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Preface

Groupoids and inverse semigroups are two generalizations of the notion of
group. Both provide a handle on more general kinds of symmetry than groups
do, in particular symmetries of a local nature, and applications of them crop
up almost everywhere in mathematics — evidence of this is the number of
related textbooks in analysis, geometry, topology, algebra, category theory,
etc. [1, 2, 3, 5, 9, 14, 15, 16, 19, 29, 32]. The fact that inverse semigroups and
étale groupoids are somewhat similar in spirit is made apparent by several
known constructions that go back and forth between both. The main purpose
of these notes is to deepen this correspondence in a way that to some extent
subsumes all the others. The method in question has been introduced in [33],
where it turns out that quantales are crucial because they play the role of
mediating objects between inverse semigroups and étale groupoids. For this
reason I shall also address quantales in these notes, in particular providing
much more background material about them than in [33].

I also hope in this way to make available (at least the beginnings of) a
useful reference textbook for those general algebraic aspects of quantales and
their modules that keep being recalled in introductory sections of research
papers but otherwise are scattered in the literature. I shall not attempt to be
exhaustive, and in particular I shall not address spatial aspects of quantales
such as those of [11]. An older monograph on quantales is that of Rosenthal
[36], part of whose material I revisit in these notes, and the interested reader
may also wish to look at two more recent survey papers, one by Mulvey [22],
and the other by Paseka and Rosický [28].

A strong motivation for developing this material comes from noncommu-
tative geometry in the sense of Connes [3]. Quantales have been originally
proposed [20] as being generalized spaces in their own right and, in particu-
lar, spaces that can provide a notion of “spectrum” for noncommutative C*-
algebras capable of classifying them up to isomorphism [12, 13, 21, 24, 25, 26].
This effort has been greeted with several difficulties (see, e.g., [12, 13]), and in
order to make sense of the ideas involved it may be useful to focus on specific
types of C*-algebra. The C*-algebras that are constructed out of groupoids
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and inverse semigroups play a major role in noncommutative geometry, and
it is therefore natural to address them. More than that, it is natural to look
at groupoids per se because they alone often play the role of generalized
spaces. It is fortunate that, as we shall see, there is a rather perfect match
between étale groupoids, complete and infinitely distributive inverse semi-
groups (herein called abstract complete pseudogroups), and the quantales
known as inverse quantal frames. We can summarize this with the following
diagram, where all the arrows are invertible maps up to isomorphism, and
those on the right are also functors:
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From a slightly different standpoint, C*-algebras are sometimes regarded
as mediating objects between groupoids and inverse semigroups (e.g., this
happens occasionally in [29]). The material presented in these notes has the
effect, in this context, of replacing C*-algebras by quantales. To a large ex-
tent these are the right mediating objects because they are not subject to
restrictions motivated by analysis, such as requiring unit spaces of groupoids
to be locally compact Hausdorff, etc. In addition, an advantage of mak-
ing the role of quantales explicit is the possibility of bringing the theory
to bear on more general kinds of groupoids, such as open groupoids. More
precisely, the equivalence of categories in the above diagram enables us to
replace inverse semigroups by quantales when moving from étale groupoids
to open groupoids. Apart from brief considerations about open groupoids,
I shall not address this topic in these notes, and I also leave untouched im-
portant aspects such as algebraic topological tools for quantales themselves
(e.g., cohomology), and the connections to C*-algebras, which need further
elaboration.

I have tried to be as constructive as possible, in the sense of providing
definitions and results that can be carried over to an arbitrary topos, although
without being fussy about this. The main advantage of such an effort, at
least in principle, is that in this way theorems are proved in their greatest
generality; for instance, a theorem proved constructively yields automatically
an equivariant version of itself, simply by interpreting the theorem in the
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topos of G-sets for a group G, or a version for sheaves by interpreting the
theorem in the topos of sheaves (of sets) on a space or a site. The main
results in these notes are indeed constructive, and occasionally readers will
see explicit symptoms of this such as when a distinction is made between
the powerset ℘(1) of a singleton and its order dual ℘(1)op. Classically these
two lattices are isomorphic, of course, but this is not so in a general topos.
Another symptom is the use of locales instead of topological spaces, although
this is also motivated by pragmatic reasons that do not have to do with
constructivity. In any case there are places, for instance in many exercises,
where constructivity is neglected. This tends to happen, for instance, when
we deal with spatial aspects of locales. I have not placed any clear road signs
in the text warning about constructivity or the lack of it because readers
familiar with these things probably do not need to be warned, while others
may comfortably assume that everything is taking place in the category of
sets.

The notes are divided into three chapters. Chapter I addresses the more
classical aspects of topological groupoids and inverse semigroups. Still, the
general equivalence between abstract complete pseudogroups and topologi-
cal étale groupoids that it presents does not seem to be found elsewhere in
the literature. Chapter II develops general algebraic aspects of quantales,
including the theory of supported quantales that has been introduced in [33].
Finally, Chapter III describes localic groupoids and in particular localic étale
groupoids and their relation to quantales.

A large portion of these notes is based on [33]. Most of the rest has
grown out of six lectures which I gave at the University of Antwerp in
September of 2005 during a two week course organized by Freddy van Oys-
taeyen in the scope of the SOCRATES Intensive Program 103466-IC-1-
2003-1-BE-ERASMUS-IPUC-3: GAMAP: Geometric and Algebraic Meth-
ods of Physics and Applications, and they have received an additional boost
from a working seminar on groupoids and noncommutative geometry that
I have been running in the scope of the FCT/POCI2010/FEDER grant
POCI/MAT/55958/2004, jointly with Catarina Carvalho, Rui Loja Fernan-
des, and Radu Popescu, at the Department of Mathematics of Instituto Su-
perior Técnico since October 2005.

August 2006,
Instituto Superior Técnico.
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Chapter I

Groupoids and inverse
semigroups

In this chapter we shall give basic definitions and results concerning groupoids
and inverse semigroups, culminating with a general bijective (up to isomor-
phism) correspondence between topological étale groupoids with unit space
X and abstract complete pseudogroups (i.e., complete and infinitely distribu-
tive inverse semigroups) that act on X in a suitable way. The construction of
abstract complete pseudogroups from the groupoids is given in terms of local
bisections (equivalently, open G-sets in the terminology of [32]), and, in the
converse direction, from an abstract complete pseudogroup S we construct a
groupoid whose arrows are the germs of the elements of S. This generalizes
the well known germ groupoid of a pseudogroup, which we also recall, and
it can be regarded also as a generalization of the classical correspondence
between sheaves and local homeomorphisms.

1 Groupoids

Let us start by looking at groupoids. We start with discrete groupoids. Then,
using these as motivation, we introduce internal groupoids in a category,
and then topological groupoids, which are internal groupoids in Top; as an
example we describe the germ groupoid of a pseudogroup. Of course, there
would be no need to give the general definition of internal groupoid just
for defining topological groupoids, but we do this because we shall later, in
Chapter III, have to work with localic groupoids, which are internal groupoids
in the category Loc of locales.
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2 CHAPTER I. GROUPOIDS AND INVERSE SEMIGROUPS

Discrete groupoids. A (discrete) groupoid is a small category all of
whose arrows are invertible. Hence, a groupoid G can be explicitly described
as consisting of a set of arrows (or morphisms) G1, a set of objects G0, and
structure maps

G2
m // G1

i

�� r //

d
// G0uoo

where G2 is the set G1 ×G0 G1 of composable pairs of arrows:

G2 = {(x, y) ∈ G1 ×G1 | r(x) = d(y)} .

The map m is called the multiplication, or product ; d is the domain map; r
is the range map, or codomain; i is the inverse map; and u is the units map.
The axioms satisfied by these maps are, writing x−1 for i(x) (the inverse of
x), xy for m(x, y) (the product, or composition, of x and y), and 1x for u(x)
(the identity arrow, or unit, on x), the following.

Category axioms:

d(1x) = x (domain of a unit)
r(1x) = x (range of a unit)
d(xy) = d(x) (domain of a product)
r(xy) = r(y) (range of a product)
(xy)z = x(yz) (associativity)
1d(x)x = x (left unit law)
x1r(x) = x (right unit law)

Inverse axioms:

d(x−1) = r(x) (domain of inverse)
r(x−1) = d(x) (codomain of inverse)
xx−1 = 1d(x) (left inverse law)
x−1x = 1r(x) (right inverse law)

We shall often write G for the set of arrows G1 and regard G0 as a subset
of G by identifying it with its image u(G0), which makes sense because u is
necessarily injective (cf. exercise I.1.5-2).

We shall usually write z : x → y to specify that an arrow z has domain
d(z) = x and range r(z) = y, and we denote by G(x, y) the set of arrows
z : x → y. The set G(x, x) is a group. It is called the isotropy group at x
and we denote it by Ix.
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For any groupoidG the binary relation onG0 defined by x ∼ y if z : x→ y
for some arrow z is an equivalence relation whose equivalence classes are
called the orbits of the groupoid. The isotropy groups are invariants of the
orbits, i.e., Ix ∼= Iy if x ∼ y. A groupoid is connected, or transitive, if there is
exactly one equivalence class. In this case there is, up to isomorphism, only
one isotropy group. We refer to it as the isotropy of G, and denote it by IG.

A map of groupoids f : G → G′ (G′ has structure maps d′, r′, etc.) is a
functor from G to G′. In other words, it consists of a pair of functions

f1 : G1 → G′1
f0 : G0 → G′0

that preserve the structure maps of the groupoids in the appropriate way;
that is, for all x ∈ G0 and y, z ∈ G1 (we use the same names for the structure
maps of both groupoids):

f0(d(y)) = d′(f1(y))

f0(r(y)) = r′(f1(y))

f1(1x) = 1f0(x)

f1(yz) = f1(y)f1(z)

It is clear that f0 is completely determined by f1, and we shall usually write
just f instead of f1. Maps automatically preserve inverses: f(x−1) = f(x)−1.
An isomorphism of groupoids f : G → H is a map that has an inverse
functor f−1 : H → G. Two groupoids G and H are isomorphic if there is an
isomorphism f : G→ H.

Example I.1.1 Groups. Any group G is a groupoid with G1 = G, G2 =
G×G, and G0 = {1}. This is a transitive groupoid with IG ∼= G.

Example I.1.2 Group bundles. Consider a set X and a family (Gx) of
groups indexed by X. We obtain a groupoid G, called a group bundle over
X, by defining G0 = X, G1 =

∐
xGx, setting 1x to be the unit of the group

Gx for each x ∈ X, letting d(g) = r(g) = x for each g ∈ Gx, defining the
product of composable arrows to be group multiplication and the inverses
to be group inverses. (In other words, a group bundle is just a groupoid
such that d = r.) The isotropy groups are the groups Gx, and the orbits are
singletons.

Example I.1.3 Equivalence relations and pair groupoids. A groupoid
which has at most one arrow between any two units is the same thing as an
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equivalence relation on G0, with d(x, y) = x and r(x, y) = y and multiplica-
tion given by (x, y)(y, z) = (x, z). Equivalently, this is, up to isomorphism,
a groupoid whose isotropy groups are all trivial; the orbits are precisely the
equivalence classes. For any set X the obvious groupoid G with G0 = X and
G1 = X ×X is called the pair groupoid of X and it is denoted by Pair(X).
This is the same as a transitive groupoid with trivial isotropy.

Example I.1.4 Groupoids of “automorphisms” of bundles. Let X be
a set, C a category, and consider a family A = (Ax)x∈X of objects of C. We
define the groupoid Aut(A) whose set of objects is X and whose arrows from
x to y are the triples (x, f, y) with f : Ax → Ay an isomorphism of C. The
domain and range maps are given by d(x, f, y) = x and r(x, f, y) = y, the
multiplication is given by

(x, f, y)(y, g, z) = (x, g ◦ f, z) ,

the inverses are given by

(x, f, y)−1 = (y, f−1, x)

and the units are 1x = (x, idAx , x). Given a groupoid G, a representation
of G on A is a map of groupoids G → Aut(A). For instance, an abelian
representation is a representation on a family of abelian groups (i.e., C is the
category of abelian groups), a linear representation is a representation on a
family of linear spaces, etc.

We shall see more examples in section 1.

Exercise I.1.5 1. Show that in a groupoid G the following conditions
hold for all x ∈ G0 and y, z ∈ G1: (1x)

−1 = 1x, (y−1)−1 = y and
(yz)−1 = z−1y−1. (Hence, any groupoid is an involutive category.)

2. (Alternative definition of groupoid.) Let G be a set, G2 a subset of
G×G, x 7→ x−1 an endomap of G, and (x, y) 7→ xy a map from G2 to
G, satisfying the following relations:

(a) (x−1)−1 = x

(b) If (x, y), (y, z) ∈ G2 then (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz)

(c) (x−1, x) ∈ G2 and if (x, y) ∈ G2 then x−1(xy) = y

(d) (x, x−1) ∈ G2 and if (z, x) ∈ G2 then (zx)x−1 = z

Show that G is a groupoid with d defined by x 7→ xx−1 and G0 = d(G).
Show that any groupoid is of this form, up to isomorphism.
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3. Let G and H be discrete groupoids. Show that the product G×H as
categories is a groupoid.

4. Let G and H be transitive discrete groupoids, with isotropy groups
IG and IH , respectively. Show that the product groupoid G × H is a
transitive groupoid with isotropy IG × IH .

5. Let G be a transitive discrete groupoid with isotropy I. Show that G
is isomorphic to the product groupoid I × Pair(G0).

Internal groupoids. Many of the groupoids that arise in practice, such
as topological groupoids, algebraic groupoids, the localic groupoids that we
shall see later in these notes, etc., are examples of internal groupoids in the
sense of internal category theory (see [17, Ch. XII]), and it is useful to look
at their axioms and elementary properties in this general context. In order
to do this, first we observe that the set G2 = G1 ×G0 G1 in the definition of
a discrete groupoid G is the pullback (in the category of sets) of the maps d
and r (we write π1 and π2 for the first and second projections, respectively):

X

f

��

g

((

h
##
G1 ×

G0

G1
π2 //

π1

��

G1

d

��
G1 r

// G0

h = 〈f, g〉

Let C be any category with pullbacks (i.e., any pair of arrows • → • ← •
has a pullback in C). Then, generalizing the definition of discrete groupoid,
we define an internal groupoid G in C to consist of a pair of objects (G1, G0)
of C — G1 is called the object of arrows and G0 is called the object of objects
— equipped with structure morphisms (in C)

G2
m // G1

i

�� r //

d
// G0uoo

where G2 is the pullback G1 ×G0 G1 (we shall use for these maps the same
names as in the definition of a discrete groupoid), all of which are required to
satisfy the axioms that we now describe in the form of commutative diagrams.
As in the previous section for discrete groupoids, we begin by listing the
category axioms (i.e., the axioms that define an internal category in C),
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where for the associativity axiom we write G3 for the pullback G2 ×G0 G1 of
the morphisms r ◦ π2 : G2 → G0 and d : G1 → G0.

Domain and codomain of a unit

G1

r

  BBBBBBBB
d

~~||||||||

G0 G0

u

OO

G0

d ◦ u = idG0

r ◦ u = idG0

Domain and codomain of a product

G1

d
��

G2
π1oo π2 //

m

��

G1

r

��
G0 G1d
oo

r
// G0

d ◦m = d ◦ π1

r ◦m = r ◦ π2

Associativity (See also exercise I.1.61.)

