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(Skew) Schur functions

Schur functions sλ, λ a partition, are considered to be the most important
and interesting basis for the ring of symmetric functions Cmλ (the vector
space spanned by all the mλ ).

m21 = m21(x) = mλ(x1, x2, . . . ) = x21 x2 + x1x
2
2 + x21 x3 + x1x

2
3 + x22 x3 + · · ·

Given partitions µ ⊆ λ, A := λ/µ.

µ = 1 = λ = 521 = A = 521/1 =

The skew-Schur function sA is the generating function for SSYT T of shape
A

sA(x) =
∑
T

xT ,

where the sum is over all SSYT T of shape A, xT = x#1′s inT
1 x#2′s inT

2 . . . is
the monomial weight of T .

T =

2 2 4 4
1 3
3 xT = x1x

2
2 x

2
3 x

2
4 U =

2 2 5 5
2 5
6 xU = x32 x

3
5 x6
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The Littlewood-Richardson rule

sA is a symmetric function and can be expressed as a linear combination of
Schur functions.

sA =
∑
ν

cνAsν ,

where cνA := cνµ,λ ≥ 0 is the number of SSYT of shape A and content ν,
satisfying the Littlewood-Richardson rule.

The LR rule. A SSYT T is said to be an LR-filling if, as we read the
entries of T from right to left along rows and top to bottom, the number of
appearances of i always stays ahead of the number of appearances of i + 1,
for i = 1, 2, . . . .

A =

1 1 1 1
2 2
3 1111223

1 1 1 1
1 2
3 1111213

1 1 1 1
1 2
2 1111212

c421A = 1 c511A = 1 c52A = 1

sA = s421 + s511 + s52
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Dominance order on partitions

The dominance order � on partitions of N, λ = (λ1, . . . , λl),
µ = (µ1, . . . , µs) is defined by setting λ � µ if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi ,

for i = 1, . . . , l , where we set µi = 0 if i > l .

The set of partitions of size N equipped with the dominance order is a
lattice with maximum element (N) and minimum element (1N).

λ � µ if and only if the Young diagram of µ is obtained by “lifting” at least
one box in the Young diagram of λ.

� � � .

λ � µ⇔ µ′ � λ′
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Schur interval

cνA = cν
′

A′

A =

1 1 1 1
2 2
3 r(A) = 421 cνA > 0⇒ r(A) = 421 � ν

A′ =

1 1
2 2
3
4
5 cνA = cν

′

A′ > 0⇒ r(A′) = c(A) = 22111 � ν′

cνA > 0⇒ r(A) = 421 � ν � c(A)′ = 52

[r(A) = 421, c(A)′ = 52] = {421, 43, 511, 52}.

A =

1 1
1 1 2 2
3

1 1
1 1 2 2
2

1 1
1 1 1 2
3

1 1
1 1 1 2
2

[421, 52] = {421, 43, 511, 52}.
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Skew Schur function support

sA =
∑

r(A)�ν�c(A)′
cνµ,λsν = sr(A) + · · ·+ cνAsν + · · ·+ sc(A)′ = sAπ

sA′ =
∑

c(A)�ν′�r(A)′
cνµ,λsν′ = sc(A) + · · ·+ cνAsν′ + · · ·+ sr(A)′

The support of a skew shape A, suppA, considered as a subposet of the
dominance lattice, has a top element and a bottom element uniquely defined
by the shape A,

r(A), c(A)′ ∈ suppA = {ν : cνA > 0} ⊆ [r(A), c(A)′]

c(A), r(A)′ ∈ suppA′ = {ν′ : cνA > 0} ⊆ [c(A), r(A)′]

c
c(A)′

A = c
r(A)
A = 1

The support of sA is the support of A.
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Problems

Given the skew shape A and ν ∈ [r(A), c(A)′]

1 How does the shape of A govern the positivity of cνA?

How does the shape of A govern the support of A?

2 Under what conditions do we have cνA > 0 whenever ν ∈ [r(A), c(A)′]?

Which skew shapes have interval support?

A., The admissible interval for the invariant factors of a product of matrices, Linear and

Multilinear Algebra (1999).

If A is a skew shape with two or more components and A has interval support,
then the components of A are ribbon shapes.

O. Azenhas 8 / 28



Problems

Given the skew shape A and ν ∈ [r(A), c(A)′]

1 How does the shape of A govern the positivity of cνA?

How does the shape of A govern the support of A?

2 Under what conditions do we have cνA > 0 whenever ν ∈ [r(A), c(A)′]?

Which skew shapes have interval support?

