Eigenstate thermalization scaling

Many-body Hamiltonians are random matrices (?!?)

Eigenstate thermalization hypothesis (which observables?)

E.T.H. Scaling — local, less local & Behemoth operators

\[\frac{J_2}{J_1} = 0.4, 0.5 \]

\[\langle r \rangle \]

\[\text{GOE} \]

\[\text{Poisson} \]

\[\text{XXZ} + NNN \]

\[(L,N_p) = (17,8) \]

\[J_1 = J_2 = 1, \Delta_1 = \Delta_2 = 0.8 \]

\[n=8, M=2 \]

\[n=7, M=6 \]

\[n=1, M=12870 \]

(a) (b) (c)

(d) (e)
Beugeling, Moessner, Haque, P.R.E (2014)
Finite-size scaling of eigenstate thermalization

Beugeling, Andreanov, Haque, JSTAT (2015)
Entanglement & participation ratios, all eigenstates

Beugeling, Moessner, Haque, P.R.E (2015)
Off-diagonal matrix elements

Beugeling, Bäcker, Moessner, Haque, P.R.E (2018)
Eigenstate amplitudes (coefficients)

Haque and McClarty, P.R.B (2019)
ETH in Sachdev-Ye-Kitaev models

Khaymovich, Haque, McClarty, P.R.L. (2019)
Eigenstate Thermalization, Random Matrix Theory and Behemoths

Bäcker, Haque, Khaymovich, P.R.E (2019)
Multifractal dimensions

Entanglement in mid-spectrum states
REFERENCES

Beugeling, Moessner, Haque, P.R.E (2014)
Finite-size scaling of eigenstate thermalization

Beugeling, Andreanov, Haque, JSTAT (2015)
Entanglement & participation ratios, all eigenstates

Beugeling, Moessner, Haque, P.R.E (2015)
Off-diagonal matrix elements

Beugeling, Bäcker, Moessner, Haque, P.R.E (2018)
Eigenstate amplitudes (coefficients)

Haque and McClarty, P.R.B (2019)
ETH in Sachdev-Ye-Kitaev models

Khaymovich, Haque, McClarty, P.R.L. (2019)
Eigenstate Thermalization, Random Matrix Theory and Behemoths

Bäcker, Haque, Khaymovich, P.R.E (2019)
Multifractal dimensions

Entanglement in mid-spectrum states
Non-equilibrium dynamics of isolated quantum systems

Increasing # of experiments in the limit of “isolation”:

- Ultracold trapped atoms/ions
- NMR quantum computing
- Ultrafast pump-probe spectroscopy

Weiss group, Nature 2006

Wei, Ramanathan, Cappellaro, PRL 2018

Bloch group, Nature Phys 2013
The Many-Body Eigenspectrum

Standard many-body quantum physics

⇓

low-lying parts of the many-body spectrum.

Dynamics in isolation

⇓

No tendency toward ground state

Any part of spectrum can be important!

Motivates study of eigenstates in the middle of the many-body spectrum.

Mid-spectrum eigenstates are (often) somewhat ‘random’
Relevant classes: GOE and GUE

GOE
- Symmetric matrix
- Real elements
- Elements random & gaussian-distributed

GUE
- Hermitian matrix
- Complex elements
- Real & imaginary parts are random and gaussian-distributed

Properties

Eigenstates:
- coefficients are gaussian-distributed

Eigenvalues:
- level spacings \(s_i = E_{i+1} - E_i\)
- have Wigner-Dyson statistics

\[
\begin{align*}
P_{\text{GOE}}(s) &\propto se^{-\alpha_1 s^2} \\
P_{\text{GUE}}(s) &\propto s^2e^{-\alpha_2 s^2}
\end{align*}
\]

Eigenvalues display level repulsion:
- \(P(0) = 0\)
This talk: → lattice systems, finite Hilbert space

Eigenspectrum has a bottom and a top

Typically \(N_p \) particles in \(L \) sites

Particles → fermions, bosons, or up-spins

Thermodynamic limit: \(L \to \infty, \; N_p \to \infty, \; \text{constant} \; N_p/L \)
Typical many-body Hamiltonian, with few-body, local interactions:

- Hamiltonian matrix is sparse
- Elements are not random
Many-Body Hamiltonians: random-matrix behavior?