G3
m×id //

id×m
��

G2

m

��
G2 m

// G1

m ◦ (m× idG1) = m ◦ (idG1 ×m)

Left and right unit laws

G1
〈u◦d,id〉 //

NNNNNNNNNNNNN

NNNNNNNNNNNNN G2

m

��

G1
〈id,u◦r〉oo

ppppppppppppp

ppppppppppppp

G1

m ◦ 〈u ◦ d, idG1〉 = idG1

m ◦ 〈idG1 , u ◦ r〉 = idG1

The remaining axioms of internal groupoids are now those for the inverse
morphism i.

Domain and codomain of inverses

G1
i //

r
  BBBBBBBB G1

d
��

i // G1

r
~~||||||||

G0

d ◦ i = r
r ◦ i = d



1. GROUPOIDS 7

Left and right inverse laws

G1

〈id,i〉 //

d
��

G2

m

��

G1

〈i,id〉oo

r

��
G0 u

// G1 G0u
oo

m ◦ 〈id, i〉 = u ◦ d
m ◦ 〈i, id〉 = u ◦ r

Let G and G′ be internal groupoids in a category with pullbacks C. The
definition of map of groupoids is a straightforward generalization of that of
the discrete case: a map from G to G′ is an internal functor, i.e., a pair of
morphisms of C

f1 : G1 → G′1
f0 : G0 → G′0

such that the following diagrams are commutative:

G1

d

��

f1 // G′1

d′

��
G0 f0

// G′0

G1

r

��

f1 // G′1

r′

��
G0 f0

// G′0

G1OO

u

f1 // G′1OO

u′

G0 f0
// G′0

G2

m

��

f1×f1 // G′2

m′

��
G1 f0

// G′1

Similarly to discrete groupoids, f0 is completely determined by f1, and we
shall usually write just f instead of f1. An isomorphism of groupoids is a
map (f1, f0) such that both f0 and f1 are invertible in C.

Exercise I.1.6 1. Recall that we have defined G3 to be the pullback
G2 ×G0 G1 of the morphisms r ◦ π2 : G2 → G0 and d : G1 → G0.
The expression m× id in the associativity axiom can then be explicitly
identified with the pairing morphism 〈m ◦ π1, π2〉. (Warning: we use
the same notation π1 and π2 for the projections of both pullbacks G2

and G3.) For the same definition of G3 give a similar interpretation of
id×m.

2. Let G0×G0 G1 be an arbitrary pullback of G0
id // G0 G1

doo . Show
that π2 : G0 ×G0 G1 → G1 is an isomorphism with inverse 〈d, id〉.

3. Show that for any internal groupoid we have i ◦ i = id.

4. Let χ : G2 → G2 be the pairing 〈i ◦ π2, i ◦ π1〉. Show that

i ◦m = m ◦ χ

(this is the analogue of the condition (xy)−1 = y−1x−1 of discrete
groupoids).
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5. Show that χ as above is an isomorphism with χ−1 = χ.

6. Show that the following diagram (which is always commutative for any
category G) is a pullback if G is a groupoid.

G1 ×G0 G1
π1 //

m

��

G1

d
��

G1 d
// G0

7. Show that the converse holds; that is, the above diagram is a pullback
if and only if G is a groupoid.

8. Prove that maps of internal groupoids preserve inverses; that is, show
that for any map f : G→ G′ the following diagram is commutative:

G1

i

��

f // G′1

i′

��
G1 f

// G′1

Topological groupoids. A topological groupoid is an internal groupoid
G in the category of topological spaces and continuous maps. In other words,
it consists of a pair of topological spaces G1 and G0 equipped with continuous
maps

G2
m // G1

i

�� r //

d
// G0uoo

where now G2 is the pullback in the category of topological spaces, namely
the subspace G1 ×G0 G1 (with the relative topology) of the space G1 × G1

with the product topology. The axioms of internal groupoids can be written
in the same way as those of discrete groupoids, of course, and we shall adopt
the same notation and terminology as in the discrete case.

The topological groupoids that arise in practice usually satisfy properties
that make them especially well behaved. As examples we mention two that
will be relevant in these notes: a topological groupoid G is open if its domain
map d is open; if furthermore d is a local homeomorphism the groupoid G is
said to be étale.

Equivalently, an open groupoid is one whose topology is closed under
pointwise multiplication of open sets (equivalently, m is an open map), and
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the étale groupoids are the open groupoids whose subspace of units is open.
(For these and other facts about open or étale groupoids see the list of ex-
ercises below.) The latter condition is strong, in particular implying that
the topology of the groupoid has a basis of “open G-sets” (see exercise I.1.8-
6), but it does not imply that the groupoid in question is open, hence not
necessarily étale, as the following example shows.

Example I.1.7 Let G be the topological groupoid defined by

G0 = R
G1 = Rq {∗}

d(x) = r(x) = x if x ∈ R
d(∗) = r(∗) = 0

m(∗, ∗) = 0

(Hence, this is a group bundle over R with trivial isotropy Ix for all x 6= 0
and I0

∼= Z2.) G0 is open in G1, but the groupoid is not open because {∗} is
open in G1 but d({∗}) = {0} is not open in R.

Exercise I.1.8 In the exercises that follow, G is a fixed but arbitrary topo-
logical groupoid. We identify the space of objects G0 with the space of units
u(G0), we write G instead of G1, for any subsets U, V ⊆ G we write UV for
the pointwise product

UV = {xy | x ∈ U, y ∈ V, r(x) = d(y)}

and we write U−1 for the pointwise inverse {x−1 | x ∈ U}.

1. Show that for any open set U ⊆ G we have, denoting the topology of
G by Ω(G),

(U ∩G0)G ⊆
⋃
{X ∩ Y | X, Y ∈ Ω(G), XY −1 ⊆ U}

⊆
⋃
{V ∈ Ω(G) | V V −1 ⊆ U}

G(U ∩G0) ⊆
⋃
{X ∩ Y | X, Y ∈ Ω(G), X−1Y ⊆ U}

⊆
⋃
{V ∈ Ω(G) | V −1V ⊆ U}

2. Show that if m is open then so is d.

3. Prove the converse: if d is open then so is m (hint: show that open
maps are stable under pullback and use exercise I.1.6). Conclude that
G is open if and only if the pointwise product UV of any two open sets
U, V ⊆ G is itself an open set.
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4. Show that G is étale if and only if m is a local homeomorphism (hint:
local homeomorphisms are stable under pullback).

5. Prove that if f and g are local homeomorphisms and g ◦ h = f then h
is a local homeomorphism. Based on this, show that if G is étale then
the set of units G0 is open in G1.

6. By a G-set of G is meant a subset U ⊆ G such that the restrictions
d|U : U → G0 and r|U : U → G0 are both injective.

(a) Show that U is a G-set if and only if UU−1 ⊆ G0 and U−1U ⊆ G0.

(b) Show that if G0 is open in G then the open G-sets form a basis
for the topology of G. (Hint: apply exercise 1 with U = G0 and
show that the open G-sets cover G.)

7. Show that G is étale if and only if it is open and G0 is open in G.

8. By an r-discrete groupoid is meant a topological groupoid G whose
r-fibers r−1(x) are discrete subspaces of G. Prove that any topological
groupoid G whose unit subspace G0 is open in G (in particular, any
étale groupoid) is necessarily r-discrete. (Renault [32] defines r-discrete
to mean that G0 is open.1)

Germ groupoids of pseudogroups. Let X be a topological space,
and let I(X) be the set of all the partial homeomorphisms on X, by which
are meant the homeomorphisms h : U → V with U and V open sets of
X. This set has the structure of an involutive semigroup; the involution is
inversion,

h : U → V 7→ h−1 : V → U ,

and the multiplication is given by composition of partial homeomorphisms
wherever this composition is defined: if h : U → V and h′ : U ′ → V ′ are
partial homeomorphisms then their product is the partial homeomorphism

hh′ : h−1(V ∩ U ′)→ h′(V ∩ U ′)

defined at each point of its domain by (hh′)(x) = h′(h(x)). In these notes we
shall use the following essentially standard terminology.

1In [32, I.2.8(iv)] it is further stated that a locally compact r-discrete Hausdorff
groupoid is étale if and only if it has a basis of open G-sets. This is wrong, as exer-
cise 6 and example I.1.7 show. However, this plays no role in [32] because the groupoids
are assumed to have Haar measures, which implies that they are open.
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Definition I.1.9 Let X be a topological space. By a pseudogroup over X
will be meant any subset P ⊆ I(X) which is closed under the multiplication
and the involution of I(X). A pseudogroup P over X is full if it is also
closed under identities in the sense that idU ∈ P for every open set U ⊆ X;
and it is complete if it is full and for all h ∈ I(X) and every open cover (Uα)
of dom(h) we have h ∈ P if h|Uα ∈ P for all α. The (complete) pseudogroup
I(X) is called the symmetric pseudogroup on X.

There is a very natural construction of a topological étale groupoid from
any full pseudogroup over X. First we define a small category whose set
of objects is X and whose arrows are the pairs (x, h) such that h ∈ P and
x ∈ dom(h). We set d(x, h) = x and r(x, h) = h(x), the composition is
defined by

(x, h)(h(x), k) = (x, k ◦ h) ,

and the object inclusion map is defined by x 7→ (x, idX). Furthermore this
category has an involution defined by

(x, h)∗ = (h(x), h−1) ,

and satisfying the property

(x, h)(x, h)∗(x, h) = (x, h) ;

This is an inverse category, meaning that for each arrow (x, h) there is exactly
one other arrow (y, k) such that

(x, h)(y, k)(x, h) = (x, h) and (y, k)(x, h)(y, k) = (y, k) ;

of course, this unique arrow is (x, h)∗.
From this inverse category we define a groupoid as a quotient: define

two arrows (x, h) and (x, k) to be equivalent, and write (x, h) ∼ (x, k), if
h|U = k|U for some open neighborhood U ⊆ dom(h)∩dom(k) of x (hence, in
particular, h(x) = k(x)). The equivalence class of (x, h) is therefore identifed
with the pair (x, germx h), where germx h is the germ of h at x, that is the
set

germx h = {k ∈ P | x ∈ dom k, k|U = h|U for some open U with x ∈ U} .
The pairs (x, germx h) are the arrows of a groupoid whose set of units is X,
and whose structure maps are as follows:

d(x, germx h) = x

r(x, germx h) = h(x)

u(x) = (x, germx idX)

(x, germx h)(h(x), germh(x), k) = (x, germx(k ◦ h))

(x, germx h)−1 = (h(x), germh(x)(h
−1)) .
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This is called the groupoid of germs of P , and it is denoted by Germs(P ). It
can be given a topology by defining as a basic open set, for each h ∈ P , the
set

Uh = {(x, germx h) | x ∈ domh} .

It is clear that d is then a local homeomorphism, and thus Germs(P ) is an
étale groupoid.

2 Inverse semigroups

Now we present the basic theory of inverse semigroups and immediately
prove that every topological étale groupoid G is the groupoid of germs of
an inverse semigroup equipped with an action on G0. In order to obtain a
converse to this we shall have to study completeness and distributivity for
inverse semigroups. In particular, the inverse semigroups of local bisections
of étale groupoids will be shown to be precisely the complete and infinitely
distributive inverse semigroups.

Basic definitions and examples. By an inverse of an element x of a
semigroup is meant an element y in the semigroup such that

xyx = x

yxy = y .

An inverse semigroup is a semigroup for which each element has a unique
inverse. Equivalently, an inverse semigroup is a semigroup for which each
element has an inverse (hence, a regular semigroup) and for which any two
idempotents commute.

In an inverse semigroup the inverse operation defines an involution, and
we shall always denote the inverse of an element x by x−1 or x∗. The set of
idempotents of an inverse semigroup S is denoted by E(S).

An inverse monoid is an inverse semigroup that has a multiplicative unit,
which is usually denoted by e.

A semigroup homomorphism beween inverse semigroups automatically
preserves inverses. The category whose objects are the inverse semigroups
and whose arrows are the semigroup homomorphisms will be denoted by
InvSGrp. The category whose objects are the inverse monoids and whose
arrows are the monoid homomorphisms will be denoted by InvMon.

As examples of inverse semigroups we have:

1. Any pseudogroup on a topological space.



2. INVERSE SEMIGROUPS 13

2. Any subsemigroup of operators on a Hilbert space consisting entirely
of partial isometries and closed under adjoints.

3. The set I(G) of “G-sets” (in the sense of [32, p. 10]) of a discrete
groupoid G, under pointwise multiplication and inverses, where by a
G-set is meant a set U for which both the domain and range maps are
injective when restricted to U . (We remark that this terminology is
unfortunate because it collides with the standard usage of “G-set” for
a set equipped with an action by a group G — see, e.g., [18].) This is
an inverse monoid with unit G0.

The Wagner-Preston theorem asserts that every inverse semigroup is iso-
morphic to a pseudogroup.

Exercise I.2.1 Give an example of an inverse semigroup that is not isomor-
phic to any full pseudogroup.

Étale groupoids as germ groupoids. Not every étale groupoid is of
the form Germs(P ) for a pseudogroup P , but every étale groupoid is obtained
by taking germs of a more general notion of “pseudogroup”. First we need
the following notion:

Definition I.2.2 Let S be an inverse semigroup. By a representation of S on
a topological space X will be meant a homomorphism of semigroups ρ : S →
I(X). The representation is full if ρ restricts to an isomorphism E(S) →
E(I(X)) ∼= Ω(X). By an inverse semigroup over X will be meant a pair
(S, ρ) consisting of an inverse semigroup S equipped with a representation
ρ : S → I(X). If ρ is full (in this case S is necessarily a monoid) then (S, ρ)
is said to be a full inverse semigroup over X.

Of course, any pseudogroup P over a space X is an inverse semigroup over
X if we take the underlying representation to be the inclusion ι : P → I(X),
and P is a full pseudogroup if and only if (P, ι) is a full inverse semigroup
over X. The construction of the germ groupoid of a full pseudogroup (see
section 1) can be generalized in a straightforward way. As we shall see, the
étale groupoids are precisely the topological groupoids which can be thus
obtained, up to isomorphism.

For each element s ∈ S of a full inverse semigroup (S, ρ) over X we shall
think of the open set dom(ρ(s)) as being the domain of s, hence defining a
map S → Ω(X). By an element of S over U will be meant an element s ∈ S
whose domain is U .
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Theorem I.2.3 Let (S, ρ) be a full inverse semigroup over X, and for each
open set U ∈ Ω(X) let D(U) be the set of elements over U :

D(U) = {s ∈ S | dom(ρ(s)) = U} .

The assignment

D : Ω(X)→ ℘(S)

defines a presheaf of sets on the space X, with each restriction map

D(U)→ D(V )

for V ⊆ U being defined by

s 7→ fs ,

where f ∈ E(S) is the (unique) idempotent such that ρ(f) = idV (equiva-
lently, dom(ρ(f)) = V ). The local homeomorphism of germs of the presheaf
D is the domain map of an étale groupoid Germs(S, ρ) whose unit space is
X.