A., The admissible interval for the invariant factors of a product of matrices, Linear and

Multilinear Algebra (1999).

If A is a skew shape with two or more components and A has interval support,
then the components of A are ribbon shapes.

O. Azenhas 8 / 28



Problems

Given the skew shape A and ν ∈ [r(A), c(A)′]

1 How does the shape of A govern the positivity of cνA?

How does the shape of A govern the support of A?

2 Under what conditions do we have cνA > 0 whenever ν ∈ [r(A), c(A)′]?

Which skew shapes have interval support?

A., The admissible interval for the invariant factors of a product of matrices, Linear and

Multilinear Algebra (1999).

If A is a skew shape with two or more components and A has interval support,
then the components of A are ribbon shapes.

O. Azenhas 8 / 28



Ribbon shapes and disjoint unions of ribbon shapes
• Which are the ribbon shapes with interval support?

Which disjoint unions of ribbon shapes have interval support?

Our answer. Ribbons whose column (row) lengths are at most two.

Disjoint union of similar ribbons

Example. (Disjoint union) Ribbons such that all columns and row lenghts
differ by at most one.
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Skew Schur functions and support

A = B =
sA = s53 + s62 + s71 sB = s53 + s62 + s71 + s8

r(A) = 53

62

c(A)′ = 71

+ –

+ –
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Skew Schur functions and support

A = sA = s221 + s311 + s32

r(A) = 221

311

c(A)′ = 32

+ –

+ –
1

1 2
1 2

1
1 2

1 3

1
1 2

2 3

0 ≤ 1− 1, 1 ≤ 2 + 1− 2
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Skew Schur functions and support

A = B =

C =

sA = s321 + s411 + 0s33 + s42
sB = s321 + s411 + 0s33 + s42 + s51 sC = s321 + s411 + 1s33 + 2s42 + s51

r(A)=321

c(A)’=42

411 33

1 ≮ 1− 1, 1 ≤ 2 + 1− 2
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Stair ribbons and disjoint union of stair ribbon shapes

Definition
Let α = (α1, . . . , αs) be a composition.
Rα denotes a skew-shape consisting of s row strips (αi ), i = 1, . . . , s, right to
left, so that any two of them overlap at most in one column, and the size of each
column is at most two.
Let 0 ≤ p < s be the number of columns of size two. When p = s − 1, Rα is a
ribbon and one writes Rα =< α >. Otherwise, it is a disjoint union of s − p
ribbons.

suppRα ⊆ [α+; (|α| − p, p)], α+ = (α+
1 , . . . , α

+
s ) the decreasing rearrangement of α.

R(2,3,2,2)

< 2322 >=

X
X

X

p = 3, < 23 > ⊕ < 22 >=

X

X

p = 2

[α+ = 323; 63] [α+ = 3 23; 72]

O. Azenhas 14 / 28



Stair ribbons and disjoint union of stair ribbon shapes

Definition
Given the composition α = (α1, . . . , αs), and a skew shape Rα, let

R1
α := Rα, and R i+1

α := R i
α\ < α+

i >, i = 1, . . . , s − 1,

giving priority to the rightmost row strip < α+
i > of Rα, in case of equal size.

The overlapping sequence of Rα is the non increasing sequence of nonnegative
integers p1 = p, p2, . . . , ps−1, ps = 0, where pi is the number of columns with size
two of R i

α, 1 ≤ i ≤ s.
Note that 0 ≤ pi+1 ≤ pi ≤ s − i ≤

∑s
j=i+1 α

+
j , for i = 1, . . . , s − 1.

< 2232 >=

X
X

X

< 1, 2, 2 > ⊕ < 3 >=

X
X

p1 = 3, p2 = 1, p3 = p4 = 0 p1 = 2 = p2, p3 = p4 = 0
suppR ⊆ [323; 63] suppR ⊆ [α+ = 3221; 62]
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Support criterion for a disjoint union of stair ribbons

Theorem
Given the composition α = (α1, . . . , αs), consider Rα with overlapping sequence
(p1, . . . , ps−1, 0). Then

cνRα
> 0 if and only if

ν ∈ [α+; (|α| − p, p)] ⇔ α+ � ν � (|α| − p, p)

νi ≤
s∑

j=i

α+
j − pi , i = 1, . . . , s.

