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Calabi Problem : Given a compact Kähler manifold (M n , ω), when does the
Kähler class [ω] ∈ H 1,1(M ,R) contains a canonical metric ωcan ?

When does [ω] contains a constant scalar curvature Kähler (cscK) metric ?

A basic obstruction is given by the Futaki invariant.

Consider the Lie algebra g := ham(M , ω) ∩ holR(M ),

Futω : g −→ R
X 7→

∫
M

f X (c[ω]ω − ρω) ∧ ωn−1

where ω(X , ·) = −df X , ρω ∈ c1(M ) is the Ricci form of ω and
c[ω] =

∫
M
ρω ∧ ωn−1/

∫
M
ωn .

Futaki (1984) : Futω = Futω′ , if ω′ and ω are g–invariant and [ω′] = [ω].

If ∃ cscK metric in [ω], then Fut[ω] ≡ 0.
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Definition (Tian, Donaldson,..., Dervan–Ross, Sjoström-Dyrefelt)
(M, [Ω]) is a (Kähler) test configuration over (M , [ω]) if (M, [Ω]) is compact
smooth Kähler manifold and

There is a C∗–holomorphic action on M, ν : C∗ ×M→M ;

A surjective (flat) C∗–equivariant map π :M→ P1 ; such that

Mt := π−1(t) is biholomorphic to M if t 6= 0, ιt : M → Mt such that

[ι∗t Ω] = [ω].

M\M0 ' M × (P1\{0}) equivariantly.

=⇒ there is an induced C∗ action on M0 (thus a S1–action on M0).

Theorem (Ding–Tian (Fano case) & Donaldson (polarized case ω ∈ c1(L))

Let (M,L) be a polarized test configuration over (M ,L) with irreducible central
fiber (M0,L0) then if there is a cscK metric in c1(L) we have

Fut(M0,L0)(V ) ≥ 0.

Here V is the vector field induced by the S1–action (see above).
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Example 1 : Deformation to the normal cone

Y ⊂ M ,
M := BlY×{0}(M × P1)

M0 = BlY (M ) ∪ E , E ' P(NM
Y ⊕ C)

The central fiber M0 is NOT irreductible.
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Example 2 : Product test configuration

Given an isometric Hamiltonian action a : S1 ×M → M with moment map
µ : M → R

Consider (M × C2, ω + ωstd with product action and moment map

µ̃(p, z ) := µ(p)− 1

2
(|z1|2 + |z2|2)

(M,Ωc) := Kähler reduction of M × C2 at level c < minµ

M = µ̃−1(c)/S1,

M0 ' M ,

(M,Ωc) is the clutching construction.
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Few words on the proof of Ding–Tian.

Ding–Tian proved that when M0 has orbifold type singularities, using the
embedding in PN given by the polarization L = −KM > 0. The test
configuration M is the completion of an orbit of a C∗ action on PN .

They used the Mabuchi functional Eω defined on Kähler potentials

Hω := {ϕ : M → R |ω + ddcϕ > 0}

and critEω coincides with cscK metrics.

They proved that when M0 is irreducible that

Fut(M0,L0)(V ) = lim
t→0

d

dt
E (ϕt)

where ω + ddcϕt = ι∗tωFS .

Then used Bando–Mabuchi’s result : if there exists a Kähler–Einstein metric
in [ω] = c1(−KM ) then Eω is bounded below.
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Few words on Donaldson’s approach.

Donaldson introduced a numerical algebraic invariant, denoted DF (M,L),
on C∗–linearized line bundle (M,L) taking into account the asymptotic of
the weight on the induced C∗–action on H 0(M,L),

Using Riemann-Roch formula he proved that DF (M,L) = Fut(M0,L0)(V )
when M0 is irreducible.

Donaldson proved that DF (M,L) ≥ 0 if there exists a cscK metric in c1(L).

DF (M,L) is called the Donaldson–Futaki invariant of (M,L).

(M ,L) is K–semistable if DF (M,L) ≥ 0 for all test configurations* over it.
It was proved later, see Odaka and Wang, that when Ω ∈ c1(L),

DF (M,L) :=
n

n + 1
c[ω]

∫
M

Ωn+1 −
∫
M

(ρΩ − π∗ρFS ) ∧ Ωn

where c[ω] =
∫
M
ρω ∧ ωn−1/

∫
M
ωn .

Dervan–Ross, Sjöstrom-Dyrefelt extends the theory to Kähler (non-polarized)
varieties and proved that cscK implies K-semistability.
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Theorem

If (M, [Ω]) is a smooth Kähler test configuration over (M , [ω]) with irreducible
central fiber (M0,Ω0) having at worst orbifold singularities then

DF (M,Ω) = Fut(M0,[Ω0])(V ).

Equivariant localization formula :
Recall that given a S1 action on a manifold M , generated by a vector field
V ∈ Γ(TM ). A S1–invariant form α ∈ Ω∗(TM ) is equivariantly closed if

(d −V¬)α ≡ 0

Here (d −V¬)α = dα− α(V , ·).Example, if S1 ⊂ Ham(M , ω) with momentum
map µ : M → R then α = ω − µ is equivariantly closed,as well as (ω − µ)m for
any m ∈ N.
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Basic theory of group actions : the fixed point sets of the S1–action in M are
disjoint (connected) submanifolds Z1, . . . ,Zk ,

that we denote generically Z .

Each normal bundle EM
Z −→ Z inherits of a linear S1–action.

By Atiyah–Bott, Berline–Vergne theory, if α is an equivariantly closed the∫
M

α =
∑
Z

∫
Z

ι∗Zα

χS1(EM
Z )

where Z denotes the generic comopnent Z , ιZ : Z ↪→ M is the inclusion and
χS1(EM

Z ) ∈ H ∗S1(Z ) is the equivariant Euler class. eg if EM
Z = ⊕Lj with weight

wj on the line Lj then

χV (EM
Z ) = (2π)rank(EM

Z )
∏
j

(c1(Lj )− wj ).
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S1 ⊂ C∗, pick S1–invariant metric Ω.

The S1–action induces a Hamiltonian
Killing vector field V ∈ Γ(TM).

zeros(V ) = FixS1M = (tki=1Zi) tM∞

where Z1, . . . ,Zk are smooth compact disjoint complex submanifolds lying in
M0.

Write the Donaldson–Futaki invariant as an intersection of equivariantly
closed forms αΩ := (Ω− µ) and

βΩ =
nc

n + 1
(Ω− µ)−

(
ρΩ − 1

2
∆Ωµ

)
+ (π∗ωFS − π∗µFS )

where µFS is a Hamiltonian for the standard S1 action on (P1, ωFS )

DF (M,Ω) = [αΩ]n ∪ [βΩ] ([M])
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Prove that [αΩ]n ∧ βΩ = 0 when pulled-back on M∞.

Thus the Donaldson–Futaki only sees the fixed point sets lying in the central
fiber and we get

DF (M,Ω)

n!
=
∑
Z

∫
Z

nc[ω](ΩZ − µZ )n+1

(n + 1)!χ(EMZ )(V )

−
∑
Z

∫
Z

(ρΩ
Z + 〈w ,V 〉) ∧ (ΩZ − µZ )n

n!χ(EMZ )(V )

+
∑
Z

∫
Z

(ΩZ − µZ )n

n!χ(EMZ )(V )
.

where w is the sum, with multiplicities, of the weights of S1-action on EM
Z .

The remaining is essentially to prove that χ(EMZ ) = χ(EM0

Z )/2π and use the
localization ”backward” (inside M0).
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