Localizing the Donaldson-Futaki invariant

Eveline Legendre Institut de mathématiques de Toulouse

> Geometria em Lisboa Seminar October 6th, 2020

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

A basic obstruction is given by the Futaki invariant.

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

A basic obstruction is given by the Futaki invariant.

Consider the Lie algebra $\mathfrak{g} := \mathfrak{ham}(M, \omega) \cap \mathfrak{hol}_{\mathbb{R}}(M)$,

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

A basic obstruction is given by the Futaki invariant.

Consider the Lie algebra $\mathfrak{g} := \mathfrak{ham}(M, \omega) \cap \mathfrak{hol}_{\mathbb{R}}(M)$,

$$\begin{array}{rccc} \mathsf{Fut}_{\omega}: & \mathfrak{g} & \longrightarrow & \mathbb{R} \\ & X & \mapsto & \int_{M} f^{X}(c_{[\omega]}\omega - \rho^{\omega}) \wedge \omega^{n-1} \end{array}$$

where $\omega(X, \cdot) = -df^X$, $\rho^{\omega} \in c_1(M)$ is the Ricci form of ω and $c_{[\omega]} = \int_M \rho^{\omega} \wedge \omega^{n-1} / \int_M \omega^n$.

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

A basic obstruction is given by the Futaki invariant.

Consider the Lie algebra $\mathfrak{g} := \mathfrak{ham}(M, \omega) \cap \mathfrak{hol}_{\mathbb{R}}(M)$,

$$\begin{array}{rccc} \mathsf{Fut}_{\omega}: & \mathfrak{g} & \longrightarrow & \mathbb{R} \\ & X & \mapsto & \int_{M} f^{X}(c_{[\omega]}\omega - \rho^{\omega}) \wedge \omega^{n-1} \end{array}$$

where $\omega(X, \cdot) = -df^X$, $\rho^{\omega} \in c_1(M)$ is the Ricci form of ω and $c_{[\omega]} = \int_M \rho^{\omega} \wedge \omega^{n-1} / \int_M \omega^n$.

Futaki (1984) : $Fut_{\omega} = Fut_{\omega'}$, if ω' and ω are \mathfrak{g} -invariant and $[\omega'] = [\omega]$.

When does $[\omega]$ contains a *constant scalar curvature Kähler* (cscK) metric?

A basic obstruction is given by the Futaki invariant.

Consider the Lie algebra $\mathfrak{g} := \mathfrak{ham}(M, \omega) \cap \mathfrak{hol}_{\mathbb{R}}(M)$,

$$\begin{array}{rccc} \mathsf{Fut}_{\omega}: & \mathfrak{g} & \longrightarrow & \mathbb{R} \\ & X & \mapsto & \int_{M} f^{X}(c_{[\omega]}\omega - \rho^{\omega}) \wedge \omega^{n-1} \end{array}$$

where $\omega(X, \cdot) = -df^X$, $\rho^{\omega} \in c_1(M)$ is the Ricci form of ω and $c_{[\omega]} = \int_M \rho^{\omega} \wedge \omega^{n-1} / \int_M \omega^n$.

Futaki (1984) : $Fut_{\omega} = Fut_{\omega'}$, if ω' and ω are \mathfrak{g} -invariant and $[\omega'] = [\omega]$.

If \exists cscK metric in $[\omega]$, then Fut $_{[\omega]} \equiv 0$.

• There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M}\to\mathbb{P}^1$;

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M} o\mathbb{P}^1$; such that
- $M_t := \pi^{-1}(t)$ is biholomorphic to M if $t \neq 0$,

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M}\to\mathbb{P}^1$; such that
- $M_t := \pi^{-1}(t)$ is biholomorphic to M if $t \neq 0$, $\iota_t : M \to M_t$ such that

$$[\iota_t^*\Omega] = [\omega].$$

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M} o\mathbb{P}^1$; such that
- $M_t := \pi^{-1}(t)$ is biholomorphic to M if $t \neq 0$, $\iota_t : M \to M_t$ such that

$$[\iota_t^*\Omega] = [\omega].$$

• $\mathcal{M} \setminus M_0 \simeq M \times (\mathbb{P}^1 \setminus \{0\})$ equivariantly.