Proof. The restriction maps are obviously functorial, and thusD is a presheaf.
Its germs are concretely described as pairs (x, germx s) where x ∈ X and
germx s is the set of all t ∈ S such that x ∈ dom(ρ(t)) and ft = fs for
some f ∈ E(S) such that x ∈ dom(ρ(f)). The set Λ of all the germs can
be equipped with the usual “sheaf topology”, namely that which is obtained
from a basis of open sets of the form, for each s ∈ S,

Us = {(x, germx s) | x ∈ dom(ρ(s))} ,

making the projection d : Λ→ X defined by (x, germx s) 7→ x a local home-
omorphism. The groupoid structure is similar to that of the germ groupoid
of a full pseudogroup:

d(x, germx s) = x

r(x, germx s) = ρ(s)(x)

u(x) = (x, germx e)

(x, germx s)(ρ(s)(x), germρ(s)(x) t) = (x, germx(st))

(x, germx s)
−1 = (ρ(s)(x), germρ(s)(x)(s

−1)) .

Verifying that this is a topological (hence, étale) groupoid is now straight-
forward.
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Now we see that every étale groupoid can be obtained in this way from
a suitable inverse semigroup over its unit space. Recall from section 2 that
the G-sets of a discrete groupoid G form an inverse semigroup I(G). We can
make this more general:

Definition I.2.4 For an étale groupoid G we define the inverse semigroup
I(G) to consist of the open G-sets of G.

Exercise I.2.5 Let G be an étale groupoid.

1. Show that I(G) is a sub inverse monoid of the inverse monoid of all
the G-sets.

2. Show that each open G-set is the image of a unique local bisection of
G (by a local bisection is meant a continuous local section s : U → G1

of the domain map d, defined on an open set U ⊆ G0, and such that
r ◦ s is injective and open).

3. Show that the assignment ρG : I(G)→ I(G0) defined by

U 7→ r ◦ s,

where s : d(U) → G1 is the local bisection whose image is U , makes
I(G) a full inverse monoid over G0.

Theorem I.2.6 Let G be an étale groupoid, and let ρG : I(G)→ I(G0) be its
full representation as in the previous exercise. Then G ∼= Germs(I(G), ρG).

Proof. Part of the proof is a consequence of the equivalence between sheaves
and local homeomorphisms: from a local homeomorphism p : E → X we
obtain the sheaf of continuous local sections of p, whose space of germs with
the sheaf topology is homeomorphic to E. The only unusual aspect to be
checked is that, despite the fact that in moving from G to I(G) we are not
producing the sheaf of all the local sections of d, the space Λ of germs of local
bisections is nevertheless homeomorphic to G. This is because r is a local
homeomorphism and thus every continuous local section is, once restricted
to a suitably small open set, a local bisection. This shows not only that
the germs are the same but also that the local bisections are enough to give
us a basis for the sheaf topology. It remains to be seen that the remaining
structure maps of G are preserved in the passage to Germs(I(G), ρG). This
is done by straightforward verification, and we check the multiplication only.
Consider two arrows x, y ∈ G with r(x) = d(y). Let U and V with x ∈ U
and y ∈ V be open G-sets. The previous discussion shows that such G-sets
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necessarily exist and their germs at d(x) and d(y) correspond to x and y,

respectively, via the homeomorphism h : G
∼=→ Λ. Then we have

h(x)h(y) = (germd(x) U)(germd(y) V ) = germd(x)(UV ) = h(xy) ,

showing that the groupoid multiplication is preserved.

Distributivity and completeness. The natural order of an inverse
semigroup S is a partial order, defined as follows:

x ≤ y ⇐⇒ x = fy for some f ∈ E(S) .

The product of any two idempotents f and g is their meet, fg = f ∧ g, and
S is an inverse monoid if and only if the set of idempotents has a join, in
which case we have e =

∨
E(S). In the case of a pseudogroup an idempotent

f is the identity map on an open set U , and thus the natural order becomes

x ≤ y ⇐⇒ x = y|U for some open set U ⊆ dom(y) such that idU ∈ S .

Hence, for pseudogroups the natural order is just the restriction order on
partial maps.

Exercise I.2.7 Let S be an inverse semigroup.

1. Show that s ≤ t if and only if s = ss−1t.

2. Show that s ≤ t if and only if s = tg for some g ∈ E(S).

3. Let X be a subset of S such that the join
∨
X exists. Show that the

join
∨
X−1 exists and

∨
X−1 = (

∨
X)−1.

4. (This is [14, p. 27, Prop. 17].) Let X ⊆ S be a subset. Show that:

(a) if
∨
X exists in S then

∨
x∈X xx

−1 exists in E(S) and

(
∨

X)(
∨

X)−1 =
∨
x∈X

xx−1 ;

(b) if
∨
X exists in S then

∨
x∈X x

−1x exists in E(S) and

(
∨

X)−1(
∨

X) =
∨
x∈X

x−1x .

Hint: the solution is similar to the final part of the proof of theorem
I.2.8 below.
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5. Let X ⊆ E(S) be such that X has a join in S. Show that
∨
X ∈ E(S).

The following is a useful property of homomorphisms with respect to the
natural order. We shall say that a homomorphism h : S → T of inverse
semigroups preserves joins if, for all subsets X ⊆ S, if the join

∨
X exists in

S (with respect to the natural order) then the join
∨
h(X) exists in T and

we have h(
∨
X) =

∨
h(X).

Theorem I.2.8 Let S and T be inverse semigroups and h : S → T a homo-
morphism of semigroups. The following are equivalent:

1. h|E(S) : E(S)→ E(T ) preserves joins;

2. h : S → T preserves joins.

Proof. The implication 2 ⇒ 1 is trivial (cf. exercise I.2.7-5 above). For
the other implication assume that h|E(S) preserves joins, and let X ⊆ S be a
subset for which the join

∨
X exists. We have

∨
X = (

∨
X)(

∨
X)−1(

∨
X) =

(
∨
x xx

−1)(
∨
X). Hence,

h
(∨

X
)

= h

((∨
x

(xx−1)

)∨
X

)
= h

(∨
x

(xx−1)

)
h
(∨

X
)

=

(∨
x

h(xx−1)

)
h
(∨

X
)

=

(∨
x

h(x)h(x)−1

)
h
(∨

X
)
.

Let us write ξ for the last expression on the right. It is clear that for
all x ∈ X we have h(x) = h(x)h(x)−1h(x) ≤ ξ, and thus ξ is an up-
per bound of the set h(X). Let z be another upper bound. Then for all
x ∈ X we have h(x)h(x)−1 ≤ zh((

∨
X)−1) = z(h(

∨
X))−1. Hence, we

have
∨
x h(x)h(x)−1 ≤ z(h(

∨
X))−1, and thus ξ ≤ z(h(

∨
X))−1h(

∨
X) ≤ z,

showing that ξ is the least upper bound of h(X).

An important property of any symmetric pseudogroup I(X) is that it is
distributive in the sense that the multiplication distributes over all the joins
that exist; that is, for all s ∈ P and all X ⊆ P such that

∨
X exists in P we

have that both
∨
x∈X sx and

∨
x∈X xs exist in P and

s(
∨

X) =
∨
x∈X

sx and (
∨

X)s =
∨
x∈X

xs .

Accordingly, we adopt the following definition:
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Definition I.2.9 An inverse semigroup S is said to be infinitely distributive
if, for all s ∈ S and all subsets X ⊆ S for which

∨
X exists in S, the following

conditions hold:

1.
∨
x∈X sx exists in S;

2.
∨
x∈X xs exists in S;

3. s(
∨
X) =

∨
x∈X sx;

4. (
∨
X)s =

∨
x∈X xs.

A very important property of inverse semigroups is the following:

Theorem I.2.10 Let S be an inverse semigroup. The following conditions
are equivalent:

1. S is infinitely distributive;

2. E(S) is infinitely distributive.

Proof. This is proved in [14] for infinite distributivity with respect to joins
of non-empty sets, but the proof applies equally to joins of any subsets.

Corollary I.2.11 If (S, ρ) is a full inverse semigroup over a space X then
S is infinitely distributive. In particular, any full pseudogroup is infinitely
distributive.

An analogous and related property of inverse semigroups concerns dis-
tributivity of binary meets over joins:

Theorem I.2.12 ([35]) Let S be an infinitely distributive inverse semigroup,
let x ∈ S, and let (yi) be a family of elements of S. Assume that the join∨
i yi exists, and that the meet x∧

∨
i yi exists. Then, for all i the meet x∧ yi

exists, the join
∨
i(x ∧ yi) exists, and we have

x ∧
∨
i

yi =
∨
i

(x ∧ yi) .

Hence, the distributivity in E(S) determines the distributivity in the
whole of S, both with respect to multiplication and to binary meets (which
in E(S) are the same, of course).

Finally, we notice that a full pseudogroup P over a topological space X
is complete (cf. definition I.1.9) if and only if any set Z ⊆ P of pairwise
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compatible elements has a join
∨
Z (see exercise I.2.14 below), where two

partial homeomorphisms h and k are compatible if they coincide on the in-
tersection of their domains and their inverses h−1 and k−1, too, coincide on
the intersection of their domains — in other words h and k have a join h∨ k
in I(X). Noticing that h and k are compatible if and only if both hk−1 and
h−1k are idempotents in P , we are led to the following definitions:

Definition I.2.13 Let S be an inverse semigroup. Two elements s, t ∈ S
are said to be compatible if both st−1 and s−1t are idempotents. A subset
Z ⊆ S is compatible if any two elements in Z are compatible. Then S is said
to be complete if every compatible subset Z has a join

∨
Z in S (hence, S

is necessarily a monoid with e =
∨
E(S)). By a complete inverse semigroup

over a space X is meant a complete (and necessarily infinitely distributive)
inverse semigroup equipped with a full representation S → I(X).

We have defined completeness with respect to arbitrary compatible sub-
sets (instead of just non-empty ones as in [14]). Hence, a complete inverse
semigroup necessarily has a least element 0.

Exercise I.2.14 1. Let S be an inverse semigroup, and let s, t ∈ S.

(a) Show that s−1t ∈ E(S) if and only if fs = ft for f = ss−1tt−1

(i.e., s and t coincide on the intersection of their domains).

(b) Show that st−1 ∈ E(S) if and only if gs−1 = gt−1 for g = s−1st−1t
(i.e., s−1 and t−1 coincide on the intersection of their domains).

2. Let S be an inverse semigroup. Show that any two elements of S for
which an upper bound exists in S are necessarily compatible.

3. Show that a full pseudogroup is complete if and only if it is complete
as an inverse semigroup.

4. Any full representation ρ : S → I(X) preserves all the joins that exist
in S. Why?

Representation theorem. We are now ready to give a characteriza-
tion of the inverse semigroup actions that arise from étale groupoids.

Theorem I.2.15 Let G be an étale groupoid with unit space X. Then
(I(G), ρG) is a complete inverse semigroup over X. Any complete inverse
semigroup over X arises in a similar way from an étale groupoid.
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Proof. It is easy to see that I(G) is a complete inverse semigroup. For the
converse, let then (S, ρ) be an arbitrary complete inverse semigroup over X,
and let G = Germs(S, ρ). We shall show that S and I(G) are isomorphic,
much in the same way in which one shows that a sheaf is isomorphic to the
sheaf of local sections of its local homeomorphism. First let us define a map

(̂−) : S → I(G) as follows, for each s ∈ S:

ŝ = {(x, germx s) | x ∈ dom(ρ(s))} .

This assignment clearly is a semigroup homomorphism, and it is injective
due to distributivity, for if dom(ρ(s)) = dom(ρ(t)) (equivalently, ss−1 = tt−1)
then the condition germx s = germx t for all x ∈ dom(ρ(s)) implies that there
is a cover (fx) of ss−1 such that for each x ∈ dom(ρ(s)) we have fxs = fxt,
and thus, due to infinite distributivity,

s = ss−1s = (
∨
x

fx)s =
∨
x

(fxs) =
∨
x

(fxt) = (
∨
x

fx)t = tt−1t = t .

(In other words, the presheaf D of theorem I.2.3 is necessarily separated.)
Now let U be an open G-set of G. Then, by definition of the topology of
G, U is a union of G-sets of the form Us = {(x, germx s) | x ∈ dom(ρ(s))}.
Let Us and Ut be two such G-sets. For all x ∈ dom(ρ(s)) ∩ dom(ρ(t)) we
must have, since U is a G-set, a unique arrow of G in U with domain x.
But Us ∪ Ut ⊆ U , and thus both (x, germx s) and (x, germx t) belong to U ,
therefore implying that germx s = germx t; that is, there is an idempotent
fx ≤ ss−1tt−1 such that x ∈ dom(ρ(fx)) and fxs = fxt, and thus

(ss−1tt−1)s = (
∨
x

fx)s =
∨
x

(fxs) =
∨
x

(fxt) = (ss−1tt−1)t .

Hence, by exercise I.2.14, we have s−1t ∈ E(S). Similarly, considering any
point x ∈ cod(ρ(s))∩ cod(ρ(t)) we conclude, because there must be a unique
element in U with codomain x, that s(s−1st−1t) = t(s−1st−1t) [this is imme-
diate from the previous argument because x ∈ dom(ρ(s−1)) ∩ dom(ρ(t−1))],
and thus st−1 ∈ E(S) again by exercise I.2.14. We have thus proved that
the set X that indexes the cover U =

⋃
s∈X Us is compatible. Since S is

complete, we have a join
∨
X in S, and it is now clear that

∨̂
X = U , for∨̂

X =
⋃
s∈X

ŝ =
⋃
s∈X

Us = U ,

where we have used the fact that (̂−) preserves all the existing joins, which
is a consequence (cf. theorem I.2.8) of the fact that its restriction to the
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idempotents does, since that restriction is an isomorphism. Finally, we ob-

viously have ρ(s) = ρG(ŝ) for all s ∈ S; that is, (̂−) commutes with the
representations ρ and ρG, and thus (S, ρ) and (I(G), ρG) are the same up to
isomorphism.

We shall conclude this section by establishing some terminology, which
will be used later.

Definition I.2.16 By an abstract full pseudogroup will be meant an in-
finitely distributive inverse semigroup whose idempotents form a complete
lattice. And by an abstract complete pseudogroup will be meant a complete
and infinitely distributive inverse semigroup. The category of abstract full
pseudogroups AFPGrp has the abstract full pseudogroups as objects and the
monoid homomorphisms that preserve the joins of sets of idempotents as ar-
rows. The category of abstract complete pseudogroups is the full subcategory
of AFPGrp whose objects are the abstract complete pseudogroups.

By an abstract complete (resp. full) inverse semigroup over a topologi-
cal space X is meant an abstract complete (resp. full) inverse semigroup S
equipped with an order isomorphism E(S) ∼= Ω(X).

Exercise I.2.17 1. Let S and T be abstract full pseudogroups. Show
that

(a) S is meet-complete; that is, if X 6= ∅ then
∧
X exists in S;

(b) A homomorphism h : S → T of abstract full pseudogroups neces-
sarily preserves all the joins that exist in S; that is, if X ⊆ S has
a join

∨
X then so does h(X), and we have

∨
h(X) = h(

∨
X).

2. Show that a sheaf of abelian groups on a topological space X is “the
same” as a commutative abstract complete pseudogroup over X.





Chapter II

Quantales

Quantales have much in common with rings. Just as rings are semigroups
in the tensor category of abelian groups, so quantales are semigroups in the
tensor category of sup-lattices. Accordingly, we shall begin by studying gen-
eral properties of sup-lattices, including all the basic constructions such as
direct sums, quotients, tensor products, etc. Then we address the theory of
quantales themselves, including involutive quantales and quantale modules,
along with several basic examples. To conclude this chapter we study sup-
ported quantales and inverse quantales, as well as adjunctions between their
categories and the categories of inverse semigroups and abstract complete
pseudogroups.

