
Machine Learning and Computational Mathematics

Weinan E

How machine learning will impact scientific computing and computational science?

How computational mathematics can impact machine learning?

October 7, 2020 1 / 54



ML can do wonders: Approximating high dimensional functions

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn (i.e. approximate) f ∗.

Example: Cifar 10 dataset (f ∗ is a discrete function defined on the space of images)

Input: each image ∈ [0, 1]d,
d = 32× 32× 3 = 3072.

Output: f ∗ ∈ {airplane,
..... , truck}.
f ∗ : [0, 1]3072 → {airplane,
..... , truck}.
f ∗(each image) = category

October 7, 2020 2 / 54



Sampling unknown high dimensional distributions

The probability distribution of all real and fake human faces is an unknown distribution in
high dimension.

October 7, 2020 3 / 54



Solving high dimensional Bellman equations

The optimal strategy obeys some Bellman-like equation.

October 7, 2020 4 / 54



All these are made possible by our ability to
accurately approximate high dimensional
functions using finite pieces of data.

This opens up new possibilities for attacking
problems that suffer from the “curse of
dimensionality” (CoD):

As dimensionality grows, computational cost grows exponentially fast.

October 7, 2020 5 / 54



CoD: Solving PDEs using traditional numerical methods

usually d = 1, 2, 3, 4
handles Poisson, Maxwell, Euler, Navier-Stokes, elasticity, etc. well.

sparse grids: d ∼ 10
we can barely solve Boltzmann for simple molecules.

d ≥ 100, impossible
can’t deal with realistic control problems, Fokker-Planck or Boltzmann for complex molecules,

many-body Schrödinger, etc.

This is where machine learning can help.

Han and E (2016, NIPS workshop), E, Han and Jentzen (2017, Comm Math Stat), Han, Jentzen and E (2018, PNAS)

October 7, 2020 6 / 54



The DNN - SGD paradigm

DNN = deep neural network, SGD = stochastic gradient descent
1 choose a hypothesis space (set of trial functions), e.g.

f (x, θ) =

m∑
j=1

ajσ(wT
j x), θ = (aj,wj)

σ is a nonlinear activation function, e.g. σ(z) = max(z, 0)
2 choose a loss function (to fit the data), e.g. “empirical risk”

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2 =
1

n

n∑
j=1

`j(θ)

3 choose an optimization algorithm and parameters, e.g. GD Compare with GD (gradient
descent):

θk+1 = θk − η∇R̂n(θ) = θk − η
1

n

∑
j

∇`j(θk)

Stochastic gradient descent (SGD):

θk+1 = θk − η∇`jk(θk)

j1, j2, · · · are iid random variables uniformly drawn from 1, 2, · · ·n.
October 7, 2020 7 / 54



Constructing hypothesis space using continuous dynamical
systems

E (2017), Haber and Ruthotto (2017), “Neural ODEs” (Chen et al, 2018)

dz

dτ
= g(τ, z, θ), z(0) = x

The flow-map at time 1: x→ z(x, 1).

Trial functions:
f (·) = αTz(·, 1)

Discretize: We obtain the “residual neural network” model:

zl+1 = zl + ∆tgl(zl, θl), l = 1, 2, · · · , L− 1, z0 = V x̃

fL(x) = αTzL

October 7, 2020 8 / 54



1. Stochastic control (Han and E (2016))

Model dynamics (analog of ResNet):

zl+1 = zl + gl(zl, al) + ξl+1,

zl = state, al = control, ξl = noise.

min
{al}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl, al(zl)) + cT (zT )
}
,

Look for a feedback control:
al = al(z).

Neural network approximation:

al(z) ≈ ãl(z|θl), l = 0, · · · , T − 1

Optimization problem (SGD applies directly)

min
{θl}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl, ãl(zl|θl)) + cT (zT )},

October 7, 2020 9 / 54



Network Architecture

Figure: Network architecture for solving stochastic control in discrete time. The whole network has (N + 1)T

layers in total that involve free parameters to be optimized simultaneously. Each column (except ξt)

corresponds to a sub-network at t.

October 7, 2020 10 / 54



Example: Energy Storage with Multiple Devices

The setting is similar to the above but now there are multiple devices, in which we do not
find any other available solution for comparison.