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M}\to\mathbb{P}^1$; such that
- $M_t := \pi^{-1}(t)$ is biholomorphic to M if $t \neq 0$, $\iota_t : M \to M_t$ such that

$$[\iota_t^*\Omega] = [\omega].$$

• $\mathcal{M} \setminus M_0 \simeq M \times (\mathbb{P}^1 \setminus \{0\})$ equivariantly.

 \implies there is an induced \mathbb{C}^* action on M_0 (thus a \mathbb{S}^1 -action on M_0).

- There is a \mathbb{C}^* -holomorphic action on \mathcal{M} , $\nu : \mathbb{C}^* \times \mathcal{M} \to \mathcal{M}$;
- A surjective (flat) \mathbb{C}^* -equivariant map $\pi:\mathcal{M}\to\mathbb{P}^1$; such that
- $M_t := \pi^{-1}(t)$ is biholomorphic to M if $t \neq 0$, $\iota_t : M \to M_t$ such that

$$[\iota_t^*\Omega] = [\omega].$$

• $\mathcal{M} \setminus M_0 \simeq M \times (\mathbb{P}^1 \setminus \{0\})$ equivariantly.

 \implies there is an induced \mathbb{C}^* action on M_0 (thus a \mathbb{S}^1 -action on M_0).

Theorem (Ding–Tian (Fano case) & Donaldson (polarized case $\omega \in c_1(L)$)

Let $(\mathcal{M}, \mathcal{L})$ be a polarized test configuration over (M, L) with irreducible central fiber (M_0, \mathcal{L}_0) then if there is a cscK metric in $c_1(L)$ we have

$$\operatorname{Fut}_{(M_0,\mathcal{L}_0)}(V) \ge 0.$$

Here V is the vector field induced by the \mathbb{S}^1 -action (see above).

 $Y \subset M$,

$$\mathcal{M} := Bl_{Y \times \{0\}}(M \times \mathbb{P}^1)$$

 $Y \subset M$,

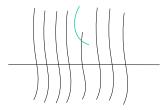
$$\mathcal{M} := Bl_{Y \times \{0\}}(M \times \mathbb{P}^1)$$

$$M_0 = Bl_Y(M) \cup \mathcal{E}, \qquad \mathcal{E} \simeq \mathbb{P}(N_Y^M \oplus \mathbb{C})$$

 $Y \subset M$,

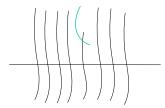
 $\mathcal{M} := Bl_{Y \times \{0\}}(M \times \mathbb{P}^1)$

 $M_0 = Bl_Y(M) \cup \mathcal{E}, \qquad \mathcal{E} \simeq \mathbb{P}(N_Y^M \oplus \mathbb{C})$



 $Y \subset M$,

$$\mathcal{M} := Bl_{Y \times \{0\}}(M \times \mathbb{P}^1)$$
$$M_0 = Bl_Y(M) \cup \mathcal{E}, \qquad \mathcal{E} \simeq \mathbb{P}(N_Y^M \oplus \mathbb{C})$$



The central fiber M_0 is NOT irreductible.

Given an isometric Hamiltonian action $a:\mathbb{S}^1\times M\to M$ with moment map $\mu:M\to\mathbb{R}$

Given an isometric Hamiltonian action $a:\mathbb{S}^1\times M\to M$ with moment map $\mu:M\to\mathbb{R}$ Consider $(M\times\mathbb{C}^2,\omega+\omega_{std}$ with product action and moment map

$$\tilde{\mu}(p,z) := \mu(p) - \frac{1}{2}(|z_1|^2 + |z_2|^2)$$

Given an isometric Hamiltonian action $a: \mathbb{S}^1 \times M \to M$ with moment map $\mu: M \to \mathbb{R}$ Consider $(M \times \mathbb{C}^2, \omega + \omega_{std}$ with product action and moment map

$$\tilde{\mu}(p,z) := \mu(p) - \frac{1}{2}(|z_1|^2 + |z_2|^2)$$

 $(\mathcal{M},\Omega_c):= \text{ K\"ahler reduction of } M\times \mathbb{C}^2 \text{ at level } c<\min\mu$

