\alpha_j^+ + g_j \ge \sum_{q=i+1}^s \alpha_q^+ - p_{i+1} + 1, \quad j = 1, \dots, i.$$

In this case, $(\alpha_1^+ + g_1, \dots, \alpha_i^+ + g_i, \sum_{q=i+1}^s \alpha_q^+ - p_{i+1} + 1, p_{i+1} - \sum_{j=1}^i g_j - 1)^+$ is not in the supp R_{α} .

Theorem

Given the composition $\alpha = (\alpha_1, \ldots, \alpha_s)$, consider R_{α} with overlapping sequence (p_1, \ldots, p_{s-1}) . $c_{R_{\alpha}}^{\nu} > 0$ whenever $\nu \in [\alpha^+; (|\alpha| - p, p)]$ if and only if for all $1 \le i \le s - 2$ with $p_{i+1} \ge 1$, and for all integers $g_1, \ldots, g_i \ge 0$ with $\sum_{j=1}^i g_j \le p_{i+1} - 1$, one has always, for some $f \in \{1, \ldots, i\}$,

$$\alpha_f^+ + g_f \leq \sum_{q=i+1}^s \alpha_q^+ - p_{i+1}.$$

Corollary

• If
$$p_1 = 0$$
 or $p_2 = 0$, $\operatorname{supp} R_{\alpha} = [\alpha^+; (|\alpha| - p, p)]$.
 $< \alpha_1 > \oplus \cdots \oplus < \alpha_s >$
 $< \alpha_1^+, \alpha_2^+ > \oplus \cdots \oplus < \alpha_s >$

• If $p_2 = 1, p_3 = 0, R_{\alpha}$ has interval support except when

$$\alpha_1^+ \ge \sum_{q=2}^s \alpha_q^+$$

• If $p_2 = 1 = p_3$, $p_4 = 0$, R_{α} has interval support except when

$$\alpha_1^+ \ge \sum_{q=1}^{s} \alpha_q^+ \quad \text{or} \quad \alpha_1^+, \alpha_2^+ \ge \sum_{q=1}^{s} \alpha_q^-$$

O. Azenhas

 $R_{(\alpha_1,\alpha_2,\alpha_3)}$ has interval support except when $\alpha_1 \geq \alpha_2 + \alpha_3$ or $\alpha_3 \geq \alpha_1 + \alpha_2$.

s = 4

 $p_3 = 0$

yes

 $p_1 = p_2 = 2$ $p_1 = 2, p_2 = 1$ $p_1 = 2, p_2 = 1$ $p_1 = p_2 = 2$ $p_{3} = 0$ $p_3 = 0$ $p_{3} = 1$ no no yes $\alpha_{1}^{+} < \alpha_{2}^{+} + \alpha_{3}^{+} + \alpha_{4}^{+}$ $\alpha_1^+ + 1 \ge 2 + 2 + 1 - 2 + 1$

Corollary

McNamara, van Willigenburg, 2011

Ribbon shapes whose column and row lengths differ at most one have full support.

Corollary

The Schur function product $s_{\mu}s_{\nu}$ has interval support if and only if one of the following is true: $\mu = (r_1, 1^{r_2})$ and $\nu = (s_1, 1^{s_2})$ are hooks such that $s_2 = r_2 = 1$, and either $r_1 = s_1 \ge 2$ or $s_1 = r_1 + 1$ (or vice versa).

More examples

•
$$\alpha = (6, 2, 2, 2, 2, 7, 6), \quad \alpha^+ = (7, 6, 6, 2, 2, 2, 2), \quad i = 3, \quad p_4 = 3$$

 $7, 6 \ge \alpha_4^+ + \alpha_5^+ + \alpha_6^+ - p_4 + 1 = 2 + 2 + 2 + 2 - 2$
 $g_1 + g_2 + g_3 = 0$

$$\nu = (7, 6, 6, 6, 2) \notin \operatorname{supp} R_{\alpha}$$

$$\begin{split} \nu &= (7, 6+1, 6+1, 2+2+2+2-2) = (7, 7, 7, 6) \notin \operatorname{supp} R_{\alpha}, \\ g_1 &= 0, g_2 = g_3 = 1 \\ \nu &= (6+2, 7, 6, 2+2+2+2-2) = (8, 7, 6, 6) \notin \operatorname{supp} R_{\alpha}, \\ g_1 &= 0 = g_2, g_3 = 2 \\ \nu &= (7+2, 6, 6, 2+2+2+2-2) = (9, 6, 6, 6) \notin \operatorname{supp} R_{\alpha}, \\ g_1 &+ g_2 + g_3 = 2. \end{split}$$

Note that
$$p_4 = 3 \Rightarrow 3 \le p_2, p_3 \le 4$$
.
If $p_3 = 4, 7+3, 6+3 \ngeq 6+2+2+2+2-3$

٠