0.6

0.7

0.8

0.9

1.0

1.1

10000 20000 30000 40000 50000

 iteration

re
w

ar
d 

re
la

tiv
e 

to
 th

e 
ca

se
 n

=
50

Number of devices

n=30
n=40
n=50

Figure: Relative reward. The space of control function is Rn+2 → R3n for n = 30, 40, 50, with multiple equality

and inequality constrains.

October 7, 2020 11 / 54



2. Nonlinear parabolic PDE

∂u

∂t
+

1

2
σσT : ∇2

xu + µ · ∇u + f
(
σT∇u

)
= 0, u(T, x) = g(x)

Reformulating as a stochastic optimization problem using backward stochastic differential
equations (BSDE, Pardoux and Peng (1990))

inf
Y0,{Zt}0≤t≤T

E|g(XT )− YT |2,

s.t. Xt = ξ +

∫ t

0

µ(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs,

Yt = Y0 −
∫ t

0

f (Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer is the solution to the PDE with:

Yt = u(t,Xt) and Zt = σT (t,Xt)∇u(t,Xt).

October 7, 2020 12 / 54



Deep BSDE Method

After time discretization, approximate the unknown functions

X0 7→ u(0, X0) and Xtj 7→ σT(tj, Xtj)∇u(tj, Xtj)

by feedforward neural networks ψ and φ.

This network takes the paths {Xtn}0≤n≤N and {Wtn}0≤n≤N as the input data and gives
the final output, denoted by û({Xtn}0≤n≤N , {Wtn}0≤n≤N), as an approximation to
u(tN , XtN ).

The error in the matching of given terminal condition defines the expected loss function

l(θ) = E
[∣∣g(XtN )− û

(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
E, Han and Jentzen (Comm Math Stats 2017); Han, Jentzen and E (PNAS 2018)

October 7, 2020 13 / 54



Stochastic control revisited

LQG (linear quadratic Gaussian) for d=100

dXt = 2
√
λmt dt +

√
2 dWt,

Cost functional: J({mt}0≤t≤T ) = E
[ ∫ T

0 ‖mt‖2
2 dt + g(XT )

]
.

HJB equation:
∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0
,0
,.
..
,0
)

Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0, . . . , 0)) when λ = 1, which achieves 0.17% in a runtime

of 330 seconds. Right: Optimal cost u(t=0, x=(0, . . . , 0)) against different λ.

October 7, 2020 14 / 54



Black-Scholes Equation with Default Risk

∂u

∂t
+ ∆u− (1− δ)Q(u(t, x))u(t, x)−Ru(t, x) = 0

Q is some nonlinear function (Duffie et al. 1996, Bender et al. 2015 (d = 5))

Figure: d = 100. Deep BSDE achieves a relative error of size 0.46% in a runtime of 617 seconds.

Applications to pricing basket options, interest rate-dependent options, Libor market model,
Bermudan Swaption, barrier option, etc.

October 7, 2020 15 / 54



3. DeePMD: Molecular dynamics with ab initio accuracy

mi
d2xi
dt2

= −∇xiV, V = V (x1,x2, ...,xi, ...,xN),

Key question: V =?

Two ways to calculate V :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive (limited to about 1000 atoms).

Empirical potentials: basically guess what V should be.
Efficient but unreliable.

Now: Use QM to supply the data needed to train a neural network model.

October 7, 2020 16 / 54



Accuracy comparable to QM for a wide range of materials and
molecules

Linfeng Zhang, Jiequn Han, et al (2018)

October 7, 2020 17 / 54



Adaptive generation of data: The EELT algorithm

The EELT (exploration- examination-labeling-training) algorithm (Zhang et al (2018)):

exploring the configuration space, using either molecular dynamics or Monte Carlo
for each configuration explored, decide whether it should be labeled, say use an
a posteriori error estimator.
labeling: compute the labels (energy and forces) using quantum mechanics models
(DFT)
training: deep neural network

∼0.005% configurations explored by DeePMD are selected for labeling.