Given an isometric Hamiltonian action $a: \mathbb{S}^1 \times M \to M$ with moment map $\mu: M \to \mathbb{R}$ Consider $(M \times \mathbb{C}^2, \omega + \omega_{std}$ with product action and moment map

$$\tilde{\mu}(p,z) := \mu(p) - \frac{1}{2}(|z_1|^2 + |z_2|^2)$$

 $(\mathcal{M},\Omega_c):=$ Kähler reduction of $M\times\mathbb{C}^2$ at level $c<\min\mu$

• $\mathcal{M} = \tilde{\mu}^{-1}(c) / \mathbb{S}^1$,

Given an isometric Hamiltonian action $a: \mathbb{S}^1 \times M \to M$ with moment map $\mu: M \to \mathbb{R}$ Consider $(M \times \mathbb{C}^2, \omega + \omega_{std}$ with product action and moment map

$$\tilde{\mu}(p,z) := \mu(p) - \frac{1}{2}(|z_1|^2 + |z_2|^2)$$

 $(\mathcal{M},\Omega_c):= \text{ K\"ahler reduction of } M\times \mathbb{C}^2 \text{ at level } c<\min\mu$

- $\mathcal{M} = \tilde{\mu}^{-1}(c) / \mathbb{S}^1$,
- $M_0\simeq M$,

Given an isometric Hamiltonian action $a: \mathbb{S}^1 \times M \to M$ with moment map $\mu: M \to \mathbb{R}$ Consider $(M \times \mathbb{C}^2, \omega + \omega_{std}$ with product action and moment map

$$\tilde{\mu}(p,z) := \mu(p) - \frac{1}{2}(|z_1|^2 + |z_2|^2)$$

 $(\mathcal{M},\Omega_c):=$ Kähler reduction of $M\times\mathbb{C}^2$ at level $c<\min\mu$

- $\mathcal{M} = \tilde{\mu}^{-1}(c)/\mathbb{S}^1$,
- $M_0\simeq M$,
- (\mathcal{M}, Ω_c) is the clutching construction.

• Ding-Tian proved that when M_0 has orbifold type singularities, using the embedding in \mathbb{P}^N given by the polarization $L = -K_M > 0$. The test configuration \mathcal{M} is the completion of an orbit of a \mathbb{C}^* action on \mathbb{P}^N .

- Ding-Tian proved that when M_0 has orbifold type singularities, using the embedding in \mathbb{P}^N given by the polarization $L = -K_M > 0$. The test configuration \mathcal{M} is the completion of an orbit of a \mathbb{C}^* action on \mathbb{P}^N .
- $\bullet\,$ They used the Mabuchi functional E_ω defined on Kähler potentials

$$\mathcal{H}_{\omega} := \{ \varphi : M \to \mathbb{R} \, | \, \omega + dd^c \varphi > 0 \}$$

and crit E_{ω} coincides with cscK metrics.

- Ding-Tian proved that when M_0 has orbifold type singularities, using the embedding in \mathbb{P}^N given by the polarization $L = -K_M > 0$. The test configuration \mathcal{M} is the completion of an orbit of a \mathbb{C}^* action on \mathbb{P}^N .
- $\bullet\,$ They used the Mabuchi functional E_ω defined on Kähler potentials

$$\mathcal{H}_{\omega} := \{ \varphi : M \to \mathbb{R} \, | \, \omega + dd^c \varphi > 0 \}$$

and crit E_{ω} coincides with cscK metrics.

• They proved that when M_0 is irreducible that

$$\mathsf{Fut}_{(M_0,\mathcal{L}_0)}(V) = \lim_{t \to 0} \frac{d}{dt} E(\varphi_t)$$

where $\omega + dd^c \varphi_t = \iota_t^* \omega_{FS}$.

- Ding-Tian proved that when M_0 has orbifold type singularities, using the embedding in \mathbb{P}^N given by the polarization $L = -K_M > 0$. The test configuration \mathcal{M} is the completion of an orbit of a \mathbb{C}^* action on \mathbb{P}^N .
- $\bullet\,$ They used the Mabuchi functional E_ω defined on Kähler potentials

$$\mathcal{H}_{\omega} := \{ \varphi : M \to \mathbb{R} \, | \, \omega + dd^c \varphi > 0 \}$$

and crit E_{ω} coincides with cscK metrics.

• They proved that when M_0 is irreducible that

$$\mathsf{Fut}_{(M_0,\mathcal{L}_0)}(V) = \lim_{t \to 0} \frac{d}{dt} E(\varphi_t)$$

where $\omega + dd^c \varphi_t = \iota_t^* \omega_{FS}$.

