Supercaracter Theories for Groups Defined by Involutions

Ana Neto, Carlos A. M. André, Pedro J. Freitas

CEAFEL – DM FCUL Universidade de Lisboa

June 23, 2015

イロト イロト イヨト イヨト 二日

1/25

Outline

イロト イロト イヨト イヨト 二日

2/25

- Classic supercharacter theory
- Groups defined by involutions
- Supercharacter theories for groups defined by involutions
- Main examples

Supercharacter Theory

Main definition

G: a finite group. Irr(*G*): the set of irreducible characters of *G*.

Definition (Diaconis & Isaacs)

Let \mathcal{K} be a partition of G, and let \mathcal{X} be a partition of Irr(G). The pair $(\mathcal{X}, \mathcal{K})$ is called a *supercharacter theory* for G if

- $|\mathcal{X}| = |\mathcal{K}|.$
- $\{1\} \in \mathcal{K}.$
- For each $X \in \mathcal{X}$, the character

$$\sum_{\psi \in X} \psi(1)\psi$$

is constant on each element of \mathcal{K} .

Main examples

The unitriangular group with entries in a finite field *F* of characteristic $p \neq 2$.

$$UT_n = \left\{ \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \right\} = I_n + \left\{ \begin{pmatrix} 0 & & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix} \right\}$$

More generally, we consider an algebra A and algebra groups of the form

$$P=1+J,$$

5/25

with $P, J \subseteq A$, J a nilpotent subalgebra of A.

The orbit method

Consider actions of P and $P \times P$ on J and $J^0 = Irr(J^+)$. For $x, y \in P$, $a \in J$ and $\lambda \in J^0$,

$$(x, y) \cdot a := x a y^{-1}$$
$$(\lambda x)(a) = \lambda(ax^{-1}) \qquad (x\lambda)(a) = \lambda(x^{-1}a)$$
$$(x, y) \cdot \lambda := x\lambda y^{-1}$$

So we can consider orbits $PaP \subseteq J$ and $P\lambda, P\lambda P \subseteq J^0$.

$$J = \bigsqcup_{a \in J} PaP \qquad J^0 = \bigsqcup_{\lambda \in J^0} P\lambda = \bigsqcup_{\lambda \in J^0} P\lambda P.$$

A supercharacter theory for P

Superclasses of P = 1 + J:

$$\{\widehat{K}_{1+a}=1+PaP:a\in J\}$$

Supercharacters of P = 1 + J:

$$\widehat{\xi}_{\lambda}(x) = rac{|P\lambda|}{|P\lambda P|} \sum_{\mu \in P\lambda P} \mu(x-1)$$

Another formula: denote by $Irr_{\lambda}(P)$ the set of irreducible constituents of $\hat{\xi}_{\lambda}$. Then

$$\widehat{\xi}_{\lambda} = \frac{|P\lambda|}{|P\lambda P|} \sum_{\widehat{\chi} \in \mathsf{Irr}_{\lambda}(P)} \widehat{\chi}(1)\widehat{\chi}$$

Note that supercharacters depend on $\lambda \in J^0$.

Groups defined by involutions

Involutions

Involution of A

We say that σ is an involution of the algebra A, with the following properties: for all $a, b \in A$,

Simple examples:

- $n \times n$ matrices with $\sigma(M) = M^T$.
- $M \mapsto JM^T J$ where J is the matrix with ones on the anti-diagonal.

Action of σ on P

Take $J \leq A$ to be a nilpotent σ -invariant subalgebra, and P = 1 + J.

The group *P* becomes invariant for the group action $x^{\sigma} := \sigma(x^{-1})$.

We want to construct a supercharacter theory for the centralizer of this action.

Groups defined by involutions

$$C_P(\sigma) = \{x \in P : x^{\sigma} = x\}$$

Some character theories for groups of this type are known:

- The symplectic groups
- The orthogonal groups
- The unitary groups

All these are subgroups of UT_n (definitions to appear later).