1 Sup-lattices

Sup-lattices are just complete lattices, but the former name suggests that
only the suprema are relevant algebraic operations. All the material of this
section follows closely the presentation given in [10], where the term “sup-
lattice” has been introduced.

Basic definitions and properties. By a sup-lattice is meant a par-
tially ordered set L each of whose subsets X has a join, or supremum,

∨
X

in L. We shall also write
∨
i xi for the join of a family (xi) of elements of L.

The join of the empty set,
∨
∅, is the minimum of L and we denote it by 0L,

or simply 0. Similarly, the join of L itself,
∨
L, is the maximum of L, and

we denote it by 1L or just 1.
A homomorphism of sup-lattices h : L→ M is a function that preserves

arbitrary joins; that is, such that for each X ⊆ L we have

h
(∨

X
)

=
∨

h(X) .

23
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In particular any homomorphism preserves 0 (but in general not 1):

h(0L) = 0M .

The category whose objects are the sup-lattices and whose arrows are the
homomorphisms is denoted by SL.

Remark II.1.1 Any sup-lattice L is of course a complete lattice: given any
subset X ⊆ L, the infimum, or meet,

∧
X coincides with

∨
X`, where X` is

the set of lower bounds of X:

X` = {y ∈ L | y ≤ x for all x ∈ X} .

However, the structure defined by the joins is not “the same” as that which
is given by the meets because the homomorphisms of sup-lattices do not pre-
serve meets in general, and we adopt the terminology “sup-lattice” whenever
we think of a complete lattice as being an object of SL.

Example II.1.2 The following are sup-lattices:

1. The powerset ℘(X) of a set X, with the inclusion order.

2. The set of projections of a Hilbert space, with the order given by P ≤ Q
if PQ = QP = P .

3. The topology of a topological space, under inclusion of open sets. The
joins are unions, and the meet of a family (Ui) of open sets is the interior
of their intersection: ∧

i

Ui = int

(⋂
i

Ui

)
.

4. The set of closed sets of a topological space. The join of a family (Xi)
of closed sets is the closure of their union (meets are just intersections):∨

i

Xi =
⋃
i

Xi .

5. The set of subgroups of a group. Meets are intersections, and the join
of a family (Hi) of subgroups is the subgroup generated by the union⋃
iHi.

6. The set of right ideals of a ring, with meets and joins as in the previous
example.
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7. The completed real line R ∪ {−∞} ∪ {+∞}.

We shall see that there are many ways in which the category SL can be
regarded as being “similar” to the category of abelian groups. As a first
example, we remark that just as the set of homomorphisms hom(A,B) from
an abelian group A to another abelian group B is itself an abelian group
with sums computed pointwise, so the set of homomorphisms hom(L,M)
from a sup-lattice L to another sup-lattice M is itself a sup-lattice; given two
homomorphisms f, g : L → M we define f ≤ g if f(x) ≤ g(x) for all x ∈ L,
and the joins are calculated pointwise:(∨

i

fi

)
(x) =

∨
i

fi(x) .

The operation of composition of homomorphisms

− ◦ − : hom(M,N)× hom(L,M)→ hom(L,N)

is then, extending the analogy with abelian groups, a “bilinear” operation:

g ◦

(∨
i

fi

)
=

∨
i

(g ◦ fi)(∨
i

gi

)
◦ f =

∨
i

(gi ◦ f) .

Duality. Let L be a sup-lattice. The dual of L is L with the order
reversed, and we denote it by Lop.

Now let f : L→M be a homomorphism of sup-lattices. This has a right
adjoint (in the sense of category theory — see [17, Ch. IV])

f∗ : M → L ,

which is defined by

f∗(y) =
∨
{x ∈ L | f(x) ≤ y} .

Since right adjoints preserve meets, it follows that f∗ defines a sup-lattice
homomorphism

f op : Mop → Lop ,

which is called the dual of f .
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Hence, we obtain a contravariant endofunctor on SL

(−)op : SLop → SL .

It is immediate that (Lop)op = L for any sup-lattice L, and it is also easy
to see that (f op)op = f for any sup-lattice homomorphism (the second dual
(f op)op is defined as the right adjoint of f op : Mop → Lop, which coincides
with the left adjoint of f∗ : M → L, i.e., it is f itself). Hence, the functor
(−)op is an isomorphism of categories and it is its own inverse. We say that
it is a strong self-duality on SL.

Products and coproducts. Let L and M be sup-lattices. Their
cartesian product L × M is a sup-lattice with the order defined so that
(x, y) ≤ (z, w) if and only if x ≤ z and y ≤ w; the joins are given by

∨
i

(xi, yi) =

(∨
i

xi,
∨
i

yi

)
.

This is a product in the categorical sense because the projections

L L×Mπ1oo π2 //M

have the universal property of a product: for any pair of sup-lattice homo-
morphisms

L N
h1oo h2 //M

there is a unique homomorphism h : N → L×M such that π1 ◦ h = h1 and
π2 ◦ h = h2:

N
h1

{{wwwwwwwwww
h
��

h2

$$HHHHHHHHH

L L×Mπ1oo π2 //M

Of course, h is the pairing 〈h1, h2〉 defined by 〈h1, h2〉(n) = (h1(n), h2(n)).
This construction extends in the obvious way to any family (Li) of sup-
lattices, with the product

∏
i Li having coordinatewise order and joins.

Another analogy with the category of abelian groups is that products
and coproducts in SL coincide (for sup-lattices this is even true for infinitary
products and coproducts, as we shall see). In order to see this, let (Li) be a
family of sup-lattices. Define, for each i, the homomorphism

ιi : Li →
∏
i

Li
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to be the dual (πi)
op of the projection

πi :
∏
i

Li
op → Li

op ,

where of course
∏

i Li
op = (

∏
i Li)

op. It is easy to see that the homomor-
phisms ιi are the coprojections of a coproduct.

We call the cartesian product
∏

i Li thus defined the direct sum of the
family Li, and denote it by

⊕
i Li. The direct sum of two sup-lattices L and

M is denoted by L⊕M .

Exercise II.1.3 1. Verify that the coprojections ιi indeed define a co-
product. Do this directly in terms of the definition by duality of the
coprojections and the universal property of the product.

2. Show that the coprojections ι1 and ι2 of the direct sum L⊕M are given
explicitly by ι1(x) = (x, 0) and ι2(y) = (0, y).

The last exercise can be generalized in the obvious way to an arbitrary
coproduct

⊕
i∈I Li, by means of the formula ιi(x) = (yj)j∈I with yj = x if

j = i and yj = 0 if j 6= i.1

Free sup-lattices. Let X be a set, and consider the mapping x 7→ {x}
of X into ℘(X). It is easy to see that for any other mapping f : X → L,
where L is a sup-lattice, there is a unique homomorphism of sup-lattices

f ] : ℘(X)→ L

such that f ]({x}) = f(x) for all x ∈ X. In other words, ℘(X), as a sup-
lattice, is freely generated by the set X. Concretely, the homomorphism f ]

is explicitly defined by, for all U ⊆ X,

f ](U) =
∨

f(U) .

As an application, consider a terminal set 1, and let L be a sup-lattice.
The maps 1→ Lop are in bijective correspondence with the homomorphisms
from the free sup-lattice ℘(1) to Lop, and thus we have an isomorphism (of
sup-lattices)

Lop ∼= hom(℘(1), Lop) .

1This requires, when working in an arbitrary topos, that the indexing set I be decidable.
In particular, this formula can always be used in “standard” mathematics, i.e., in the topos
of sets.
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Hence, by duality we also have

Lop ∼= hom(L, ℘(1)op) .

It follows that (−)op is a representable functor, with representing object
℘(1)op (the “dualizing object” in SL). We shall denote this sup-lattice by
f. In order to simplify our notation we shall denote hom(L,f) by L∗, and,
accordingly, the hom-dual of a sup-lattice homomorphism f : L→M , which
is given by composition with ϕ,

ϕ 7→ ϕ ◦ f ,

is denoted by
f ∗ : M∗ → L∗ .

Quotients. Although quotients of sup-lattices can be described in terms
of the standard tools of (infinitary) universal algebra, for sup-lattices there
is a better way. For motivation we remark that if L is a sup-lattice and
θ ⊆ L × L is a congruence on L (i.e., a sub-sup-lattice of L ⊕ L) then any
x ∈ L is congruent to the join

∨
[x]θ of its equivalence class, and the subposet

of Lθ ⊆ L defined by

Lθ = {x ∈ L | x =
∨

[x]θ}

is isomorphic to the quotient sup-lattice L/θ. In other words, quotients of L
can be represented by certain canonical subsets of L. As we shall see, these
are just the subsets of L which are closed under arbitrary meets.

Let L be a sup-lattice. A closure operator on L is a monotone map
j : L→ L such that for all x ∈ L we have

1. x ≤ j(x),

2. j(j(x)) ≤ j(x) (hence, j(j(x)) = j(x)).

We shall refer to the fixed-points of a closure operator j on L as the j-closed
elements (or simply closed), and we shall denote the set of j-closed elements
of L by

Lj = {x ∈ L | x = j(x)} .
(Equivalently, this is the image of j in L.) It is easy to see that the set Lj is
closed under arbitrary meets in L (including 1 ∈ Lj).

Conversely, if S ⊆ L is a subset closed under arbitrary meets we define a
closure operator jS : L→ L by

jS(x) =
∧
{y ∈ S | x ≤ y} ,
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and we have jLj = j and LjS = S.
Now let us see that the quotients correspond precisely to closure oper-

ators (and hence to subsets closed under meets). Let f : L → M be a
homomorphism of sup-lattices, and let j : L → L be the composition of f
with its right adjoint: j = f∗ ◦ f . From the properties of adjoints it follows
that j is a closure operator, and the restriction j|Lj : Lj → M defines an
order isomorphism onto the image f(L) ⊆ M . In particular, the following
universal property enables us to think of Lj as the quotient of L by j:

Proposition II.1.4 Let L be a sup-lattice and j a closure operator on L. Let
also f : L → M be a homomorphism such that j(x) = j(y) ⇒ f(x) = f(y)
for all x, y ∈ L (equivalently, such that j ≤ f∗ ◦ f). Then there is a unique
homomorphism f̄ : Lj →M such that the following triangle commutes:

L

f
&&MMMMMMMMMMMMM

j // Lj

f̄

��
M

The poset of closure operators on a sup-lattice L is a complete lattice and
for any binary relation R ⊆ L × L there is a least closure operator jR such
that j(x) = j(y) for all (x, y) ∈ R. The set of closed elements LjR coincides
with the set

LR = {x ∈ L | y ≤ x ⇐⇒ z ≤ x for all (y, z) ∈ R} ,

and it is the quotient of L by the congruence generated by R (quotient of L
by R, for short) in the sense that any homomorphism f : L→ M such that
(y, z) ∈ R⇒ f(y) = f(z) factors uniquely through jR : L→ LR.

Exercise II.1.5 1. Let L be a sup-lattice and j a closure operator on L.
Show that the join of a subset X ⊆ Lj in Lj is j(

∨
X), where

∨
X is

the join in L.

2. Show that any closure operator on a sup-lattice L is of the form j =
f∗ ◦ f for a suitable homomorphism f .

3. Let f : L→M be a sup-lattice homomorphism. Show that f(x) = f(y)
if and only if f∗(f(x)) = f∗(f(y)), for all x, y ∈ L.

4. Let L be a sup-lattice and let j, k two closure operators on L. Show
that the following conditions are equivalent:
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(a) j(x) = j(y)⇒ k(x) = k(y) for all x, y ∈ L;

(b) j ≤ k;

(c) j ◦ k = k ◦ j = k;

(d) Lk ⊆ Lj.

Generators and relations. The previous results provide an easy way
of presenting sup-lattices by generators and relations. If X is a set and

R ⊆ ℘(X)× ℘(X)

is a binary relation on ℘(X) then ℘(X)R is the sup-lattice generated by X
subject to the set of relations R, where each pair (U, V ) ∈ R can be thought
of as a formal equation ∨

U =
∨

V .

The universal property of this construction is easy to describe: for any map
f : X → L into a sup-lattice L such that∨

f(U) =
∨

f(V )

for all (U, V ) ∈ R there is a unique homomorphism

f ] : ℘(X)R → L

that extends f in the obvious way (i.e., f ](jR({x})) = f(x) for all x ∈ X).
In order to simplify notation we shall often denote the injection of gen-

erators X → ℘(X)R by [.] and the defining relations by the conditions with
respect to which [.] is universal; for instance, a pair (U, V ) ∈ R may be
represented by the equation ∨

x∈U

[x] =
∨
y∈V

[y] .

Tensor products. Let L, M and N be sup-lattices. A bimorphism
from L×M to N is a function

f : L×M → N

that preserves joins in each variable separately:

f
(∨

X, y
)

=
∨
x∈X

f(x, y)

f
(
x,
∨

Y
)

=
∨
y∈Y

f(x, y) .
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The tensor product of L and M is by definition the codomain of a universal
bimorphism

(x, y) 7→ x⊗ y : L×M → L⊗M ,

of which it is easy to give an explicit description by generators and relations:
the set of generators is L×M and the relations are described by the equations(∨

X
)
⊗ y =

∨
x∈X

x⊗ y

x⊗
(∨

Y
)

=
∨
y∈Y

x⊗ y .

(In the notation of the previous section we would have x⊗ y = [(x, y)].)
SL is a closed monoidal category with respect to this tensor product, with

℘(1) as the tensor unit. Similarly to the category of abelian groups, the right
adjoint to − ⊗ N is hom(N,−); that is, for each N we have the familiar
isomorphism

hom(M ⊗N,L) ∼= hom(M, hom(N,L)) ,

natural in the variables M and L, which in fact is an order isomorphism.

Exercise II.1.6 1. Show that x ⊗ y can be explicitly described as the
following subset of L×M , for each (x, y) ∈ L×M :

↓(0, 1) ∪ ↓(x, y) ∪ ↓(1, 0) .

2. Show, for all sup-lattices M and N , that we have order isomorphisms

hom(M,N) ∼= hom(N∗ ⊗M)∗

M ⊗N ∼= hom(M,N∗)∗ .

3. Show, for all sets X and all sup-lattices M , that we have order isomor-
phisms

℘(X)⊗M ∼=
⊕
x∈X

M

℘(X)⊗ ℘(Y ) ∼= ℘(X × Y ) .

2 Quantales and modules

In this section we shall study basic properties of quantales and their mod-
ules, and we shall describe several simple examples related to C*-algebras,
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groupoids, etc. We shall focus entirely on algebraic aspects. In particular,
although locales are examples of quantales (and we mention this here), we
shall wait until Chapter III in order to provide a more thorough treatment
of locale theory, in particular one that includes the view of locales as being
generalized (point free) spaces.