• Then used Bando-Mabuchi's result : if there exists a Kähler-Einstein metric in $[\omega] = c_1(-K_M)$ then E_{ω} is bounded below.

 Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),

- Donaldson introduced a numerical algebraic invariant, denoted $DF(\mathcal{M}, \mathcal{L})$, on \mathbb{C}^* -linearized line bundle $(\mathcal{M}, \mathcal{L})$ taking into account the asymptotic of the weight on the induced \mathbb{C}^* -action on $H^0(\mathcal{M}, \mathcal{L})$,
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.

- Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.
- Donaldson proved that $DF(\mathcal{M}, \mathcal{L}) \geq 0$ if there exists a cscK metric in $c_1(L)$.

- Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.
- Donaldson proved that $DF(\mathcal{M}, \mathcal{L}) \ge 0$ if there exists a cscK metric in $c_1(L)$.

 $DF(\mathcal{M},\mathcal{L})$ is called the Donaldson–Futaki invariant of $(\mathcal{M},\mathcal{L})$.

- Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.
- Donaldson proved that $DF(\mathcal{M}, \mathcal{L}) \geq 0$ if there exists a cscK metric in $c_1(L)$.

 $DF(\mathcal{M},\mathcal{L})$ is called the Donaldson–Futaki invariant of $(\mathcal{M},\mathcal{L})$.

(M,L) is K-semistable if $DF(\mathcal{M},\mathcal{L}) \geq 0$ for all test configurations* over it.

- Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.
- Donaldson proved that $DF(\mathcal{M}, \mathcal{L}) \ge 0$ if there exists a cscK metric in $c_1(L)$.

 $DF(\mathcal{M},\mathcal{L})$ is called the Donaldson–Futaki invariant of $(\mathcal{M},\mathcal{L})$.

It was proved later, see Odaka and Wang, that when $\Omega \in c_1(\mathcal{L})$,

$$DF(\mathcal{M},\mathcal{L}) := \frac{n}{n+1} c_{[\omega]} \int_{\mathcal{M}} \Omega^{n+1} - \int_{\mathcal{M}} (\rho^{\Omega} - \pi^* \rho^{FS}) \wedge \Omega^n$$

where $c_{[\omega]} = \int_M \rho^\omega \wedge \omega^{n-1} / \int_M \omega^n$.

Few words on Donaldson's approach.

- Donaldson introduced a numerical algebraic invariant, denoted DF(M, L), on C^{*}-linearized line bundle (M, L) taking into account the asymptotic of the weight on the induced C^{*}-action on H⁰(M, L),
- Using Riemann-Roch formula he proved that $DF(\mathcal{M}, \mathcal{L}) = \operatorname{Fut}_{(M_0, L_0)}(V)$ when M_0 is irreducible.
- Donaldson proved that $DF(\mathcal{M}, \mathcal{L}) \ge 0$ if there exists a cscK metric in $c_1(L)$.

 $DF(\mathcal{M},\mathcal{L})$ is called the Donaldson–Futaki invariant of $(\mathcal{M},\mathcal{L})$.

It was proved later, see Odaka and Wang, that when $\Omega \in c_1(\mathcal{L})$,

$$DF(\mathcal{M},\mathcal{L}) := \frac{n}{n+1} c_{[\omega]} \int_{\mathcal{M}} \Omega^{n+1} - \int_{\mathcal{M}} (\rho^{\Omega} - \pi^* \rho^{FS}) \wedge \Omega^n$$

where $c_{[\omega]} = \int_M \rho^\omega \wedge \omega^{n-1} / \int_M \omega^n$.

Dervan–Ross, Sjöstrom-Dyrefelt extends the theory to Kähler (non-polarized) varieties and proved that cscK implies K-semistability.

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

Equivariant localization formula :

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

Equivariant localization formula :

Recall that given a \mathbb{S}^1 action on a manifold M, generated by a vector field $V \in \Gamma(TM)$. A \mathbb{S}^1 -invariant form $\alpha \in \Omega^*(TM)$ is equivariantly closed if

 $(d - V \lrcorner) \alpha \equiv 0$

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

Equivariant localization formula :

Recall that given a \mathbb{S}^1 action on a manifold M, generated by a vector field $V \in \Gamma(TM)$. A \mathbb{S}^1 -invariant form $\alpha \in \Omega^*(TM)$ is equivariantly closed if

$$(d - V \lrcorner) \alpha \equiv 0$$

Here $(d - V \lrcorner)\alpha = d\alpha - \alpha(V, \cdot)$.