Linfeng Zhang, Han Wang, et al (2019)
October 7, 2020 18 / 54



The importance of preserving the symmetries

Jiequn Han, Linfeng Zhang, Roberto Car and Weinan E (2017)

October 7, 2020 19 / 54



DeePMD simulation of 100M atoms with ab initio accuracy

D. Lu, et al, arXiv: 2004.11658; W. Jia, et al, arXiv: 2005.00223

October 7, 2020 20 / 54



4. Protein folding and the nonlinear multi-grid method

{xj}= positions of the atoms in a protein
U({xj}) = potential energy (chemical bonding, Van der Waals, electro-static, etc).

“Minimize”U, or sample ρ =
1

Z
e−βU , β = (kBT )−1

Folding Trp-cage (20 amino acids, 38 collective variables)

Han Wang, Linfeng Zhang, Weinan E (2018)

October 7, 2020 21 / 54



Multi-grid viewpoint of protein folding

Traditional multi-grid: Minimize Ih(uh) = 1
2u

T
hLhuh − fTh uh

projection operator: P : uh → uH
effective operator on scale H: LH = P TLhP .

effective problem on scale H: Minimize IH(uH) = 1
2u

T
HLHuH − fTHuH

Multi-grid approach to protein folding: “Minimize” U(x1,x2, · · ·xN)

collective variables: s = (s1, · · · , sn), sj = sj(x1, · · · ,xN), (n < N)

effective energy = free energy:

A(s) = −1

β
ln p(s), p(s) =

1

Z

∫
e−βU(x)δ(s(x)− s) dx,

effective problem on coarser scale: Minimize A(s) = A(s1, s2, · · · , sn)

Now we have to find the function A first!

October 7, 2020 22 / 54



A will be represented by neural networks.

data comes from “accelerated” molecular dynamics, using adaptive sampling:

generate a sequence of samples {sj} adaptively, and use them the train a more and
more accurate neural network approximation to A.

The EELT (exploration- examination-labeling-training) algorithm (Zhang et al (2018)):

exploring the s space, say by sampling 1
Ze
−βA(s) with the current approximation of A.

for each state explored, decide whether that state should be labeled, say use an
a posteriori error estimator.

labeling: compute the mean force (using restrained MD)

training: deep potential-like coarse-grained model

This is a general procedure that should work for a large class of nonlinear “multi-grid”
problems.

October 7, 2020 23 / 54



Other work

DeePHF, DeePKS, DeePN2, CGSP, DeePCombustion

deterministic control (Kang, Gong, et al (2019))

game theory (Han and Hu (2019), Ruthotto, Osher et al (2020))

Deep Ritz method (E and Yu (2018))
“deep Galerkin method” (really least square, Sirignano and Spiliopoulos (2018))
deep Galerkin method (Zang, Bao (2019))

many applications to chemistry, material science, combustion, non-Newtonian fluid
dynamics, control theory, finance, economics

ML is used to generate new (reliable and interpretable) physical models (say for gas
dynamics, non-Newtonian fluids).

See E, Han and Zhang: Integrating ML with Physics-based Modeling, 2020.

October 7, 2020 24 / 54



Moment closure for Boltzmann equation

{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U,W; ε).

2

3

4

B
u

lk
V

e
lo

ci
ty

Mach = 3.5

1.5

2.0

2.5

3.0

Mach = 2.5

1.2

1.4

1.6

1.8

Mach = 1.5

0

1

2

3

N
o
rm

a
l
S

tr
e
ss

0.0

0.5

1.0

1.5

0.00

0.05

0.10

0.15

0.20

−6 −4 −2 0 2 4

x

−8

−6

−4

−2

0

H
e
a
t

F
lu

x

Boltzmann

NSF

HermMLC

−6 −4 −2 0 2 4

x

−2

−1

0

Boltzmann

NSF

HermMLC

−6 −4 −2 0 2 4

x

−0.20

−0.15

−0.10

−0.05

0.00

Boltzmann

NSF

HermMLC

October 7, 2020 25 / 54



Figure: Representative physical models at different scale and their most important modeling ingredients.