The Cayley transform

For $a \in J$, define $a^{\sigma} := -\sigma(a)$ and

$$C_J(\sigma) = \{ a \in J : a^{\sigma} = a \}.$$

Recall P = 1 + J. The map

$$\begin{array}{rrrr} J & \rightarrow & P \\ a & \mapsto & 1+a \end{array}$$

doesn't map $C_J(\sigma)$ to $C_P(\sigma)$.

The Cayley transform

Remember P = 1 + J.

Cayley transform

$$\Phi: J \rightarrow P \qquad \qquad \Psi: P \rightarrow J \ a \mapsto (1+a)(1-a)^{-1} \qquad \qquad x \mapsto (x-1)(x+1)^{-1}$$

We have $\Phi(a^{\sigma}) = \Phi(a)^{\sigma}$, thefore the transform maps $C_J(\sigma)$ to $C_P(\sigma)$ and vice-versa.

Other actions of σ

Given $\widehat{\chi}$, a character of *P*, we define

$$\widehat{\chi}^{\sigma}(x) := \widehat{\chi}(x^{\sigma}) = \widehat{\chi}(\sigma(x^{-1}))$$

Denote $\operatorname{Irr}_{\sigma}(P) = \{\widehat{\chi} \in \operatorname{Irr}(P) : \widehat{\chi}^{\sigma} = \widehat{\chi}\}$ and $\operatorname{SCh}_{\sigma}(P)$ similarly.

Given $\lambda \in J^0$, we define

$$\lambda^{\sigma}(\mathbf{a}) := \lambda(\mathbf{a}^{\sigma}) = \lambda(-\sigma(\mathbf{a}))$$

Other actions of σ

Given $\widehat{\chi}$, a character of *P*, we define

$$\widehat{\chi}^{\sigma}(x) := \widehat{\chi}(x^{\sigma}) = \widehat{\chi}(\sigma(x^{-1}))$$

Denote $\operatorname{Irr}_{\sigma}(P) = \{\widehat{\chi} \in \operatorname{Irr}(P) : \widehat{\chi}^{\sigma} = \widehat{\chi}\}$ and $\operatorname{SCh}_{\sigma}(P)$ similarly.

Given $\lambda \in J^0$, we define

$$\lambda^{\sigma}(\mathbf{a}) := \lambda(\mathbf{a}^{\sigma}) = \lambda(-\sigma(\mathbf{a}))$$

Redefine:

$$\widehat{\xi}_{\lambda}(x) = rac{|P\lambda|}{|P\lambda P|} \sum_{\mu \in P\lambda P} \mu(\Psi(x))$$

Main properties remain valid, and more:

$$\mathsf{SCh}_{\sigma}(P) = \{\widehat{\xi}_{\lambda} : \lambda^{\sigma} = \lambda\}$$

Supercharacter theories for groups defined by involutions

Superclasses

Conjugacy classes of $C_P(\sigma)$ are obtained by intersection of classes of P with $C_P(\sigma)$.

Let $SCI_{\sigma}(P)$ be the set of σ -invariant superclasses of P.

For each $\widehat{K} \in SCl_{\sigma}(P)$, we take $\widehat{K} \cap C_{P}(\sigma)$ as a superclass.

$$\begin{array}{rcl} \mathsf{SCI}_{\sigma}(P) & \to & \mathsf{Scl}(C_P(\sigma)) \\ \widehat{K} & \mapsto & \widehat{K} \cap C_P(\sigma) \end{array}$$

15/25

Supercharacters – the Glauberman correspondence

How to use the supercharacter theory of P to get one for $C_P(\sigma)$?

As with superclasses, we associate irreducible characters of P and $C_P(\sigma)$ using the Glauberman correspondence.

$$\pi_P: \operatorname{Irr}_{\sigma}(P) \to \operatorname{Irr}(C_P(\sigma))$$

A B > A B > A B > B B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

16/25

where $\pi_P(\hat{\xi})$ is the only constituent of $\hat{\xi}|_{C_P(\sigma)}$ with odd multiplicity.