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

Equivariant localization formula :

Recall that given a \mathbb{S}^1 action on a manifold M, generated by a vector field $V \in \Gamma(TM)$. A \mathbb{S}^1 -invariant form $\alpha \in \Omega^*(TM)$ is equivariantly closed if

$$(d - V \lrcorner) \alpha \equiv 0$$

Here $(d - V \lrcorner)\alpha = d\alpha - \alpha(V, \cdot)$. Example, if $\mathbb{S}^1 \subset \operatorname{Ham}(M, \omega)$ with momentum map $\mu: M \to \mathbb{R}$ then $\alpha = \omega - \mu$ is equivariantly closed,

If $(\mathcal{M}, [\Omega])$ is a smooth Kähler test configuration over $(M, [\omega])$ with irreducible central fiber (M_0, Ω_0) having at worst orbifold singularities then

 $DF(\mathcal{M}, \Omega) = Fut_{(M_0, [\Omega_0])}(V).$

Equivariant localization formula :

Recall that given a \mathbb{S}^1 action on a manifold M, generated by a vector field $V \in \Gamma(TM)$. A \mathbb{S}^1 -invariant form $\alpha \in \Omega^*(TM)$ is equivariantly closed if

$$(d - V \lrcorner) \alpha \equiv 0$$

Here $(d - V \lrcorner)\alpha = d\alpha - \alpha(V, \cdot)$. Example, if $\mathbb{S}^1 \subset \text{Ham}(M, \omega)$ with momentum map $\mu : M \to \mathbb{R}$ then $\alpha = \omega - \mu$ is equivariantly closed, as well as $(\omega - \mu)^m$ for any $m \in \mathbb{N}$.

Each normal bundle $E_Z^M \longrightarrow Z$ inherits of a linear \mathbb{S}^1 -action.

Each normal bundle $E_Z^M \longrightarrow Z$ inherits of a linear \mathbb{S}^1 -action.

By Atiyah–Bott, Berline–Vergne theory, if α is an equivariantly closed the

$$\int_{M} \alpha = \sum_{Z} \int_{Z} \frac{\iota_{Z}^{*} \alpha}{\chi_{\mathbb{S}^{1}}(E_{Z}^{M})}$$

where Z denotes the generic comopnent Z , $\iota_Z:Z\hookrightarrow M$ is the inclusion and

Each normal bundle $E_Z^M \longrightarrow Z$ inherits of a linear \mathbb{S}^1 -action.

By Atiyah–Bott, Berline–Vergne theory, if α is an equivariantly closed the

$$\int_{M} \alpha = \sum_{Z} \int_{Z} \frac{\iota_{Z}^{*} \alpha}{\chi_{\mathbb{S}^{1}}(E_{Z}^{M})}$$

where Z denotes the generic comopnent Z, $\iota_Z : Z \hookrightarrow M$ is the inclusion and $\chi_{\mathbb{S}^1}(E_Z^M) \in H^*_{\mathbb{S}^1}(Z)$ is the equivariant Euler class.

Each normal bundle $E_Z^M \longrightarrow Z$ inherits of a linear \mathbb{S}^1 -action.

By Atiyah–Bott, Berline–Vergne theory, if α is an equivariantly closed the

$$\int_{M} \alpha = \sum_{Z} \int_{Z} \frac{\iota_{Z}^{*} \alpha}{\chi_{\mathbb{S}^{1}}(E_{Z}^{M})}$$

where Z denotes the generic comopnent Z, $\iota_Z : Z \hookrightarrow M$ is the inclusion and $\chi_{\mathbb{S}^1}(E_Z^M) \in H^*_{\mathbb{S}^1}(Z)$ is the equivariant Euler class. eg if $E_Z^M = \oplus L_j$ with weight w_j on the line L_j then

$$\chi_V(E_Z^M) = (2\pi)^{\mathsf{rank}(E_Z^M)} \prod_j (c_1(L_j) - w_j).$$

• $\mathbb{S}^1 \subset \mathbb{C}^*$, pick \mathbb{S}^1 -invariant metric Ω .