Typical many-body Hamiltonian, with few-body, local interactions:

Hamiltonian matrix is sparse

Elements are not random

Example:

\[
\begin{pmatrix}
0.4 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 \\
0.5 & -0.4 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0.4 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0 & -0.4 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0.5 & -0.4 & 0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0 & -0.4 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.5 & -0.4 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0.4 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & -0.4 & 0.5 \\
0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 & -0.4 & 0.5 \\
0 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 & 0 & -0.4 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 & -0.4 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 & 0.4
\end{pmatrix}
\]

XXZ chain,
\(\Delta = 0.8\) \((L = 6\) sites, \(N_p = 2\) \(\uparrow\)-spins)
Many-Body Hamiltonians: Random-Matrix Behavior?

Typical many-body Hamiltonian, with few-body, local interactions:

- Hamiltonian matrix is **sparse**
- Elements are **not random**

Nevertheless:

- **Eigenstate coefficients:** usually Gaussian-distributed
- **Energy eigenvalues:** usually Wigner-Dyson statistics

Exceptions:

- Integrable systems
- Very large interactions
- Spectral edges
COEFFICIENTS OF MANY-BODY EIGENSTATES

\[|E_A\rangle = \sum_n c_n |n\rangle \]

| \(|n\rangle \)'s \rightarrow many-body configurations

\[H = J_1 \sum_{i=1}^{L-1} (S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + \Delta_1 S_i^z S_{i+1}^z) + J_2 \sum_{i=2}^{L-2} (S_i^+ S_{i+2}^- + S_i^- S_{i+2}^+ + \Delta_2 S_i^z S_{i+2}^z) \]

\[J_2 = 0 \rightarrow integrable \ XXZ \ chain \]

\[J_2 \approx J_1 \rightarrow non-integrable \] ('chaotic' or 'ergodic')
Coefficients of many-body eigenstates

\[|E_A\rangle = \sum_n c_n |n\rangle \]

\[z = c_n \sqrt{D}, \quad D = \text{Hilbert space dimension} \]

Beugeling, Moessner, Bäcker, Haque, P.R.E (2018)

Non-integrable

\[J_2 = J_1 \]

Integrable

\[J_2 = 0 \]

(a) \(J_2 = J_1 \)

(b) \(J_2 = 0 \)
LEVEL STATISTICS OF MANY-BODY SPECTRA

XXZ + NNN \[L=15, N_p = 6 \]

\[\langle r \rangle \] distinguishes GOE, GUE, Poisson

\[r_i = \min \left(\frac{s_{i+1}}{s_i}, \frac{s_i}{s_{i+1}} \right) \]

Integrable systems usually have Poisson statistics
Level statistics of many-body spectra

XXZ + NNN

$L=15$, $N_p=6$

$\langle r \rangle$ distinguishes GOE, GUE, Poisson

$r_i = \min \left(\frac{s_{i+1}}{s_i} , \frac{s_i}{s_{i+1}} \right)$

Integrable systems usually have Poisson statistics
ENTANGLEMENT ENTROPY OF MANY-BODY EIGENSTATES

\[XYZ + NNN \quad (\text{both: } \eta = 0.5, \Delta = 0.9) \]
\[+ h_x\text{-field (0.8)} + h_z\text{-field (0.2)} \]

Only the middle of the spectrum?
ONLY THE MIDDLE OF THE SPECTRUM?

Introduce temperature:

\[
\text{pretend: system is described by canonical } e^{-\beta H}
\]

\[
E_{\text{TOTAL}} = \frac{\text{tr} \left(e^{-\beta H} H \right)}{\text{tr} \left(e^{-\beta H} \right)} = \frac{1}{Z(\beta)} \sum_A e^{-\beta E_A} E_A
\]

\[
Z(\beta) = \text{tr} \left(e^{-\beta H} \right) = \sum_A e^{-\beta E_A}
\]

\[
\langle E_A \rangle, E_A \rightarrow \text{eigenstates, eigenenergies}
\]

→ provides a temperature ↔ energy map, also for a finite system!