Equivalently, cνRα
> 0 if and only if, ν ∈ [α+; (|α| − p, p)], and

0 ≤ εi ≤
s∑

j=i+1

α+
j − pi , i = 1, . . . , s − 1,

where εi is the number of lifted boxes from the last s − i rows of α+ to the ith
row α+

i .
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Sketch of proof for the ”only if part”

cνRα
> 0 only if

ν ∈ [α+; (|α| − p, p)]

νi ≤
s∑

j=i

α+
j − pi , i = 1, . . . , s.

By induction on s ≥ 1. If s = 1, then p = 0, and ν = (α1) = α+ = (|α|).
Let s ≥ 2 and assume the claim true for α with 1 ≤ k < s parts.
Fix a ν = (ν1, . . . , νu, 0

s−u) LR filling of Rα. If u = 1, then p = 0, ν = (|α|) and
there is nothing to prove.
Otherwise, u ≥ 2 and delete all the boxes of Rα filled with 1.

1 1
2

1 1 2 3
1 2 4

1
2

2 3
1 1 5

2
2 3

2 4
2

2 3
5

1
1 2

1 3
1

1 2
4
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Sketch of proof

The first row will disappear and some other rows will be shortened. We get
another disjoint union of similar ribbons, Rα̃, α̃ = (α̃1, . . . , α̃t), 1 ≤ u ≤ t < s,
filled in the alphabet {2, . . . , u}. Subtracting one unity to each entry of Rα̃, we
get a ν̃ = (ν2, . . . , νu, 0

s−u) LR filling of Rα̃.
By induction

νi ≤
t∑

j=i

α̃+
j − p̃i ≤

s∑
j=i

α+
j − pi , i = 2, . . . , s.
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Horn-Klyachko linear inequalities

Let N = {1, 2, . . . , n}, then for fixed d , with 1 ≤ d ≤ n, let
I = {i1 > i2 > · · · > id} ⊆ N.

Let I , J,K ⊆ N with #I = #J = #K = d and ordered decreasingly. One
defines the partitions

α(I ) = I − (d , . . . , 2, 1),

β(J) = J − (d , . . . , 2, 1),

γ(K ) = K − (d , . . . , 2, 1).

Let T n
d be the set of all triples (I , J,K ) with I , J,K ⊆ N and

#I = #J = #K = d such that c
γ(K)
α(I ),β(J) > 0.
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Horn-Klyachko linear inequalities and
Littlewood-Richardson coefficients

cλµ,ν > 0 if and only if the Horn-Klyachko inequalities are satisfied

n∑
k=1

λk =
n∑

i=1

µi +
n∑

j=1

νj

∑
k∈K

λk ≤
∑
i∈I

µi +
∑
j∈J

νj

for all triples (I , J,K ) ∈ T n
d with d = 1, . . . , n − 1.

Lidskii- Wielandt inequalities and the dominance order∑
i∈I

λi ≤
∑
i∈I

µi +
∑
i≤d

νi ,

∑
i∈I

(λi − µi ) ≤
∑
i≤d

(λi − µi )+ ≤
∑
i≤d

νi ,

for all I ⊆ {1, . . . , n} with #I = d .
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R =< 662322 > p = 5

α+ = (6 6 3 2 2 2) � (777) � (876) � (21, 21− 5)

4 > α+
4 + α+

5 + α+
6 − p3 = 2 + 2 + 2− 3 = 3, p3 = 3⇒ (777) /∈ suppR

ε3 = 3 = α+
4 + α+

5 + α+
6 − p3 = 2 + 2 + 2− 3, p3 = 3

ε2 = 1 < α+
3 + α+

4 + α+
5 + α+

6 − p2 = 3 + 2 + 2 + 2− 3, p2 = 3
ε1 = 2 < α+

2 + α+
3 + α+

4 + α+
5 + α+

6 − p1 = 6 + 3 + 2 + 2 + 2− 5, p1 = 5
⇒ (876) ∈ suppR

1
2
3
4
5
61

2
3
4
7
8

6
7

5

1
2
3
4
5
61

2
3
4
7
8

7
6

5

1
2
3
4
5
61

2
3
4
7
8

7
6

5

6
5

4
3
2

1
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6 − p1 = 6 + 3 + 2 + 2 + 2− 5, p1 = 5
⇒ (876) ∈ suppR

1
2
3
4
5
61

2
3
4
7
8

6
7

5

1
2
3
4
5
61

2
3
4
7
8

7
6

5

1
2
3
4
5
61

2
3
4
7
8

7
6

5

6
5

4
3
2

1
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Classification of products of stair ribbon Schur functions
with interval support

Theorem
Given the composition α = (α1, . . . , αs), consider Rα with overlapping sequence
(p1, . . . , ps−1, 0).
suppRα $ [α+; (|α| − p, p)] if and only if for some 1 ≤ i ≤ s − 2 with pi+1 ≥ 1,

there exist integers g1, . . . , gi ≥ 0 with
∑i

j=1 gj ≤ pi+1 − 1, such that

α+
j + gj ≥

s∑
q=i+1

α+
q − pi+1 + 1, j = 1, . . . , i .