Unital quantales. In the previous sections we have seen how we can
obtain, from an étale groupoid G, an inverse semigroup whose elements are
the open G-sets of G. But in fact it is not only the open G-sets that can
be multiplied; for any open groupoid G the pointwise multiplication of any
two open sets is an open set (in other words, the multiplication map is open,
cf. exercise I.1.8), and thus the topology Ω(G1) is itself a semigroup. If
furthermore G is étale then u(G0) is open in G1, and thus this semigroup is
a monoid. The structure thus obtained is the following:

Definition II.2.1 By a quantale Q is meant a sup-lattice together with an
associative product (a, b) 7→ ab satisfying

a

(∨
i

bi

)
=
∨
i

(abi)

and (∨
i

ai

)
b =

∨
i

(aib)

for all a, b, ai, bi ∈ Q. The quantale Q is said to be unital provided that there
exists an element e ∈ Q for which

ea = a = ae

for all a ∈ Q. An idempotent quantale is one whose multiplication is idempo-
tent, and a commutative quantale is one whose multiplication is commutative.

By a quantale homomorphism f : Q → Q′ is meant a sup-lattice homo-
morphism which is also a homomorphism of semigroups. A homomorphism
of unital quantales is unital if it is a homomorphism of monoids. We shall
denote by Qu the category whose objects are the quantales and whose mor-
phisms are the quantale homomorphisms. The category of unital quantales
and unital homomorphisms will be denotd by Que.

Example II.2.2 Quantales as generalized topologies. The topology
Ω(X) of any topological space X is a unital quantale with multiplication
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given by intersection of open sets and e = X. More generally, let L be a
locale, by which is meant a sup-lattice satisfying the distributivity law

a ∧

(∨
i

bi

)
=
∨
i

(abi) .

(Locales will be studied in section 1.) Then L is a quantale with unit e = 1
and multiplication given by ab = a ∧ b. Such quantales are idempotent and
commutative. Conversely, any idempotent unital quantale with e = 1 is a
locale (and therefore commutative), as will be seen in section 1.

Example II.2.3 Groupoid quantales. The topology of any open groupoid
G is a quantale under pointwise composition of arrows, and it is unital if G is
étale. In fact the latter condition characterizes topological étale groupoids;
that is, G is étale if and only if its quantale is unital, as will be seen later.

Example II.2.4 Quantales of binary relations. Let X be a set. The
set of binary relations

Rel(X) = ℘(X ×X)

is the topology of the discrete pair groupoid Pair(X) and thus it is a unital
quantale. The multiplication is the composition of binary relations, which
extends the usual composition of functions. We shall in general take the
multiplication in the forward direction: RS = S ◦R.

Example II.2.5 Endomorphism quantales. Let L be a sup-lattice. The
set of sup-lattice endomorphisms of L

End(L) = hom(L,L)

is a unital quantale with multiplication fg = g ◦ f and unit e = idL (cf.
section 1). If L = ℘(X) then End(L) ∼= Rel(X): each endomorphism

f : ℘(X)→ ℘(X)

can be identified with the relation

{(x, y) ∈ X ×X | y ∈ f({x})} .

Example II.2.6 Free quantales on semigroups. Let M be a monoid
with unit 1. Then the powerset ℘(M) is a unital quantale with e = {1} and
multiplication computed pointwise:

UV = {xy | x ∈ U, y ∈ V } .
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This is actually the free unital quantale on M , in the sense that if Q is a
unital quantale and f : M → Q is a homomorphism of monoids then there
is a unique homomorphism f ] : ℘(M) → Q of unital quantales such that
f ]({x}) = f(x) for all x ∈ M (f ], of course, coincides with the unique
sup-lattice extension of f — cf. section 1). This establishes an adjunction
between the category of monoids and the category of unital quantales Que,
where the left adjoint is, on objects, the assignment M → ℘(M), and the
right adjoint in the forgetful functor.

It is often useful to think of a quantale as being a kind of ring, with the
difference that the underlying additive abelian group has been replaced by a
sup-lattice, and the bilinearity of the multiplication has become distributivity
of the multiplication with respect to joins (instead of sums) in each variable.
We can make this idea precise in terms of the tensor category structure of SL:
a quantale Q is just a semigroup in SL (in the sense of tensor categories), just
as a ring is a semigroup in the category of abelian groups. Concretely, then,
a quantale is a sup-lattice Q equipped with a sup-lattice homomorphism (the
multiplication)

γ : Q⊗Q→ Q

satisfying associativity in the sense that the following diagram is commuta-
tive:

Q⊗ (Q⊗Q)
∼= //

id⊗γ
��

(Q⊗Q)⊗Q γ⊗id // Q⊗Q
γ

��
Q⊗Q γ

// Q

Similarly, a unital quantale is the same as a monoid in SL; that is, in addition
to the multiplication γ there is a unit homomorphism

υ : ℘(1)→ Q

such that the following diagram is commutative:

℘(1)⊗Q

∼=
((RRRRRRRRRRRRRRRR

υ⊗id // Q⊗Q
γ

��

Q⊗ ℘(1)

∼=
vvllllllllllllllll

id⊗υoo

Q

Example II.2.7 Tensor quantales. Unital quantales can be defined from
sup-lattices by the usual “tensor algebra” construction: if L is a sup-lattice,
its “tensor quantale” is

T (L) =
⊕
n∈N0

L⊗n = ℘(1)⊕ L⊕ (L⊗ L)⊕ (L⊗ L⊗ L)⊕ . . .
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with multiplication defined by concatenation of pure tensors:

(a1 ⊗ . . .⊗ an)(b1 ⊗ . . .⊗ bm) = a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bm .

This has a universal property: if Q is a unital quantale and h : L → Q
is a sup-lattice homomorphism there is a unique homomorphism of unital
quantales h] : T (L) → Q that extends h (we identify L with a sub-sup-
lattice of T (L)). This shows that the forgetful functor from unital quantales
to sup-lattices has a left adjoint.

Exercise II.2.8 1. Let Q be a quantale, and a ∈ Q. Since the multi-
plication preserves joins in each variable we have two sup-lattice en-
domorphisms Q → Q, namely multiplication by a on the left and on
the right. The right adjoints to these are called residuations, they are
denoted by a\− and −/a,2 and they are defined by the formulas

ax ≤ y ⇐⇒ x ≤ a\y
xa ≤ y ⇐⇒ x ≤ y/a .

(a) Show that the following properties hold:

i. a(a\y) ≤ y

ii. x ≤ a\(ax)

iii. a(a\(ax)) = ax

iv. a\(a(a\y)) = a\y

(b) Write and prove analogous formulas for /.

2. Let C be a small category with set of objects C0 ⊆ C1. Show that the
powerset ℘(C1) is a quantale under pointwise multiplication, and that
it is unital with unit C0.

3. The previous exercise generalizes the example of II.2.6. Can you find
an analogous universal property for the unital quantale ℘(C1) of a small
category C?

2Another common notation for a/x and x\a is x →l a and x →r a, respectively —
see [11]. This and other arrow based notations are motivated by intuitionistic logic and
Heyting algebras, where the implication operation is right adjoint to meet (conjunction):
x ∧ a ≤ y ⇐⇒ x ≤ a→ y. More generally, for any commutative quantale the two resid-
uations coincide and this provides the grounds for interpreting the implication connective
of the linear logic of [4] — see also [36] and [37].
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Involutive quantales. An involutive semigroup is a semigroup S equipped
with an involution

(−)∗ : S → S ,

by which is meant a map satisfying, for all x, y ∈ S, the conditions

x∗∗ = x

(xy)∗ = y∗x∗ .

If S is a monoid with unit 1 then we necessarily have 1∗ = 1; that is, 1 is a
self-adjoint, or hermitian, element.

Definition II.2.9 By an involutive quantale is meant an involutive semi-
group in SL; in other words, this is a quantale Q equipped with a sup-lattice
endomorphism

(−)∗ : Q→ Q

which is also a semigroup involution. By a homomorphism of involutive
quantales f : Q → Q′ is meant a quantale homomorphism that commutes
with the involution:

f(a∗) = f(a)∗ .

The category of involutive quantales and involutive homomorphisms will be
denoted by Qu∗, and the category of unital involutive quantales and unital
involutive homomorphisms will be denoted by Qu∗e.

Example II.2.10 Commutative quantales. Any commutative quantale
Q can be made an involutive quantale by equipping it with the trivial invo-
lution a∗ = a. Conversely, an involutive quantale whose involution is trivial
is necessarily commutative.

Example II.2.11 Groupoid quantales. Let G be an open topological
groupoid. The topology Ω(G1) is an involutive quantale with the involution
given by pointwise inversion:

U∗ = U−1 .

In particular, the quantale Rel(X) of binary relations on a set X is involutive
with involution

R∗ = {(y, x) | (x, y) ∈ R} .
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Example II.2.12 Endomorphism quantales. If L is a self-dual sup-
lattice, by which one means a sup-lattice equipped with an antitone order
automorphism (−)′ : L→ L, then End(L) is involutive with

f ∗(y) =
(∨
{x ∈ L | f(x) ≤ y′}

)′
.

This agrees with the involution of Rel(X) when L = ℘(X) and we take the
duality to be complementation: Y ′ = X \ Y .

Example II.2.13 Symmetric sup-lattice 2-forms. Let L be a sup-
lattice. A symmetric 2-form on L [34] is a sup-lattice bimorphism

ϕ : L× L→ f

satisfying ϕ(x, y) = ϕ(y, x) for all x, y ∈ L.3 A continuous endomap of ϕ is
a pair of sup-lattice homomorphisms f, g : L→ L such that

ϕ(x, g(y)) = ϕ(f(x), y) .

The set End(ϕ) of continuous endomaps of ϕ is a unital involutive quantale
under the pointwise order, with unit (idL, idL), multiplication

(f, g)(f ′, g′) = (f ′ ◦ f, g ◦ g′)

and involution (f, g)∗ = (g, f). If the 2-form ϕ is faithful, by which is meant
that if ϕ(x, y) = ϕ(x, z) for all x ∈ L then y = z, then any continuous
endomap is of the form (f, f ∗) with f ∗ as in the previous example for the
duality x 7→ x′ =

∨
{y ∈ L | ϕ(x, y) = 0f}, and thus End(ϕ) ∼= End(L) as

unital involutive quantales.

Example II.2.14 Free involutive quantales. Example II.2.6 can be ex-
tended to involutive quantales. If S is an involutive semigroup then ℘(S)
is an involutive quantale with the pointwise involution. Furthermore it is a
free involutive quantale on S; in other words, the assignment S 7→ ℘(S) is
the object part of a functor which is left adjoint to the forgetful functor from
involutive quantales to involutive semigroups, and similar remarks apply to
involutive monoids and unital involutive quantales. A different adjunction
holds for groups and unital involutive quantales. First, a functor from uni-
tal involutive quantales to groups can be defined by mapping each unital
involutive quantale Q to its group of units

Q× = {a ∈ Q | aa∗ = a∗a = e} ,
3Readers not interested in constructivity may assume that f is the chain 2 = {0, 1}

with 0 < 1, as in [34].
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since any homomorphism of unital involutive quantales h : Q→ K restricts
to a group homomorphism h|Q× : Q× → K×. Then it is easy to see that this
functor has a left adjoint that to each group G assigns ℘(G); in other words,
if G is a group, Q is a unital involutive quantale, and h : G→ Q× is a group
homomorphism then there is a unique homomorphism of unital involutive
quantales h] : ℘(G)→ Q such that h]({x}) = h(x) for all x ∈ G.

Exercise II.2.15 1. Provide a suitable definition of involutive semigroup
in an arbitrary tensor category. Prove, in this general setting and in
the case of a monoid, that the unit is self-adjoint.

2. Let G be a discrete groupoid, and let ΩG be the set of maps G1 → Ω,
where Ω = ℘(1). Show that ΩG is a unital involutive quantale under
the following convolution multiplication,

(f ∗ g)(x) =
∨
x=yz

f(y) ∧ g(z) ,

with unit being the map e : G1 → Ω such that e(x) = 1 if and only if
x ∈ u(G0), and with involution

f ∗(x) = f(x−1) .

3. Show that we have an isomorphism of unital involutive quantales

℘(G1) ∼= ΩG .

4. Show, for an open (resp. étale) topological groupoid G, that the invo-
lutive quantale (resp. unital involutive quantale) Ω(G1) is isomorphic
to $G, by which is meant the set of continuous maps G1 → $ equipped
with a quantale structure given by formulas as above, where $ = {0, 1}
is Sierpiński space, whose topology is Ω($) = {∅, {1}, {0, 1}}.

5. Let Q and R be unital involutive quantales.

(a) Show that the sup-lattice tensor product Q ⊗ R has a natural
structure of unital involutive quantale with

e = eQ ⊗ eR
(x⊗ y)(x′ ⊗ y′) = (xx′)⊗ (yy′)

(x⊗ y)∗ = x∗ ⊗ y∗ .
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(b) Show that Q ⊗ R is the commuting coproduct of Q and R, by
which is meant that the coprojections

x 7→ x⊗ e : Q→ Q⊗R
y 7→ e⊗ y : R→ Q⊗R

are universal among the pairs of homomorphisms of unital invo-
lutive quantales

Q
f // K R

goo

such that f(x)g(y) = g(y)f(x) for all x ∈ Q and y ∈ R; that is,
for any such pair there is a unique homomorphism

h : Q⊗R→ K

such that the following diagram commutes:

K

Q

f

77ooooooooooooooo
−⊗e

// Q⊗R
h

OO

Re⊗−
oo

g

ggOOOOOOOOOOOOOOO

(c) Conclude that the coproduct in the category of unital involutive
quantales Que coincides with the sup-lattice tensor product.

6. Let G and H be discrete groupoids. Show that the unital involutive
quantale ℘(G×H) is isomorphic to ℘(G)⊗ ℘(H).

7. Let G be a transitive discrete groupoid with isotropy I. Show that we
have an isomorphism of unital involutive quantales:

℘(G) ∼= ℘(I)⊗ Rel(G0) .

8. Let G be a topological groupoid whose decomposition into transitive
components is

G =
∐
i

Gi .

Show that we have an isomorphism of unital involutive quantales:

Ω(G) ∼=
⊕
i

Ω(Gi) .
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Nuclei and quotients. Quotients of quantales and of involutive quan-
tales can be handled in terms of a suitable kind of closure operator, called
a nucleus. These generalize the nuclei for locales (cf. Chapter III) and have
been introduced under the name quantic nucleus in [27] (cf. [36]).

Definition II.2.16 Let Q be a quantale. A nucleus (or quantic nucleus) on
Q is a closure operator

j : Q→ Q

such that for all x, y ∈ Q we have

j(x)j(y) ≤ j(xy) .

Moreover, if Q is involutive then the nucleus j is said to be involutive if it
preserves the involution:

j(x∗) = j(x)∗ .

(Equivalently, j(x)∗ ≤ j(x∗), see II.2.23.)

Nuclei define quotients of quantales just as closure operators define quo-
tients of sup-lattices:

Theorem II.2.17 Let Q be a quantale and let j be a nucleus on Q.

1. The sup-lattice Qj is a quantale with multiplication defined by

(x, y) 7→ j(xy)

and j : Q→ Qj is a (surjective) homomorphism of quantales.

2. If Q is unital then so is Qj, with unit j(e).

3. If Q is involutive and j is an involutive nucleus then Qj is involutive
and the involution is the same as in Q (hence, we have Q∗j = Qj).