Based on eigenvalues alone.
Not just the middle of the spectrum

Mid-spectrum eigenstates \rightarrow well-described by $|\psi_{\text{rand}}\rangle$

Finite-temperature eigenstates \rightarrow well-described by $\exp\left[-\frac{\beta}{2}H\right]|\psi_{\text{rand}}\rangle$
NOT JUST THE MIDDLE OF THE SPECTRUM

\[\text{mid-spectrum eigenstates} \equiv \text{infinite-temperature states} \]

Negative temperatures!

Mid-spectrum eigenstates \(\rightarrow \) well-described by \(|\psi_{\text{rand}}\rangle \)

Finite-temperature eigenstates \(\rightarrow \) well-described by \(\exp\left[-\frac{\beta}{2}H\right]|\psi_{\text{rand}}\rangle \)
EigEnState Thermalization Scaling

Many-body Hamiltonians are random matrices (?!?)

Eigenstate thermalization hypothesis (which observables?)

E.T.H. Scaling — local, less local & Behemoth operators

\[
\begin{align*}
\langle r \rangle & \approx \text{GOE} \\
\end{align*}
\]

- \(J_2 / J_1 \)
- \(\Delta_1 = \Delta_2 = 0.8 \)
- \(n = 8, M = 2 \)
- \(n = 7, M = 6 \)
- \(n = 1, M = 12870 \)

\(\langle E_A | \Gamma | E_B \rangle \)

\[
\begin{align*}
\text{Distributions} \\
\end{align*}
\]

- XXZ + NNN

\((L,N_p) = (17,8) \)

\(J_1 = J_2 = 1 \)

\(\text{RMT prediction for 2-point } \sim c_l^{-1/4} \)

- Dense \(\beta = 1/4 \)
- \(\sim c_l^{-3/8} \)
- \(\sim c_l^{-1/2} \)
Thermalization in isolated systems

Generic (non-integrable) isolated system

driven out of equilibrium

⇒ many observables thermalize

An observable thermalizes

⇒ relaxes to value dictated by thermal ensemble
An observable thermalizes

\[\Rightarrow \text{relaxes to value dictated by thermal ensemble} \]

If initial state is

\[|\psi(0)\rangle = \sum_A c_A |E_A\rangle \]

relaxes to

\[\langle O(t) \rangle = \langle \psi(t) | \hat{O} | \psi(t) \rangle \xrightarrow{t \to \infty} \sum_A |c_A|^2 \langle E_A | \hat{O} | E_A \rangle \]

\[|E_A\rangle, E_A \to \text{eigenstates, eigenenergies} \]
An observable thermalizes

\[\langle O \rangle_{\text{therm}} = \frac{1}{Z(\beta)} \sum_A e^{-\beta E_A} \langle E_A | \hat{O} | E_A \rangle \]

\(\beta \) defined by energy:

\[E_{\text{TOTAL}} = \frac{1}{Z(\beta)} \sum_A e^{-\beta E_A} E_A \]

\(|E_A\rangle, E_A \rightarrow \text{eigenstates, eigenenergies} \)
THERMALIZATION IN ISOLATED SYSTEMS

An observable thermalizes

$$\implies$$ relaxes to value dictated by thermal ensemble

$$\sum_A |c_A|^2 \langle E_A | \hat{O} | E_A \rangle = \frac{1}{Z(\beta)} \sum_A e^{-\beta E_A} \langle E_A | \hat{O} | E_A \rangle$$

Crucial: Eigenstate expectation values $$\langle E_A | \hat{O} | E_A \rangle$$

|$$E_A$$, $$E_A \rightarrow$$ eigenstates, eigenenergies|

|Some observable |

|time|
THERMALIZATION IN ISOLATED SYSTEMS

Mechanism for thermalization: **Eigenstate Thermalization Hypothesis**

$$\langle E_A | \hat{O} | E_A \rangle \text{'s are smooth functions of } E_A$$

$$\rightarrow \text{‘implies’ thermalization}$$

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994)