In this case, (α+
1 + g1, . . . , α

+
i + gi ,

∑s
q=i+1 α

+
q − pi+1 + 1, pi+1 −

∑i
j=1 gj − 1)+

is not in the suppRα.
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Theorem
Given the composition α = (α1, . . . , αs), consider Rα with overlapping sequence
(p1, . . . , ps−1).
cνRα

> 0 whenever ν ∈ [α+; (|α| − p, p)] if and only if for all 1 ≤ i ≤ s − 2 with

pi+1 ≥ 1, and for all integers g1, . . . , gi ≥ 0 with
∑i

j=1 gj ≤ pi+1 − 1, one has
always, for some f ∈ {1, . . . , i},

α+
f + gf ≤

s∑
q=i+1

α+
q − pi+1.
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Corollary

If p1 = 0 or p2 = 0, suppRα = [α+; (|α| − p, p)].

< α1 > ⊕ · · ·⊕ < αs >

< α1
+, α+

2 > ⊕ · · ·⊕ < αs >

< α1
+, α+

2 , α
+
3 > ⊕ · · ·⊕ < αs > .

If p2 = 1, p3 = 0, Rα has interval support except when

α+
1 ≥

s∑
q=2

α+
q

If p2 = 1 = p3, p4 = 0, Rα has interval support except when

α+
1 ≥

s∑
q=2

α+
q or α+

1 , α
+
2 ≥

s∑
q=3

α+
q
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R(α1,α2,α3) has interval support except when α1 ≥ α2 + α3 or α3 ≥ α1 + α2.

X
X X no

X
X

yes

s = 4

X
X

X
X

X
X

X

X

p1 = p2 = 2 p1 = p2 = 2 p1 = 2, p2 = 1 p1 = 2, p2 = 1
p3 = 0 p3 = 1 p3 = 0 p3 = 0
no no yes yes

α+
1 + 1 ≥ 2 + 2 + 1− 2 + 1 α+

1 < α+
2 + α+

3 + α+
4
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Corollary
McNamara, van Willigenburg, 2011
Ribbon shapes whose column and row lengths differ at most one have full support.

R ′ = R =< 2332 >=
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Corollary
The Schur function product sµsν has interval support if and only if one of
the following is true: µ = (r1, 1

r2) and ν = (s1, 1
s2) are hooks such that

s2 = r2 = 1, and either r1 = s1 ≥ 2 or s1 = r1 + 1 (or vice versa).

a

x

y

a = 2 and 1 ≤ x ≤ y + 1,
or a ≥ 3 and x = 1;

z x

a

a = 1 and 1 ≤ x ≤ z ,
or a ≥ 2 and x = 1;

r1 s1

r2

s2
s2 = r2 = 1, and either

r1 = s1 ≥ 2 or
s1 = r1 + 1.
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More examples

α = (6, 2, 2, 2, 2, 7, 6), α+ = (7, 6, 6, 2, 2, 2, 2), i = 3, p4 = 3

7, 6 ≥ α+
4 + α+

5 + α+
6 − p4 + 1 = 2 + 2 + 2 + 2− 2

g1 + g2 + g3 = 0
.

ν = (7, 6, 6, 6, 2) /∈ suppRα

ν = (7, 6 + 1, 6 + 1, 2 + 2 + 2 + 2− 2) = (7, 7, 7, 6) /∈ suppRα,
g1 = 0, g2 = g3 = 1

ν = (6 + 2, 7, 6, 2 + 2 + 2 + 2− 2) = (8, 7, 6, 6) /∈ suppRα,
g1 = 0 = g2, g3 = 2

ν = (7 + 2, 6, 6, 2 + 2 + 2 + 2− 2) = (9, 6, 6, 6) /∈ suppRα,

g1 + g2 + g3 = 2.

Note that p4 = 3⇒ 3 ≤ p2, p3 ≤ 4.

If p3 = 4, 7 + 3, 6 + 3 � 6 + 2 + 2 + 2 + 2− 3
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