4. Every quotient of quantales arises like this: if h : Q→ R is a surjective
homomorphism of quantales and h∗ is its right adjoint then the closure
operator k = h∗ ◦ h is a nucleus and the restriction

f |Qk : Qj → R

is an isomorphism of quantales. Similar remarks apply to unital quan-
tales and involutive quantales.
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Example II.2.18 Let R be a ring. The multiplicative semigroup structure
of R makes ℘(R) a quantale, and the closure operator j that assigns to each
subset X ⊆ R the additive subgroup generated by X is a nucleus. The
quotient quantale ℘(R)j is the set Sub(R) of all the additive subgroups of
R. The product of two subgroups A and B is the subgroup generated by the
pointwise product of and A and B, and it can be described explicitly by the
formula

(II.2.1) AB = {a1b1 + . . .+ anbn | ai ∈ A, bi ∈ B (n = 1, 2, . . .)} .

Moreover, if R is a unital ring with unit 1R then Sub(R) is a unital quantale
with the unit e being the additive subgroup generated by 1R. And if R is
an involutive ring (i.e., R is equipped with an additive operation x 7→ x∗

which is an involution for the multiplicative semigroup of R) then Sub(R) is
an involutive quantale with the involution computed pointwise.

Example II.2.19 Let S be a topological semigroup with topology Ω(S).
The topological closure on ℘(S) is a nucleus, and thus the sup-lattice c(S)
of closed sets of S is a quantale quotient of ℘(S): the product of two closed
sets X and Y is the topological closure of the pointwise product:

XY = {xy | x ∈ X, y ∈ Y } .

If S is involutive then so is c(S), under pointwise involution.

Example II.2.20 The two previous examples can be combined into various
kinds of topological algebras. For instance, if A is a topological C-algebra
we have several quotients: Sub(A) as in II.2.18; the subset SubC(A) ⊆ SubA
consisting of all the linear subspaces of A; the subset c(A) ⊆ ℘(A) of topo-
logically closed subsets; the subset Subc(A) = Sub(A)∩ c(A) of topologically
closed additive subgroups; and the subset Subc

C(A) = SubC(A) ∩ c(A) of
topologically closed linear subspaces. These form the following commutative
diagram of quotient maps:

℘(A) //

��

Sub(A) //

��

SubC(A)

��
c(A) // Subc(A) // Subc

C(A)

The multiplication in SubC(A) is given by the same formula (II.2.1) as in
Sub(A), and in Subc(A) and Subc

C(A) we have

UV = {a1b1 + . . .+ anbn | ai ∈ U, bi ∈ V (n = 1, 2, . . .)} .

If A is an involutive algebra these sets define quotients of involutive quantales.
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Example II.2.21 Self-adjoint operator algebras. If A is a C*-algebra
the involutive quantale Subc

C(A) of II.2.20 plays the role of a spectrum of A
[21, 24, 25, 12, 13], and it is usually denoted by MaxA. Similarly, the set
of weakly closed linear subspaces of a Von Neumann algebra B is a unital
involutive quantale Maxw(B) [30, 24, 25].

The assignment A 7→ MaxA of the above example extends to a functor
from the category of C*-algebras and ∗-isomorphisms to the category of in-
volutive quantales and involutive homomorphisms. It has been shown that
this functor is a complete invariant for unital C*-algebras:

Theorem II.2.22 ([13]) Let A and B be unital C*-algebras. Then A and
B are ∗-isomorphic if and only if MaxA and MaxB are isomorphic as unital
involutive quuantales.

Exercise II.2.23 1. Show that the following conditions on a nucleus j
of an involutive quantale Q are equivalent:

(a) j is involutive;

(b) j(x)∗ ≤ j(x∗) for all x ∈ Q;

(c) Qj is a self-adjoint subset.

2. Recall the notion of residuation of Exercise II.2.8-1. Show that for an
involutive quantale Q the following properties hold for all a, x ∈ Q:

(a\x)∗ = x∗/a∗

(x/a)∗ = a∗\x∗ .

3. Show, for an arbitrary quantale Q, that the subsets of the form Qj for
a nucleus j on Q are precisely those (necessarily meet-closed) subsets
S of Q such that x/a ∈ S and a\x ∈ S for all x ∈ S and a ∈ Q.

Generators and relations. Let Q be a quantale and R ⊆ Q × Q a
subset. Similarly to what we did for sup-lattices in section 1, we want to
find the universal solution, now for quantales, for identifying y and z for all
(y, z) ∈ R. Noticing that the nuclei on Q form a complete lattice it is easy
to show that this quotient coincides with QνR where νR is the least nucleus
ν that equalizes R in the sense that ν(y) = ν(z) for all (y, z) ∈ R.

Alternatively, we may begin by showing that if R is closed under multi-
plication then the quantale quotient coincides with the sup-lattice quotient:



2. QUANTALES AND MODULES 43

Lemma II.2.24 Let Q be a quantale and R a subset of Q × Q such that
(ayb, azb) ∈ R for all (y, z) ∈ R and a, b ∈ Q (for instance, R could be a sub-
semigroup of Q×Q). Then the closure operator jR defined after Proposition
II.1.4 is a nucleus (that is, jR = νR).

Hence, for general R the quantale quotient can be computed in two steps.
First we generate a new subset R′ ⊆ Q×Q by closing R under multiplication:

R′ = {(ayb, azb) ∈ Q×Q | (y, z) ∈ R, a, b ∈ Q} .

(R′ is the least subset of Q × Q that contains R and for which we have
(y, z) ∈ R′ ⇒ (ayb, azb) ∈ R′ for all a, b ∈ Q.) The second step is to define
the sup-lattice quotient with respect to R′. In other words, νR = jR′ .

In fact we may amalgamate the two steps into a single one, thus describing
the quotient in one gulp, as follows:

Theorem II.2.25 Let Q be a unital quantale, and R ⊆ Q×Q a set. Then
QνR coincides with the set Q′ of those elements x ∈ Q such that for all
(y, z) ∈ R and all a, b ∈ Q we have ayb ≤ x ⇐⇒ azb ≤ x.

Proof. First, it is easy to see that Q′ is closed under meets and residuations
(cf. Exercise II.2.23), and thus it defines a nucleus k on Q. Furthermore, for
all (y, z) ∈ R and x ∈ Q we have y ≤ k(x) if and only if z ≤ k(x), and
thus from y ≤ k(y) and z ≤ k(z) we conclude z ≤ k(y) and y ≤ k(z), i.e.,
k(y) = k(z). Hence, νR ≤ k, i.e., Q′ ⊆ QνR . Conversely, let us prove that
QνR ⊆ Q′. Let x, a, b ∈ Q and (y, z) ∈ R. Then,

ayb ≤ νR(x) ⇐⇒ νR(ayb) ≤ νR(x)⇒ νR(a)νR(y)νR(b) ≤ νR(x)

⇐⇒ νR(a)νR(z)νR(b) ≤ νR(x)⇒ azb ≤ νR(x) .

In a similar way we conclude that azb ≤ νR(x) ⇒ ayb ≤ νR(x), and thus
νR(x) ∈ Q′.

Now we can present quantales easily by generators and relations: given a
set of generators X and a set of relations R ⊆ ℘(X+)×℘(X+), the quantale
presented by X and R is ℘(X+)νR . Similarly to what we did in the case of
sup-lattices, we may replace the explicit description of the relations in R by
the properties with respect to which the injection of generators

[.] : X → ℘(X+)νR

is universal.
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Example II.2.26 Tensor quantales. Let L be a sup-lattice. The tensor
quantale

T (L) =
⊕
n∈N0

L⊗n

can be presented by generators and relations by taking L to be the set of
generators, with the following relations, for all X ⊆ L:[∨

X
]

=
∨
x∈X

[x] .

Exercise II.2.27 1. Obtain similar descriptions for unital quantales and
involutive quantales presented by generators and relations.

2. State and prove a theorem similar to II.2.25 but with each (y, z) ∈ R
being interpreted as an inequality y ≤ z.

3. Show that the unital involutive quantale MaxA of a unital C*-algebra
A (cf. Example II.2.21) has the following presentation by generators
and relations:

• The set of generators is A.

• The relations are as follows:

e = [1A]
0 = [0A]

[a][b] = [ab]

[a] ≤
∨
i[ai] (if a ∈

∑
i ai) .

Right-sided elements. Let Q be a quantale. An element a ∈ Q is
right-sided if a1 ≤ a, and strictly right-sided if a1 = a. Similarly, a is left-
sided (resp. strictly left-sided) if 1a ≤ a (resp. 1a = a). An element a is
two-sided if it is both right- and left-sided. The sets of right-sided, left-sided,
and two-sided elements of Q are denoted respectively by R(Q), L(Q), I(Q).

Example II.2.28 1. Let R be a ring. Then R(Sub(R)) is the set of right
ideals of R.

2. Let A be a C*-algebra. Then R(MaxA) is the set of norm-closed right
ideals of A.

3. Let L be a sup-lattice. Then R(End(L)) ∼= Lop, L(End(L)) ∼= L, and
I(End(L)) has only two elements. For the first isomorphism, L →
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R(End(L)), we map each x to its annihilator ax : L → L, which is
right-sided in End(L):

ax(y) =

{
0 if y ≤ x
1 otherwise.

The second isomorphism, L→ L(End(L)), is given by x 7→ cx where

cx(y) =

{
0 if y = 0
x otherwise.

4. In particular, let X be a set. Then R(Rel(X)) ∼= L(Rel(X)) ∼= ℘(X).

5. More generally, let G be a discrete groupoid. Then

R(℘(G)) ∼= L(℘(G)) ∼= ℘(G0) .

Modules and representations. Just as a quantale is a semigroup in
the monoidal category SL so a quantale module is an action in SL. More
precisely, let Q be a quantale with multiplication

γ : Q⊗Q→ Q .

Then by a left Q-module is meant a sup-lattice M equipped with a left action

α : Q⊗M →M

satisfying associativity with respect to the quantale multiplication; that is,
such that the following diagram is commutative:

Q⊗ (Q⊗M)
∼= //

id⊗α
��

(Q⊗Q)⊗M γ⊗id // Q⊗M
α

��
Q⊗M α

//M

We shall usually write ax for α(a ⊗ x), and with this notation associativity
becomes the equation

a(bx) = (ab)x .

We shall also in general assume that Q-modules are unitary whenever Q is
unital, meaning that the action satisfies, for all x ∈M ,

ex = x .
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A right module is defined in a similar way. Of course, a Q-module structure
on M can be equivalently defined as a representation of Q on M , by which
is meant a homomorphism

Q→ End(M) .

Nuclei and quotients can be handled in an analogous way to that of quantales.
A nucleus on M is a closure operator

j : M →M

satisfying aj(x) ≤ j(ax) for all a ∈ Q and x ∈ M , and the subsets Mj of
fixed-points of a nucleus on M are precisely the quotients of M .

IfQ is a unital quantale andX is a set then the free (unitary) left (or right)
Q-module generated by X is the function module QX of all maps X → Q
with the obvious action given by pointwise multiplication. The injection of
generators

X → QX

sends each x ∈ X to the corresponding “unit vector” ex:

ex(y) =

{
e if y = x
0 otherwise.

We conclude this section with a note on tensor products of modules.
Let Q be a quantale, and let MQ and QN be a right and a left Q-module,
respectively. A module bimorphism

f : M ×N → L

into a sup-lattice L is a sup-lattice bimorphism such that

f(ma, n) = f(m, an)

for all m ∈M , n ∈ N , and a ∈ Q. There is a universal module bimorphism

(m,n) 7→ m⊗ n : M ×N →M ⊗Q N ,

and M ⊗Q N is called the tensor product (over Q) of the modules M and
N . The usual formulas of commutative algebra and noncommutative algebra
apply to quantale modules.

Exercise II.2.29 1. Let Q be a quantale. Show that the sup-lattice of
right-sided elements R(Q) is a left Q-module under multiplication by
elements of Q on the left, and that L(Q) is a right Q-module under
multiplication by elements of Q on the right. Verify that if Q is unital
then so are the modules R(Q) and L(Q).
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2. By analogy with what was done above for quantales, fill in the details,
for quantale modules, of the theory of nuclei, quotients, residuations,
generators and relations.

3. Show that, concretely as a subset of ℘(M × N), the tensor product
M ⊗Q N consists of those sets X ∈ M ⊗ N satisfying the additional
property that, for all m ∈M , n ∈ N , and a ∈ Q,

(ma, n) ∈ X ⇐⇒ (m, an) ∈ X .

4. List “typical” formulas involving tensor products of ring modules that
apply equally to quantale modules.

3 Supported quantales

In this section we study a special kind of unital involutive quantale for which
there is an additional operation, called a support, satisfying a few simple
properties whose consequences are important. Moreover, the supports that
arise in our examples are of a kind known as stable. Such supports are
uniquely defined and they are automatically preserved by unital involutive
homomorphisms. Hence, possessing a stable support is a property rather
than extra structure. In addition, we shall see that these quantales are
closely related to inverse semigroups, and as we shall see in Chapter III these
facts will ultimately help us characterize in a precise (and yet simple) way
the quantales that arise as topologies of étale groupoids. Although in this
chapter we do not go that far, we shall nevertheless establish adjunctions
between inverse semigroups and stably supported quantales which will later,
in Chapter III, provide the grounds for an equivalence of categories between
abstract complete pseudogroups and inverse quantal frames.

Supports. Let G be a discrete groupoid, and let ς : ℘(G) → ℘(G)
be the direct image of the domain map followed by the direct image of the
inclusion G0 → G: that is, for all U ⊆ G,

ς(U) = u(d(U)) .

This operation satisfies the simple properties of the following definition:

Definition II.3.1 Let Q be a unital involutive quantale. A support on Q is
a sup-lattice endomorphism

ς : Q→ Q
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satisfying, for all a ∈ Q,

ςa ≤ e(II.3.2)

ςa ≤ aa∗(II.3.3)

a ≤ ςaa(II.3.4)

A supported quantale is a unital involutive quantale equipped with a specified
support.

Example II.3.2 1. The only support of a locale (cf. Example II.2.2) is
the identity.

2. As already mentioned above, a support for the powerset ℘(G) of a
discrete groupoid G is obtained from the domain map of G:

ςU = {u(d(x)) | x ∈ U} .

As we shall see ahead, this is the only possible support for such a
quantale.

3. In particular, the support of the quantale Rel(X) of binary relations
on a set X is given by ςR = {(x, x) | (x, y) ∈ R for some y}.

Now we address general properties of supported quantales.

Lemma II.3.3 Let Q be a supported quantale. The following conditions
hold:

ςa = a, for all a ≤ e(II.3.4)

ςςa = ςa(II.3.5)

a = ςba, if ςa ≤ ςb(II.3.6)

a = ςaa(II.3.7)

(ςa)∗ = ςa(II.3.8)

a = aς(a∗)(II.3.9)

ςa = 0 ⇔ a = 0(II.3.10)

ςa ≤ ς(aa∗)(II.3.11)

ςa1 = a1(II.3.12)

a1 = aa∗1(II.3.13)

ςa = ςaςa(II.3.14)

a ≤ aa∗a(II.3.15)

ς(a1)b = a1 ∧ b(II.3.16)

ς(a1) = a1 ∧ e(II.3.17)

ς(a ∧ b) ≤ ab∗(II.3.18)
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Furthermore,

• the subquantale ↓e coincides with ςQ and it is a locale with ab = a ∧ b;

• all the elements of ςQ are projections, and ςQ is a unital involutive
subquantale with trivial involution;

• the sup-lattice homomorphism ςQ → R(Q) defined by a 7→ a1 is a
retraction split by the map R(Q)→ ςQ which is defined by a 7→ ςa;

• the map ς : R(Q)→ ςQ is an order embedding.