October 7, 2020 26 / 54



Other examples

many-body Schrödinger equation

parametric PDEs

solving traditional low-dimensional PDEs (Poisson, Maxwell, Navier-Stokes)

inverse problems

· · · · · ·

October 7, 2020 27 / 54



Mathematical theory of machine learning

1. Understanding the mysteries about ML
Why does it work in such high dim?

Why simple gradient descent works?

Relative merits of shallow vs deep networks?

Is over-parametrization good or bad? (cause the optimization problem to be degenerate)

Why does neural network modeling require such extensive parameter tuning?

2. Seeking better formulations of ML
More robust: requires less parameter tuning

More general

Will discuss supervised learning: Approximate a target function using a finite dataset

October 7, 2020 28 / 54



Approximation of functions

Approximate by polynomials:

“Universal Approximation Theorem” (Weierstrass): Continuous functions can be
approximated by polynomials.

Taylor’s theorem: Convergence rates depend on the regularity of the target function.

Approximation by piecewise polynomials: (m = number of free parameters)

inf
f∈Hm

‖f − fm‖L2(X) ≤ C0h
α‖f‖Hα(X), h ∼ m−1/d

Sobolev (Besov) norm is the right quantity for the right hand side.

They suffer from CoD: m ∼ ε−d where ε is the error tolerance.

The number of monomials of degree p in dimension d is Cd
p+d

October 7, 2020 29 / 54



What should we expect in high dimension?

Example: Monte Carlo methods for integration

I(g) = Ex∼µg(x), Im(g) =
1

m

∑
j

g(xj)

{xj, j ∈ [m]} is i.i.d samples of µ.

E(I(g)− Im(g))2 =
var(g)

m
, var(g) = Ex∼µg2(x)− (Ex∼µg(x))2

The best we can expect for function approximation in high D:

inf
f∈Hm

R(f ) = inf
f∈Hm

‖f − f ∗‖2
L2(dµ) .

‖f ∗‖2
∗

m

What should be the norm ‖ · ‖∗ (associated with the choice of Hm)?

October 7, 2020 30 / 54



Approximating functions in high D: An illustrative example

Traditional approach for Fourier transform:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach: Let π be a probability distribution and

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

Let {ωj} be an i.i.d. sample of π, fm(x) = 1
m

∑m
j=1 a(ωj)e

i(ωj,x),

E|f (x)− fm(x)|2 = m−1var(f )

fm(x) = 1
m

∑m
j=1 ajσ(ωT

j x) = two-layer neural network with activation function σ(z) = eiz.

October 7, 2020 31 / 54



Two-layer neural network model: Barron spaces

E, Ma and Wu (2018, 2019), Bach (2017)

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}, θ = {(aj,wj), j ∈ [m]}

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = E(a,w)∼ρ[aσ(wTx)], x ∈ X

Ω = R1 × Rd+1, ρ is a probability distribution on Ω.

‖f‖B = inf
ρ∈Pf

(
Eρ[a2‖w‖2

1]
)1/2

where Pf := {ρ : f (x) = Eρ[aσ(wTx)]}.

B = {f ∈ C0 : ‖f‖B <∞}

Related work in Barron (1993), Klusowski and Barron (2016), E and Wojtowytsch (2020)

October 7, 2020 32 / 54



What kind of functions admit such a representation?

Consider the case when σ(z) = max(z, 0), the ReLU (rectified linear units) function.

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(wTx)ρ(da, dw)

for x ∈ [0, 1]d. Furthermore, we have

E(a,w)∼ρ|a|‖w‖1 ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω

October 7, 2020 33 / 54



Theorem (Direct Approximation Theorem)

‖f − fm‖L2(X) .
‖f‖B√
m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.

October 7, 2020 34 / 54



Estimation error

Since we can only work with a finite dataset, what happens outside the dataset?

Figure: The Runge phenomenon: f ∗(x) = 1
1+25x2

October 7, 2020 35 / 54



Training and testing errors

In practice, we minimize the training error:

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2

but we are interested in the testing error:

R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

H = a set of functions, S = (x1,x2, ...,xn) = dataset. Upto log terms,

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ∼ RadS(H)

where the Rademacher complexity of H with respect to S is defined as

RadS(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

October 7, 2020 36 / 54



Complexity estimates

Theorem (Bach, 2017)

Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

where n = |S|, the size of the dataset S.