............ + many others

Beugeling, Moessner, Haque, P.R.E (2014)

Finite-Size Scaling of ETH
E.T.H. Scaling

\[H = H_{XXZ} + \lambda \sum_i (i - i_0)^2 S_j^z \]

\[O_{AA} = \langle E_A | \hat{O} | E_A \rangle = \langle E_A | S_{\text{middle}}^z | E_A \rangle \]

Scaling of E.T.H. fluctuations:
\[\sigma \sim D^{-1/2} \sim e^{-\alpha L} \]

\[D = \text{dimension of Hilbert space} \]

Beugeling, Moessner, Haque, P.R.E (2014)
E.T.H. Scaling:
Off-diagonal matrix elements

$$O_{AB} = \langle E_A | \hat{O} | E_B \rangle$$

Sachdev-Ye-Kitaev model
(N Majorana fermions)

$\sigma \sim D^{-1/2} \sim 2^{-N/4}$

Haque & McClarty
P.R.B (2019)
A STANDARD STATEMENT OF E.T.H.

\[\langle E_A|\hat{O}|E_B \rangle = \delta_{AB} f^{(1)}(\bar{E}) + e^{-S(\bar{E})/2} f^{(2)}(\bar{E},\omega) R_{AB} \]

\[\bar{E} = \frac{1}{2}(E_A + E_B) \]

\[\omega = E_B - E_A \]

\[R_{AB} \rightarrow \text{a gaussian random variable;} \quad f^{(1,2)} \rightarrow \text{smooth functions.} \]

\[S \sim \log \mathcal{D} \text{ is the entropy } \implies \text{Distribution width } \sim \mathcal{D}^{-1/2} \]

\[\mathcal{D} \equiv \text{Hilbert space dimension} \]

Local operators \rightarrow

- diagonal matrix elements, off-diagonal matrix elements
- both distributions have width $\sim \mathcal{D}^{-1/2}$
Which operators obey $\sim \mathcal{D}^{-1/2}$ scaling?

Khaymovich, Haque, McClarty, P.R.L. (2019)

Eigenstate Thermalization, Random Matrix Theory and Behemoths
Eigenstate thermalization scaling

Many-body Hamiltonians are random matrices (?!?)

Eigenstate thermalization hypothesis (which observables?)

E.T.H. Scaling — local, less local & Behemoth operators

![Graph showing the relationship between J_2/J_1 and the distribution of observables over time.](image)

XXZ + NNN

$L=15, N_p=6$

- **GOE**
- **Poisson**

![Graph showing the distribution of matrix elements of partially/fully local operators.](image)

XXZ + NNN

$(L,N_p)=(17,8), J_1=J_2=1, \Delta_1=\Delta_2=0.8$

- **n=8, M=2**
- **n=7, M=6**
- **n=1, M=12870**

(a) (b) (c) (d) (e)
Operators in RMT and many-body physics

Could interpret random matrix as:

Hamiltonian of a single particle

on a fully-connected graph

with random hoppings

\[H = \sum_{ij} h_{ij} \hat{d}_i \hat{d}_j \]
Hamiltonian of a single particle on a fully-connected graph

Not many interesting observables, except:

\[\tilde{\omega}_{ij} \equiv \hat{d}_i^\dagger \hat{d}_j = |i\rangle \langle j| \]

Node-node correlation function

For \(i = j \): node occupancy

\[H = \sum_{ij} h_{ij} \hat{d}_i^\dagger \hat{d}_j \]
As a matrix? \(\hat{\omega}_{ij} \) has a single nonzero element.

Hermitian version: \(\hat{\gamma}_{ij} = \hat{\omega}_{ij} + \hat{\omega}_{ji} \)

\(\rightarrow \) Matrix with two nonzero elements.

\[H = \sum_{ij} h_{ij} \hat{d}_i^\dagger \hat{d}_j \]
Operators in RMT and Many-body Physics

\[\hat{\omega}_{ij} \equiv \hat{d}^\dagger_i \hat{d}_j = |i\rangle \langle j| \]

Many-body analogy \(\rightarrow \)

- a node \(i \) \(\equiv \) a many-body configuration \(|n\rangle \)

\[\hat{\Omega}_{nn'} \equiv |n\rangle \langle n'| \]

Changes one many-body configuration to another.