$$\operatorname{zeros}(V) = \operatorname{Fix}_{\mathbb{S}^1} \mathcal{M} = (\sqcup_{i=1}^k Z_i) \sqcup M_{\infty}$$

where Z_1, \ldots, Z_k are smooth compact disjoint complex submanifolds

$$\operatorname{zeros}(V) = \operatorname{Fix}_{\mathbb{S}^1} \mathcal{M} = (\sqcup_{i=1}^k Z_i) \sqcup M_{\infty}$$

where Z_1, \ldots, Z_k are smooth compact disjoint complex submanifolds lying in M_0 .

$$\operatorname{zeros}(V) = \operatorname{Fix}_{\mathbb{S}^1} \mathcal{M} = (\sqcup_{i=1}^k Z_i) \sqcup M_{\infty}$$

where Z_1, \ldots, Z_k are smooth compact disjoint complex submanifolds lying in M_0 .

• Write the Donaldson–Futaki invariant as an intersection of equivariantly closed forms $\alpha_\Omega:=(\Omega-\mu)$ and

$$\beta_{\Omega} = \frac{nc}{n+1}(\Omega - \mu) - \left(\rho^{\Omega} - \frac{1}{2}\Delta^{\Omega}\mu\right) + (\pi^*\omega_{FS} - \pi^*\mu_{FS})$$

where μ_{FS} is a Hamiltonian for the standard S^1 action on $(\mathbb{P}^1, \omega_{FS})$

$$DF(\mathcal{M},\Omega) = [\alpha_{\Omega}]^n \cup [\beta_{\Omega}]([\mathcal{M}])$$

• Prove that $[\alpha_{\Omega}]^n \wedge \beta_{\Omega} = 0$ when pulled-back on M_{∞} .

- Prove that $[\alpha_{\Omega}]^n \wedge \beta_{\Omega} = 0$ when pulled-back on M_{∞} .
- Thus the Donaldson–Futaki only sees the fixed point sets lying in the central fiber and we get

$$\frac{DF(\mathcal{M},\Omega)}{n!} = \sum_{Z} \int_{Z} \frac{nc_{[\omega]}(\Omega_{Z} - \mu_{Z})^{n+1}}{(n+1)!\chi(E_{Z}^{\mathcal{M}})(V)}$$
$$-\sum_{Z} \int_{Z} \frac{(\rho_{Z}^{\Omega} + \langle w, V \rangle) \wedge (\Omega_{Z} - \mu_{Z})^{n}}{n!\chi(E_{Z}^{\mathcal{M}})(V)}$$
$$+\sum_{Z} \int_{Z} \frac{(\Omega_{Z} - \mu_{Z})^{n}}{n!\chi(E_{Z}^{\mathcal{M}})(V)}.$$

where w is the sum, with multiplicities, of the weights of \mathbb{S}^1 -action on E_Z^M .

- Prove that $[\alpha_{\Omega}]^n \wedge \beta_{\Omega} = 0$ when pulled-back on M_{∞} .
- Thus the Donaldson–Futaki only sees the fixed point sets lying in the central fiber and we get

$$\begin{split} \frac{DF(\mathcal{M},\Omega)}{n!} = & \sum_{Z} \int_{Z} \frac{nc_{[\omega]}(\Omega_{Z} - \mu_{Z})^{n+1}}{(n+1)!\chi(E_{Z}^{\mathcal{M}})(V)} \\ & - \sum_{Z} \int_{Z} \frac{(\rho_{Z}^{\Omega} + \langle w, V \rangle) \wedge (\Omega_{Z} - \mu_{Z})^{n}}{n!\chi(E_{Z}^{\mathcal{M}})(V)} \\ & + \sum_{Z} \int_{Z} \frac{(\Omega_{Z} - \mu_{Z})^{n}}{n!\chi(E_{Z}^{\mathcal{M}})(V)}. \end{split}$$

where w is the sum, with multiplicities, of the weights of \mathbb{S}^1 -action on E_Z^M .

• The remaining is essentially to prove that $\chi(E_Z^{\mathcal{M}}) = \chi(E_Z^{M_0})/2\pi$ and use the localization "backward" (inside M_0).