Supercharacters – definition

Let λ be a σ -invariant element of J^0 . Take $\widehat{\xi}_{\lambda} \in SCh_{\sigma}(P)$.

Consider all irreducible characters $\widehat{\chi}$ that are components of $\widehat{\xi}_{\lambda}$, $<\widehat{\xi}_{\lambda}, \widehat{\chi}> \neq 0$.

Consider all their Glauberman correspondents $\chi := \pi_P(\hat{\chi})$.

Supercharacters – definition

Let λ be a σ -invariant element of J^0 . Take $\widehat{\xi}_{\lambda} \in \mathrm{SCh}_{\sigma}(P)$.

Consider all irreducible characters $\widehat{\chi}$ that are components of $\widehat{\xi}_{\lambda}$, $<\widehat{\xi}_{\lambda}, \widehat{\chi} > \neq 0$.

Consider all their Glauberman correspondents $\chi := \pi_P(\hat{\chi})$.

$$\lambda \to \widehat{\xi}_{\lambda} \to \widehat{\chi} \to \chi$$
$$\operatorname{Irr}_{\lambda}(C_{P}(\sigma)) = \{ \chi \in \operatorname{Irr}(C_{P}(\sigma)) :< \widehat{\xi}_{\lambda}, \widehat{\chi} > \neq 0 \}$$

Supercharacters – definition

Let λ be a σ -invariant element of J^0 . Take $\hat{\xi}_{\lambda} \in \mathrm{SCh}_{\sigma}(P)$.

Consider all irreducible characters $\widehat{\chi}$ that are components of $\widehat{\xi}_{\lambda}$, $< \widehat{\xi}_{\lambda}, \widehat{\chi} > \neq 0$.

Consider all their Glauberman correspondents $\chi := \pi_P(\hat{\chi})$.

$$\lambda \to \widehat{\xi}_{\lambda} \to \widehat{\chi} \to \chi$$
$$\operatorname{Irr}_{\lambda}(C_{P}(\sigma)) = \{ \chi \in \operatorname{Irr}(C_{P}(\sigma)) :< \widehat{\xi}_{\lambda}, \widehat{\chi} > \neq 0 \}$$

$$ho_{\lambda} := \sum_{\chi \in \mathsf{Irr}_{\lambda}(\mathcal{C}_{
ho}(\sigma))} \chi(1)\chi$$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 17/25

Supercharacters – properties

$$\lambda \to \widehat{\xi}_{\lambda} \to \widehat{\chi} \to \chi$$
$$\operatorname{Irr}_{\lambda}(C_{P}(\sigma)) = \{ \chi \in \operatorname{Irr}(C_{P}(\sigma)) :< \widehat{\xi}_{\lambda}, \widehat{\chi} > \neq 0 \}$$

$$\rho_{\lambda} = \sum_{\chi \in \mathsf{Irr}_{\lambda}(C_{p}(\sigma))} \chi(1)\chi$$

The set {Irr_{λ}($C_P(\sigma)$) : $\lambda \in J^0$, $\lambda = \lambda^{\sigma}$ } is a partition of Irr($C_P(\sigma)$): each irreducible character of $C_P(\sigma)$ is a component of one and only one ρ_{λ} .

Supercharacters – properties

$$\rho_{\lambda} = \sum_{\chi \in \mathsf{Irr}_{\lambda}(C_{\mathsf{P}}(\sigma))} \chi(1)\chi$$

Let
$$\Omega_P(\lambda) = \{ \mu \in P\lambda P : \mu^{\sigma} = \mu \}.$$

We have

$$ho_\lambda(x) = \sum_{\mu \in \Omega_P(\lambda)} \mu(\Psi(x))$$

This proves ρ_{λ} is constant on superclasses.

The functions ρ_{λ} will be the supercharacters of $C_P(\sigma)$.