Proof. First we prove properties (II.3.4)–(II.3.18).

(II.3.4): From (II.3.4) and (II.3.2), if a ≤ e we have a ≤ ςaa ≤ ςae = ςa, and
from (II.3.3) and (II.3.2) we have ςa ≤ aa∗ ≤ ae∗ = ae = a.

(II.3.5): Immediate from the previous one because ςa ≤ e.

(II.3.6,II.3.7): From (II.3.4) and (II.3.2): if ςa ≤ ςb we have a ≤ ςaa ≤ ςba ≤ ea = a.

(II.3.8): We have ςa = ςςa ≤ (ςa)(ςa)∗ ≤ e(ςa)∗, and thus ςa ≤ (ςa)∗, i.e.,
ςa = (ςa)∗.

(II.3.9): From (II.3.7) and (II.3.8) we have a = a∗∗ = (ς(a∗)a∗)∗ = aς(a∗)∗ =
aς(a∗).

(II.3.10): If ςa = 0 then a = 0 because a ≤ ςaa. The converse, i.e., ς0 = 0, is
trivial because ς preserves joins (but we remark that the axiom ςa ≤ aa∗

would also imply ς0 = 0 for more general maps ς).

(II.3.11): Follows from (II.3.3) and (II.3.5).

(II.3.12,II.3.13): Follows from (II.3.3) and (II.3.4): ςa1 ≤ aa∗1 ≤ a1 ≤ ςaa1 ≤ ςa1.

(II.3.14): Follows from (II.3.4) and (II.3.5): ςa ≤ ςςaςa = ςaςa ≤ ςa.

(II.3.15): Follows from (II.3.4) and (II.3.3): a ≤ ςaa ≤ aa∗a.

(II.3.16): From (II.3.12) we have ς(a1)b ≤ ς(a1)1 = a11 = a1. Since ς(a1)b ≤
eb = b, we obtain the inequality

ς(a1)b ≤ a1 ∧ b .

The converse inequality follows from (II.3.4):

a1 ∧ b ≤ ς(a1 ∧ b)(a1 ∧ b) ≤ ς(a1)b .
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(II.3.17): Follows from the previous one with b = e.

(II.3.18): Follows from (II.3.3): ς(a ∧ b) ≤ (a ∧ b)(a ∧ b)∗ ≤ ab∗.

The downsegment ↓e coincides with ςQ due to (II.3.4). It is of course a
unital subquantale, and it is idempotent due to (II.3.14). Therefore it is
an idempotent quantale whose unit is the top, in other words a locale with
ab = a ∧ b (cf. section 1).

We have already seen that the elements a ≤ e are idempotent and, by
(II.3.8), self-adjoint, i.e., projections. Hence, the locale ςQ, with the trivial
involution, is an involutive subquantale of Q.

Now we verify that the support splits the map (−)1 : ςQ → R(Q). Let
a ∈ R(Q). Then, by (II.3.12), ςa1 = a1 = a.

It follows that ς : R(Q) → ςQ is an order embedding because it is a
section.

Exercise II.3.4 1. Let Q be a unital involutive quantale such that a ≤
aa∗a for all a ∈ Q. Show that Q is a Gelfand quantale in the sense of
[23] (i.e., such that a = aa∗a for all right-sided elements a). Conclude
that every supported quantale is a Gelfand quantale.

2. By a locally Gelfand quantale [31] is meant an involutive quantale Q
such that for all projections p = p2 = p∗ ∈ Q the involutive subquantale
↓p is Gelfand. Show that any supported quantale is a locally Gelfand
quantale.

Stable supports. Now we shall study the particularly well behaved
supported quantales whose supports are stable.

Lemma II.3.5 Let Q be a supported quantale. The following conditions are
equivalent:

1. for all a, b ∈ Q, ς(ab) = ς(aςb);

2. for all a, b ∈ Q, ς(ab) ≤ ςa;

3. for all a ∈ Q, ς(a1) = ςa;

4. for all a ∈ Q, a1 ∧ e = ςa;

5. for all a, b ∈ Q, a1 ∧ b = ςab;

6. the map (−)1 : ςQ→ R(Q) is an order isomorphism whose inverse is ς
restricted to R(Q) (in particular, R(Q) is a locale with a1∧ b1 = ςab1);



3. SUPPORTED QUANTALES 51

7. for all a, b ∈ Q, a ≤ ςba if and only if ςa ≤ ςb;

8. for all a ∈ Q, ςa ≤ b1 if and only if ςa ≤ ςb.

Proof. First we show that the first five conditions are equivalent. First,
assuming 1, we have ς(ab) = ς(aςb) ≤ ς(ae) = ςa, which proves 2. Conversely,
if 2 holds then

ς(ab) ≤ ς(aςbb) ≤ ς(aςb) ≤ ς(abb∗) ≤ ς(ab) ,

and thus 1 holds. It is obvious that 3 is equivalent to 2, and now let us show
that 3, 4, and 5 are equivalent. First, (II.3.16) tells us that ς(a1)b = a1 ∧ b,
and thus if 3 holds we obtain ςab = a1∧b. Hence, 3 implies 5, which trivially
implies 4. Finally, if 4 holds we have ς(a1) = a11∧ e = a1∧ e = ςa, and thus
3 holds.

Now we deal with the remaining conditions.
(1⇒6) Assume 1, and let a ∈ Q. Then ς(ςa1) = ς(ςaς1) = ς(ςae) = ςςa =

ςa. This shows that the map (−)1 : ςQ → R(Q) is an order isomorphism
with ς as its inverse, because we have already seen that it is a retraction split
by ς.

(6⇒3) Let a ∈ Q. We have a1 = ςa1 for any support, and thus assuming
6 we have ς(a1) = ς(ςa1) = ςa.

(2⇒7) Assume a ≤ ςba and that 2 holds. Then ςa ≤ ς(ςba) ≤ ςςb = ςb.
The converse is the condition that a ≤ ςba follows from ςa ≤ ςb, which
coincides with (II.3.6).

(7⇒2) From the condition a ≤ ςaa we obtain, multiplying by b on the
right, (ab) ≤ ςa(ab), and thus assuming 7 we obtain ς(ab) ≤ ςa.

(3⇒8) Assume that 3 holds and that ςa ≤ b1. Then ςa = ςςa ≤ ς(b1) =
ςb. Conversely, if ςa ≤ ςb then ςa ≤ ςbe ≤ ςb1 = b1.

(8⇒2) We have ς(ab) ≤ abb∗a∗ ≤ a1, and thus assuming 8 we conclude
ς(ab) ≤ ςa.

Definition II.3.6 A support is stable if it satisfies the equivalent condi-
tions of II.3.5. A quantale equipped with a specified stable support is stably
supported.

Example II.3.7 All the examples of supports discussed so far are stable. A
simple example of a supported quantale whose support is not stable is the
four element unital involutive quantale that, besides the elements 0, e, and
1, contains an element a such that

a2 = a∗ = a < e ,
a1 = 1 .
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This quantale has a unique support, defined by ςa = a, which is not stable:
ς(a1) = ς1 = e � a = ςa.

Lemma II.3.8 Let Q be a stably supported quantale.

1. Let a, b ∈ Q, and assume that the following three conditions hold:

b ≤ e

b ≤ aa∗

a ≤ ba .

Then b = ςa.

2. ς(ab) = aςb for all a, b ∈ Q with a ≤ e.

Proof. 1. Assume b ≤ e. Then, from II.3.5-7, the condition a ≤ ba implies
ςa ≤ b. And the condition b ≤ aa∗ implies b ≤ a1, which, by II.3.5-8, is
equivalent to b ≤ ςa. Hence, if all the three conditions hold we conclude that
b = ςa.

2. If a ≤ e we have aςb ≤ e, and thus aςb = ς(aςb) = ς(ab).

Theorem II.3.9 1. If Q has a stable support then that is the only support
of Q, and the following equation holds:

(II.3.10) ςa = e ∧ aa∗ .

2. If Q has a support and K has a stable support then any homomorphism
of unital involutive quantales from Q to K preserves the support. (In
particular, the relational representations Q→ Rel(X) of Q are exactly
the same as the support preserving relational representations.)

Proof. 1. Let b = e∧ aa∗. Then by (II.3.2) and (II.3.3) we have ςa ≤ b, and
thus a ≤ ba, by II.3.5-7. Hence, by II.3.8, we conclude that b = ςa, which
justifies the equation.

2. Let h : Q→ K be a homomorphism of unital involutive quantales, let
a ∈ Q, and let b = h(ςa). Then we have:

b = h(ςa) ≤ h(e) = e ,
b = h(ςa) ≤ h(aa∗) = h(a)h(a)∗ ,
h(a) ≤ h(ςaa) = h(ςa)h(a) = ba .

Hence, by II.3.8 we conclude that h(ςa) = b = ςh(a); that is, the support is
preserved by h.
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This theorem justifies the assertion that having a stable support is a
property of a unital involutive quantale, rather than extra structure on it,
and it motivates the following definition for the category of stably supported
quantales (whose morphisms necessarily preserve the supports):

Definition II.3.10 The category of stably supported quantales, StabQu, is
the full subcategory of the category of unital involutive quantales Qu∗e whose
objects are the stably supported quantales.

In addition, the following theorem implies that each unital involutive
quantale has an idempotent stably supported completion (idempotence mean-
ing that any stably supported quantale is isomorphic to its completion, which
is a consequence of StabQu being a full subcategory):

Theorem II.3.11 StabQu is a full reflective subcategory of Qu∗e.

Proof. It is straightforward to see that the limits in StabQu are calculated
in Qu∗e, and thus the proof of the theorem will follow from verifying that the
solution set condition of Freyd’s adjoint functor theorem [17, Ch. V] holds.

In order to see this, first consider the category whose objects are the
involutive monoids M equipped with an additional operation ς : M → M ,
of which we require no special properties, and whose morphisms are the
homomorphisms of involutive monoids that also preserve the operation ς.
Let us refer to such monoids as ς-monoids. From standard universal algebra
it follows that there exist free ς-monoids.

Now let X be a set and let us denote by F (X) the corresponding free
ς-monoid. Let also f : X → K be a map, where K is a supported quan-
tale. Since the support makes K an ς-monoid, f has a unique homomorphic
extension f ′ : F (X) → K, of which there is then a unique join preserv-
ing extension f ′′ : ℘(F (X)) → K. Besides being a sup-lattice, ℘(F (X)) is
itself an ς-monoid whose operations are computed pointwise from those of
F (X) (hence preserving joins in each variable). Furthermore, each of these
operations is preserved by f ′′.

Now let Q be a unital involutive quantale, and let

h : Q→ K

be a homomorphism of unital involutive quantales, where K is stably sup-
ported. As above, there is a factorization:

Q //

h
((PPPPPPPPPPPPPPPP ℘(F (Q))

h′′

��
K.
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Hence, the (necessarily stable) supported subquantale S ⊆ K generated
by the image h(Q) is a surjective image of ℘(F (Q)), where the surjection
℘(F (Q))→ S is both a sup-lattice homomorphism and a homomorphism of
ς-monoids. This surjection determines an equivalence relation θ on ℘(F (Q))
such that:

• θ is a congruence with respect to joins, ς, and the involutive monoid
structure;

• the injection of generators Q → ℘(F (Q))/θ is a homomorphism of
unital involutive quantales;

• the quotient ℘(F (Q))/θ is stably supported.

Therefore we obtain a factorization

Q
ηθ //

h
((QQQQQQQQQQQQQQQQQ ℘(F (Q))/θ

h′′′

��
K

in Qu∗e (which implies that h′′′ is in fact a homomorphism of supported quan-
tales, by II.3.9). Since K and h have been chosen arbitrarily, the solution
set condition now follows from the observation that the set of congruences
which satisfy the above three conditions is small.

(One may also observe that the set of congruences is closed under inter-
sections, and that the desired reflection is ℘(F (Q))/Θ, where Θ is the least
congruence.)

Exercise II.3.12 1. Show that the following conditions are equivalent,
for any supported quantale Q:

(a) The support of Q is stable;

(b) For all a ∈ Q, ςa =
∧
{b ∈ ςQ | a ≤ ba};

(c) For all a ∈ Q, ςa =
∨
{b ∈ ςQ | b ≤ a1};

(d) The sup-lattice bimorphism Q × ςQ → ςQ defined by (a, f) 7→
ς(af) makes ςQ a left Q-module.

2. Let Q be a supported quantale.

(a) Show that the following conditions are equivalent:

i. For all a ∈ Q, if ςa ≤ bb∗ then ςa ≤ ςb;
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ii. For all a ∈ Q, ςa =
∨
{b ∈ ςQ | b ≤ aa∗}.

(b) Calling a support that satisfies these equivalent conditions weakly
stable, show that any stable support is weakly stable. Does the
converse hold?

3. Let Q be a stably supported quantale. Show that the sup-lattice iso-
morphism ςQ ∼= R(Q) of Lemma II.3.5-6 is an isomorphism of left
Q-modules with respect to the left module structure of ςQ of the pre-
vious exercise and the left module structure of R(Q) which is given by
left multiplication (cf. Exercise II.2.29).

4. Provide an explicit description of the stably supported reflection of
the unital involutive quantale End(SubC(C2)) of sup-lattice endomor-
phisms on the lattice of complex linear subspaces of C2.

Inverse quantales. Now we shall see that supported quantales are
closely related to inverse semigroups.

Definition II.3.13 Let Q be a unital involutive quantale. A partial unit in
Q is an element a ∈ Q such that the following two conditions hold:

aa∗ ≤ e

a∗a ≤ e .

The set of partial units of Q is denoted by I(Q).

Example II.3.14 Let X be a set, and Q = Rel(X) the quantale of binary
relations on X. Then I(Q) is the set I(X) of partial bijections on X. Hence,
I(Q) is an inverse monoid and, as we shall see below, this is a consequence
of the fact that Q is a supported quantale. More generally, if Q = ℘(G)
for a discrete groupoid G, a partial unit is the same as a G-set, and thus
I(Q) = I(G).

Lemma II.3.15 Let Q be a unital involutive quantale. Then I(Q) is an
involutive submonoid of Q.

Proof. The set I(Q) is clearly closed under involution, and e ∈ I(Q). It
is also closed under multiplication, for if a and b are partial units then
(ab)(ab)∗ = abb∗a∗ ≤ aea∗ = aa∗ ≤ e, and in the same way (ab)∗(ab) ≤ e.
Hence, I(Q) is an involutive submonoid of Q.

Lemma II.3.16 Let Q be a supported quantale, and let a ∈ I(Q). Then,
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1. ςa = aa∗,

2. a = aa∗a,

3. a2 = a if and only if a ≤ e,

4. b ≤ a if and only if b = ςba, for all b ∈ Q.

Proof. 1. We have ςa ≤ aa∗ ≤ ςaaa∗ ≤ ςae = ςa.
2. This is a consequence of the above and of the equality a = ςaa.
3. If a ≤ e then a is an idempotent because ςQ is a locale. Now assume

that a2 = a. Then aa∗ = aaa∗ ≤ ae = a. Hence, aa∗ ≤ a, and, since aa∗ is
self-adjoint, also aa∗ ≤ a∗. Finally, from here we conclude that a ≤ e because
a = aa∗a ≤ a∗a ≤ e.