October 7, 2020 37 / 54



A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

(
1

m

m∑
k=1

|ak|2‖wk‖2
1

)1/2

Theorem (E, Ma, Wu, 2018)

Assume f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, such that for any δ > 0, if λ ≥ C0,
then with probability at least 1− δ over the choice of training set, we have

R(θ̂n) .
‖f ∗‖2

B
m

+ λ‖f ∗‖B

√
log(2d)

n
+

√
log(1/δ) + log(n)

n
.

October 7, 2020 38 / 54



Approximation theory and function spaces for other ML models

random feature model: Reproducing kernel Hilbert space (RKHS)

Residual networks (ResNets): Flow-induced space (E, Ma and Wu (2019))

Multi-layer neural networks: Multi-layer spaces (E and Wojtowytsch (2020))

Up to log terms, we have

R(f̂ ) .
‖f ∗‖2

∗
m

+
‖f ∗‖∗√

n

where m = number of free parameters, n = size of training dataset.

October 7, 2020 39 / 54



Better formulation: ML from a continuous viewpoint

Formulate a “nice” continuous problem, then discretize to get concrete
models/algorithms.

For PDEs, “nice” = well-posed.

For calculus of variation problems, “nice” = “convex”, lower semi-continuous.

For ML, “nice” = variational problem has simple landscape.

Key ingredients

representation of functions (as expectations)

formulating the variational problem (as expectations)

optimization, e.g. gradient flows

E, Ma and Wu (2019)

October 7, 2020 40 / 54



Function representation

integral-transform based:

f (x; θ) =

∫
Rd
a(w)σ(wTx)π(dw)

=Ew∼πa(w)σ(wTx)

=E(a,w)∼ρaσ(wTx)

=Eu∼ρφ(x,u)

θ = parameters in the model: a(·) or the prob distributions π or ρ

flow-based:

dz

dτ
=Ew∼πτa(w, τ )σ(wTz)

=E(a,w)∼ρτaσ(wTz)

=Eu∼ρτφ(z,u), z(0,x) = x

f (x, θ) = 1Tz(1,x)

θ = {aτ(·)} or {πτ} or {ρτ}
October 7, 2020 41 / 54



Optimization: Gradient flows

“Free energy” = R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

f (x) =

∫
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

Follow Halperin and Hohenberg (1977):

a = non-conserved, use “model A” dynamics:

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B”:

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.

October 7, 2020 42 / 54



Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothed particle method – analog of vortex blob method

spectral method – very effective in low dimensions

We can see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.

October 7, 2020 43 / 54



Discretization of the conservative flow for flow-induced
representation

Function representation: f (x; θ) = E(a,w)∼ρaσ(wTx)

∂tρ = ∇(ρ∇V ), V =
δR
δρ

Particle method discretization:

ρ(a,w, t) ∼ 1

m

∑
j

δ(aj(t),wj(t)) =
1

m

∑
j

δuj(t)

gives rise to
duj
dt

= −∇ujI(u1, · · · ,um)

where

I(u1, · · · ,um) = R(fm), uj = (aj,wj), fm(x) =
1

m

∑
j

ajσ(wT
j x)

This is exactly gradient descent for (scaled) two-layer neural networks.

October 7, 2020 44 / 54



Why is continuous formulation better? No “phase transition”

Continuous viewpoint (in this case same as mean-field): fm(x) = 1
m

∑
j ajσ(wT

j x)

Conventional NN models: fm(x) =
∑

j ajσ(wT
j x)

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

Figure: (Left) continuous viewpoint; (Right) conventional NN models. Target function is a single neuron.

Ma, Wu and E (2020)

October 7, 2020 45 / 54



The optimal control problem for flow-induced formulation

In a slightly more general form

dz

dτ
= Eu∼ρτφ(z,u), z(0,x) = x

z = state, ρτ = control at time τ .

The objective : Minimize R over {ρτ}

R({ρτ}) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

where
f (x) = 1Tz(1,x)

October 7, 2020 46 / 54



Pontryagin’s maximum principle

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The solutions of the control problem must satisfy:

ρτ = argmaxρEx[H
(
zt,xτ ,pt,xτ , ρ

)
], ∀τ ∈ [0, 1],

and for each x, (zt,xτ ,pt,xτ ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ ].

f (x) = 1Tz(x, 1)

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.