Supercharacters – main result

$$\rho_{\lambda}(x) = \sum_{\chi \in \mathsf{Irr}_{\lambda}(C_{\rho}(\sigma))} \chi(1)\chi(x) = \sum_{\mu \in \Omega_{P}(\lambda)} \mu(\Psi(x))$$

• Compare with $\hat{\xi}_{\lambda}$:

$$\frac{|P\lambda P|}{|P\lambda|}\widehat{\xi}_{\lambda} = \sum_{\widehat{\chi} \in \mathsf{Irr}_{\lambda}(P)} \widehat{\chi}(1)\widehat{\chi}$$

and reduce to the case where $\widehat{\xi}_{\lambda}$ has a linear constituent.

- Prove that, in this case, the second formula is a character induced from a linear character of a subgroup of $C_P(\sigma)$
- Gallagher's theorem identifies the components of the induced character.

Main Examples

$\ln GL_n(K)$

Let $q = |K^{\sigma}|$. For $a \in GL_n(K)$, define $(a^*)_{ij} = a_{ji}^q$.

We consider involutions $\sigma_u(a) = a \mapsto u^{-1} a^T u$ of two kinds:

• First kind: $K^{\sigma} = K$, $u^* = u^T$ and $u^T = \pm u$.

• Second kind:
$$K^{\sigma} < K$$
, $u^* = u$.

The symplectic, orthogonal and unitary groups can all be written as $C_{UT_n}(\sigma_u)$ for adequate involutions σ_u , with $\sigma_u(UT_n) = UT_n$.

Subgroups of UT_n defined by involutions

Recall that J_m is the matrix with ones on the anti-diagonal.

- For $Sp_{2m}(K)$, we choose $u = \begin{pmatrix} 0 & J_m \\ -J_m & 0 \end{pmatrix}$ (first kind, $u^T = -u$).
- For $O_{2m}^+(K)$ or $O_{2m+1}(K)$, we choose $u = J_n$ where, either n = 2m, or n = 2m + 1 (first kind, $u^T = u$).

- For $O^-_{2m+2}(K)$, we choose $u = \begin{pmatrix} 0 & 0 & J_m \\ 0 & c & 0 \\ J_m & 0 & 0 \end{pmatrix}$ where $c = \begin{pmatrix} 1 & 0 \\ 0 & -\epsilon \end{pmatrix}$ for $\epsilon \in K^x \setminus (K^x)^2$ (first kind, $u^T = u$).
- For $U_n(K)$, we choose $u = J_n$ (second kind, $u^* = u$).

Basic pairs

The known character theory for $P = UT_n$ depends on *basic pairs* (D, φ) .

- $D \subset \{(i,j) : 1 \le i < j \le n\}$ a basic subset.
- $\varphi: D \to K^{\times}$.

Superclasses and supercharacters of P are indexed by basic pairs.

Basic pairs

The known character theory for $P = UT_n$ depends on *basic pairs* (D, φ) .

- $D \subset \{(i,j) : 1 \le i < j \le n\}$ a basic subset.
- $\varphi: D \to K^{\times}$.

Superclasses and supercharacters of P are indexed by basic pairs.

Superclasses and supercharacters of $C_P(\sigma)$ are indexed by σ -invariant basic pairs (need to define action of σ).

This generalises the known theories for these groups.

References

- A. M. NETO, C. A. M. ANDRÉ & P. J. FREITAS, A Supercharacter Theory for Involutive Algebra Groups, *Journal of Algebra* (2015)
- C. A. M. André,
 - Basic characters of the unitriangular group (1995)
 - Irreducible characters of groups associated with finite nilpotent algebras with involution (2010)
- P. DIACONIS & I. M. ISAACS, Supercharacters and superclasses for algebra groups (2008)
- C. A. M. André & A. M. Neto,
 - Super-characters of finite unipotent groups of types B_n, C_n and D_n (2006)
 - ► A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups (2009)