Highly nonlocal

Behemoth operators
Operators in RMT and Many-Body Physics

\[\hat{\Omega}_{nn'} \equiv |n\rangle \langle n'| \]

\(\hat{\Omega} \) in configuration space \(\rightarrow \)

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

Behemoths form a basis for operators.

\(\Downarrow \)

Any operator is a sum of Behemoths.

(e.g. local observables, 2-point correlators)
(Using spinless-fermion language)

Series of operators

\[\hat{\Omega}_M = \prod_{k=1}^{n} \hat{c}^\dagger_i \hat{c}_j = \sum_{\alpha=1}^{M} \hat{\Omega}^{(\alpha)}_{nn'} \]

A \((2n)\)-point correlator. \(M \) nonzero terms in operator matrix.

Behemoth: \(\hat{c}^\dagger_{i_1} \hat{c}^\dagger_{i_2} \ldots \hat{c}^\dagger_{i_{N_p}} \hat{c}_{j_1} \hat{c}_{j_2} \ldots \hat{c}_{j_{N_p}}\)

\(n = N_p, \quad M = 1 \) or \(2 \)

2-point correlator: \(\hat{c}^\dagger_{i_1} \hat{c}_{j_1}\)

\(n = 1, \quad M = \left(\frac{L - 2n}{N_p - n} \right) \sim O(D) \)

Can generalize \(\rightarrow\) spins, bosons, Hubbard, \(N_p\)-non-conserving systems, allow overlap between \(n, n'\) configurations....

Many types of operators covered in this framework.
Width of distributions: scaling with D

Behemoth distribution $\sim K_0(Dx) \rightarrow$ Width scales as $\sim D^{-1} \rightarrow$ super-ETH scaling

Local operators are sums of $M \sim O(D)$ Behemoths.

Using central limit theorem, \[\text{width} \sim \sqrt{MD^{-1}} \sim D^{-1/2} \rightarrow \text{ETH scaling} \]

A ‘typical’ operator is dense, $M > O(D)$

If $M \sim O(D^{1+\beta})$, width (using CLT) $\sim D^{-1/2+\beta/2} \rightarrow$ sub-ETH scaling

If $M \sim O(D^2)$, width $\sim D^0$

ETH works because physical operators are sparse.

$D^{-1/2}$ scaling works because local operators have $M \sim O(D)$
Non-local to Local to Typical

\[\langle E_A | \Gamma | E_B \rangle \]

Distributions

\[\langle E_A | \Gamma | E_B \rangle \]

matrix elements of partially/fully local operators

\[(L, N_p) = (17, 8). \quad J_1 = J_2 = 1, \quad \Delta_1 = \Delta_2 = 0.8 \]

XXZ + NNN

(a) \(n=8 \quad M=2 \)

(b) \(n=7 \quad M=6 \)

(c) \(n=1, \quad M=12870 \)

(widths)

\[\sim D^{-1} \quad \sim D^{-1/2} \]

RMT prediction for 2-point

\[\sim D^{-1/4} \quad \sim D^{-1/2} \]

Dense \(\beta=1/2 \)

Dense \(\beta=1/4 \)

\[\sim D^{-3/8} \quad \sim D^{-1/2} \]
Eigenstate thermalization scaling

Many-body Hamiltonians are random matrices (?!?)

Eigenstate thermalization hypothesis (which observables?)

E.T.H. Scaling — local, less local & Behemoth operators

![Graph showing GOE and Poisson distributions](image)

XXZ + NNN $(L,N_p) = (17,8)$. $J_1 = J_2 = 1$, $\Delta_1 = \Delta_2 = 0.8$

$\langle E^A | \Gamma | E^B \rangle$

Matrix elements of partially/fully local operators

Distributions

(a) (b) (c) (d) (e)