October 7, 2020 47 / 54



Gradient flow for flow-based models

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The gradient flow for {ρτ} is given by

∂tρτ(u, t) = ∇ · (ρτ(u, t)∇V (u; ρ)) , ∀τ ∈ [0, 1],

where

V (u; ρ) = Ex[
δH

δρ

(
zt,xτ ,pt,xτ , ρτ(·; t)

)
],

and for each x, (zt,xτ ,pt,xτ ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ ].

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.

October 7, 2020 48 / 54



Discretize the gradient flow

forward Euler for the flow in τ variable, step size 1/L.

particle method for the GD dynamics, M samples in each layer

zt,xl+1 = zt,xl +
1

LM

M∑
j=1

φ(zt,xl ,ujl (t)), l = 0, . . . , L− 1

pt,xl = pt,xl+1 +
1

LM

M∑
j=1

∇zφ(zt,xl+1,u
j
l+1(t))pt,xl+1, l = 0, . . . , L− 1

dujl (t)

dt
= −Ex[∇T

wφ(zt,xl ,ujl (t))p
t,x
l ].

This recovers the GD algorithm (with back-propagation) for the (scaled) ResNet:

zl+1 = zl +
1

LM

M∑
j=1

φ(zl,ul).

October 7, 2020 49 / 54



Max principle-based training algorithm

Qianxiao Li, Long Chen, Cheng Tai and Weinan E (2017):

Basic “method of successive approximation” (MSA):

Initialize: θ0 ∈ U

For k = 0, 1, 2, · · · :
Solve

dzkτ
dτ

= ∇pH(zkτ ,p
k
τ , θ

k
τ ), zk0 = V x

Solve
dpkτ
dτ

= −∇zH(zkτ ,p
k
τ , θ

k
τ ), pk1 = 2(f (x; θk)− f ∗(x))1

Set θk+1
τ = argmax θ∈ΘH(zkτ ,p

k
τ , θ), for each τ ∈ [0, 1]

Extended MSA:

H̃(z,p, θ,v, q) := H(z,p, θ)− 1

2
ρ‖v − f (z, θ)‖2 − 1

2
ρ‖q +∇zH(z,p, θ)‖2.

October 7, 2020 50 / 54



October 7, 2020 51 / 54



Comparison between GD and maximum principle

Maximum principle:

ρτ = argmaxρEx[H
(
zt,xτ ,pt,xτ , ρ

)
], ∀τ ∈ [0, 1],

GD:

∂tρτ(u, t) = ∇ ·
(
ρτ(u, t)∇Ex[

δH

δρ

(
zt,xτ ,pt,xτ , ρτ(u; t)

)
]

)
, ∀τ ∈ [0, 1],

Hybrid:

Introducing a different time scale for optimization step: One time forward/backward
propagation every k steps of optimization.

k = 1, usual GD or SGD

k =∞, maximum principle

October 7, 2020 52 / 54



What have we really learned from ML?

Representation of functions as expectations:

integral-transform based:
f (x; θ) = E(a,w)∼ρaσ(wTx)

f (x) = EθL∼πLa
(L)
θL
σ(EθL−1∼πL−1

. . . σ(Eθ1∼π1a
1
θ2,θ1

σ(a0
θ1
· x)) . . . )

flow-based:

dz

dτ
=E(a,w)∼ρτaσ(wTz), z(0,x) = x

f (x, θ) =1Tz(1,x)

and then discretize using particle, spectral or other numerical methods.

October 7, 2020 53 / 54



Concluding remarks

ML has changed and will continue to change the way we deal with functions, and this
will have a very significant impact in computational mathematics.

A reasonable mathematical picture for ML is emerging, from the perspective of
numerical analysis.

Review articles (can be found on my webpage https://web.math.princeton.edu/ weinan ):

Towards a mathematical understanding of machine learning: What is known and what is
not (will appear soon)

Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine
learning

Integrating machine learning with physics-based modeling

October 7, 2020 54 / 54


