###
12/07/2017, 15:00 — 16:00 — Room P3.31, Mathematics Building

Francesco Russo, *University of Catania*

```
```###
Some loci of rational cubic fourfolds

We shall report on joint work with Michele Bolognesi and Giovanni Staglianò on the irreducible divisor $\mathcal C_{14}$ inside the moduli space of smooth cubic hypersurfaces in $\mathbb P^5$. A general point of $\mathcal C_{14}$ is, by definition, a smooth cubic fourfold containing a smooth quartic rational normal scroll (or, equivalently, a smooth quintic del Pezzo surfaces) so that it is rational. We shall prove that **every** cubic fourfold contained in $\mathcal C_{14}$ is rational.

In passing we shall review and put in modern terms some ideas of Fano, yielding a geometric insight to some known results on cubic fourfolds, e.g. the Beauville-Donagi isomorphism, and discuss also the connections of our results with the recent examples about the bad behavior of rationality in smooth families of fourfolds.