4. Let b ∈ Q such that b ≤ a (in fact, then b ∈ I(Q)). Then,

ςba ≤ bb∗a ≤ ba∗a ≤ be = b ≤ ςbb ≤ ςba .

This shows that b ≤ a implies b = ςba. The converse is trivial.

In the following theorem the category of inverse quantales should be nat-
urally assumed to be the category whose objects are the supported quantales
and whose morphisms are the unital and involutive homomorphisms that
preserve the supports, although the theorem is true even if we consider as
morphisms all the homomorphisms of unital involutive quantales (in any case
the distinction disappears once we restrict to stable supports).

Theorem II.3.17 1. Let Q be a supported quantale. Then I(Q) is an
inverse monoid whose natural order coincides with the order inherited
from Q, and whose set of idempotents E(I(Q)) coincides with ςQ.

2. The assignment Q 7→ I(Q) extends to a functor I from the category of
supported quantales to the category of inverse monoids InvMon.

Proof. 1. I(Q) is an involutive submonoid of Q, and in particular it is a
regular monoid because for each partial unit a we have both aa∗a = a and
a∗aa∗ = a∗. Hence, in order to have an inverse monoid it suffices to show that
all the idempotents commute, and this follows from II.3.16-3, which implies
that the set of idempotents of I(Q) is the same as ςQ, which is a locale.
Furthermore, the natural order of I(Q) is defined by a ≤ b ⇔ ςab = a, and
thus it coincides with the order of Q, by II.3.16-4.

2. I is a functor because if h : Q → K is any homomorphism of unital
involutive quantales and a ∈ Q is a partial unit then h(a) is a partial unit:
h(a)h(a)∗ = h(aa∗) ≤ h(e) = e, and, similarly, h(a)∗h(a) ≤ e. Hence, h
restricts to a homomorphism of monoids I(Q)→ I(K).
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We shall be particularly interested in supported quantales with the addi-
tional property that each element is a join of partial units. As we shall see,
such quantales are necessarily stably supported.

Definition II.3.18 By an inverse quantale will be meant a supported quan-
tale Q such that every element a ∈ Q is a join of partial units:

a =
∨
{b ∈ I(Q) | b ≤ a} .

The category of inverse quantales, InvQu, is the full subcategory of Qu∗e
whose objects are the inverse quantales.

From II.3.14 it follows that ℘(G) is an inverse quantale for any discrete
groupoid G. In particular, the quantale of binary relations Rel(X) on a set
X is an inverse quantale.

An alternative definition of the concept of inverse quantale can be found
in Exercise II.3.22.

Lemma II.3.19 Any inverse quantale is stably supported (hence, InvQu is
a full subcategory of StabQu).

Proof. Let Q be an inverse quantale, and let a, b ∈ Q, such that

a =
∨
i

si

b =
∨
j

tj ,

where the si and tj are partial units. Then,

ς(ab) = ς

(∨
ij

sitj

)
=
∨
ij

ς(sitj) =
∨
ij

sitj(sitj)
∗ =

∨
ij

sitjt
∗
js
∗
i

≤
∨
i

sis
∗
i =

∨
i

ς(si) = ς

(∨
i

si

)
= ςa .

The converse is not true; that is, not every stably supported quantale is
an inverse quantale (see III.2.21 in section 2).

Lemma II.3.20 Let S be an inverse semigroup. The set L(S) of subsets of
S that are downwards closed in the natural order of S is an inverse quantale.
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The unit is the set of idempotents E(S) (which, if S is a monoid, is just ↓e),
multiplication is computed pointwise,

XY = {xy | x ∈ X, y ∈ Y } ,

the involution is pointwise inversion, X∗ = X−1, and the (necessarily unique)
support is given by the formula

ςX = {xx−1 | x ∈ X} .

Proof. Consider an inverse semigroup S. It is straightforward to verify that
the sup-lattice L(S) is an involutive quantale, with the multiplication and
involution defined above. In particular, for multiplication this means that
downwards closed sets are closed under pointwise multiplication (this would
not be true for an arbitrary partially ordered involutive semigroup, for which
downwards closure would be required after taking the pointwise multiplica-
tion), which is a consequence of the fact that we are dealing with the natural
order of an inverse semigroup: if z ≤ w ∈ XY for X, Y ∈ L(S), then w = xy
with x ∈ X and y ∈ Y , and z = zz−1w = zz−1(xy) = (zz−1x)y ∈ XY
because zz−1x ≤ x ∈ X, and X is downwards closed. For the involution it
is similar, but more immediate.

In order to see that the set of idempotents E(S) is the multiplicative unit,
consider X ∈ L(S). The set E(S) contains the idempotent x−1x for each
x ∈ X, and thus the pointwise product XE(S) contains all the elements of
the form xx−1x = x. Hence, X ⊆ XE(S). The other elements of XE(S)
are of the form xy−1y, with x ∈ X, and we have xy−1y ≤ x in the natural
order of S, implying that xy−1y ∈ X because X is downwards closed. Hence,
XE(S) = X. Similarly we show that E(S)X = X.

In order to see that L(S) is an inverse quantale we apply II.3.22. First,
each X ∈ L(S) is of course a union of partial units:

X =
⋃
{↓x | x ∈ X} .

Secondly, let X ∈ L(S). Then

XX∗X = {xy−1z | x, y, z ∈ X} ⊇ {xx−1x | x ∈ X} = {x | x ∈ X} = X .

To conclude, we show that the operation ς : L(S)→ L(S) defined by

ςX =
⋃
{UU∗ | U ∈ I(L(S)) and U ⊆ X}

coincides with the (clearly join-preserving) operation

ςX = {xx−1 | x ∈ X}
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of the statement of this lemma, thus showing that L(S) is an inverse quantale.
If U ∈ I(L(S)) then UU∗ ⊆ E(S), i.e., xy−1 ∈ E(S) for all x, y ∈ U . But
then

xy−1 = xy−1(xy−1)−1 = xy−1yx−1 = xy−1yy−1yx−1 = (xy−1y)(xy−1y)−1 ,

so we see that xy−1 is of the form zz−1 with z = xy−1y ≤ x, where z ∈ U
because U is downwards closed. We therefore conclude that UU∗ coincides
with the set {xx−1 | x ∈ U}, and from this the required formula for ςX
follows.

Theorem II.3.21 The functor I, restricted to the category of stably sup-
ported quantales StabQu, has a left adjoint from the category of inverse
monoids InvMon to StabQu, which to each inverse monoid S assigns the
quantale L(S).

Proof. First we remark that the embedding S → L(S) actually defines a
homomorphism of monoids S → I(L(S)), which provides the unit of the
adjunction. Now let Q be a stably supported quantale, and h : S 7→ I(Q) a
homomorphism of monoids. Then h preserves the natural order, and thus it
defines a homomorphism of ordered involutive monoids S → Q because, as we
have seen, the natural order of I(Q) is just the order of Q restricted to I(Q).
It follows that h extends (uniquely) to a homomorphism of unital involutive
quantales h : L(S) → Q, namely the sup-lattice extension h(U) =

∨
h(U).

Exercise II.3.22 1. Let Q be a unital involutive quantale such that ev-
ery element in Q is a join of partial units. Show that Q is a supported
quantale (hence, an inverse quantale) if and only if the following con-
ditions hold:

(a) a ≤ aa∗a for all a ∈ Q (equivalently, a = aa∗a for all a ∈ I(Q));

(b) the operation ς : Q→ Q defined by

(II.3.11) ςa =
∨
{bb∗ | b ∈ I(Q) and b ≤ a}

is a sup-lattice homomorphism.

Show that when these conditions hold the operation ς is the support.

2. Give an example of a unital involutive quantale Q satisfying a ≤ aa∗a
for all a ∈ Q but such that the operation ς defined by (II.3.11) does
not preserve joins.
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Enveloping quantales. Recall (cf. Definition I.2.16) that by an ab-
stract complete pseudogroup is meant a complete and infinitely distributive
inverse monoid. We have seen in the previous section how to obtain an in-
verse quantale from an arbitrary inverse semigroup. In the case of an abstract
complete pseudogroup there is another useful inverse quantale L∨(S), here
referred to as the enveloping quantale of S, which takes into account the joins
that exist in S. From here until the end of this section S will be a fixed but
arbitrary abstract complete pseudogroup.

Definition II.3.23 By a compatibly closed ideal of S is meant a downwards
closed set (possibly empty) which is closed under the formation of joins of
compatible sets. The set of compatibly closed ideals of S is denoted by
L∨(S).

Lemma II.3.24 L∨(S) is a quotient of L(S) both as a locale and as a unital
involutive quantale, and it is an inverse quantale.

Proof. Let j : L(S)→ L(S) be the closure operator that to each downwards
closed set U ⊆ S assigns the least compatibly closed ideal that contains U .
First we remark that j is explicitly defined by

j(U) =
{∨

X | X ⊆ U, X is compatible
}
.

In order to see this, let x ≤ y ∈ j(U). Then y is of the form
∨
Y for some

compatible set Y ⊆ U , and thus x = x ∧
∨
Y =

∨
(x ∧ Y ), where the set

x ∧ Y = {x ∧ y | y ∈ Y } is of course compatible. Hence, we have x ∈ j(U),
showing that j(U) is downwards closed. Now let Z ⊆ j(U) be a compatible
set. Each element z ∈ Z is of the form

∨
Uz for some compatible set Uz ⊆ U ,

and the fact that Z is compatible implies that the set Z ′ =
⋃
z∈Z Uz is

compatible. But we also have
∨
Z =

∨
Z ′, and thus z ∈ j(U), showing that

j(U) is closed under the formation of joins of compatible sets. It is thus a
compatible ideal, clearly the smallest one containing U .

Now we shall show that j is both a locale nucleus and a nucleus of involu-
tive quantales, thus proving that L∨(S), which coincides with the quotient of
L(S) obtained as the set of fixed-points of S, is a unital involutive quantale,
a locale, and a quotient of L(S).

Let I, J ∈ L(S). Let X ⊆ I and Y ⊆ J be compatible sets such that∨
X =

∨
Y . Let us denote this join by z. We have z ∈ j(I) ∩ j(J), and all

the elements of j(I)∩ j(J) can be obtained in the same way. Now define the
set

Z = {x ∧ y | x ∈ X, y ∈ Y } .
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We have Z ⊆ I ∩ J , and∨
Z =

∨
x∈X

∨
y∈Y

(x ∧ y) =
∨
x∈X

(
x ∧

∨
Y
)

=
∨
x∈X

(x ∧ z) =
(∨

X
)
∧ z = z .

Hence, z ∈ j(I ∩ J), and we conclude that j(I) ∩ j(J) ⊆ j(I ∩ J), i.e., j is a
nucleus of locales.

Let again I, J ∈ L(S). Consider an arbitrary element of j(I)j(J), which
is necessarily of the form xy with x =

∨
X and y =

∨
Y , where X ⊆ I and

Y ⊆ J are compatible sets. We shall show that xy ∈ j(XY ), hence proving
that j is a nucleus of quantales. First, we remark that XY is a compatible
set, since it is bounded above by xy. Its join

∨
(XY ) coincides with xy,

due to infinite distributivity, and thus xy ∈ j(XY ). Clearly, j preserves the
involution of the quantales, and thus j is a nucleus of involutive quantales.
The involution of L∨(S) is, similarly to that of L(S), given by pointwise
inversion.

Finally, j is also a nucleus with respect to the support of L(S) because
the support is, since L(S) is stably supported, expressed in terms of locale
and unital involutive quantale operations:

ςU = UU∗ ∩ E(S) .

Hence, the conclusion that L∨(S) is stably supported follows, and it is ob-
viously an inverse quantale because it has a basis consisting of the principal
ideals ↓s with s ∈ S, which are partial units of L∨(S).

Example II.3.25 From the results about groupoids and quantales in Chap-
ter III it will follow (but it can also be verified directly) that if G is a discrete
groupoid then we have an isomorphism L∨(I(G)) ∼= ℘(G). In particular, the
enveloping quantale L∨(I(X)) of the symmetric inverse monoid I(X) of a
set X is isomorphic to the quantale of binary relations ℘(X ×X) on X.

Theorem II.3.26 L∨(S) is the quotient of L(S) (in the category of stably
supported quantales StabQu) determined by the condition that joins of E(S)
should be preserved by the injection of generators S → L∨(S).

Proof. This is a consequence of exercise I.2.17, from which it follows that
the homomorphisms of abstract complete pseudogroups (i.e., those monoid
homomorphisms that preserve joins of compatible subsets)

h : S → I(Q) ,

where Q is any stably supported quantale, are exactly the monoid homo-
morphisms that preserve just the joins of sets of idempotents. Hence, the
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universal properties corresponding to preservation of joins of idempotents,
on one hand, and to preservation of arbitrary joins, on the other, are the
same.

The universal properties possessed by enveloping quantales are by now
essentially obvious, once one takes into account the analogous properties for
L(S). We shall provide an explicit description of them.

Let S be an abstract complete pseudogroup, and let Q be a stably sup-
ported quantale. The monoid of partial units I(Q) is an abstract complete
pseudogroup, and if h : S → I(Q) is a homomorphism of abstract complete
pseudogroups there is a unique homomorphism of unital involutive quantales
h̄ : L∨(S)→ Q such that the following diagram commutes,

S
s 7→↓s //

h
''NNNNNNNNNNNNNNN L∨(S)

h̄
��
Q

where h̄ is explicitly defined by

h̄(U) =
∨
{h(s) ∈ Q | s ∈ U} .

In other words, we have:

Corollary II.3.27 L∨ defines a functor from ACPGrp to StabQu, which is
left adjoint to the functor I : StabQu → ACPGrp.

A consequence of this is also, for S an inverse semigroup, that L(S) ∼=
L∨(C(S)), where C(S) is the completion of S in the sense of [14, Section
1.4] (but including the join of the empty set), and in fact we have C(S) ∼=
I(L(S)).



Chapter III

Localic groupoids

In this chapter we describe the main results of these notes, which involve a
three-fold correspondence between localic étale groupoids, abstract complete
pseudogroups, and the so-called inverse quantal frames. The reason for work-
ing with localic groupoids rather than topological groupoids is essentially of
a pragmatic nature: the question of whether or not one can reconstruct a
topological étale groupoid from the inverse quantale structure of its topology
cannot be expected to have a positive answer unless the groupoid satisfies
some topological separation axioms (it should at least be T0). In practice we
shall often need the groupoid to be sober, and this means that we can think
of it instead as being a spatial locale. But it may be observed that spatiality
really plays no role in the theory, and thus the natural thing to do is to work
with arbitrary locales (and luckily so because, roughly, spatiality is the topos
dependent part of the theory). The net effect is that topological groupoids
become algebraicized in a rather natural way. Indeed we may view the kind
of algebra involved as playing, with respect to general topology, a similar
role to that of commutative rings in algebraic geometry (from this viewpoint
localic groupoids become a topological counterpart of algebraic groupoids).

1 Locales

We shall begin by studying general locale theory. Since locales are examples
of quantales, most of the general algebraic properties of locales have already
been studied in Chapter II, but now we shall deal with specific aspects of
locale theory, namely those which carry analogies with topological spaces.

Frames. We have already provided a definition of the notion of locale
(cf. Example II.2.2), as being a particular kind of unital quantale. Let us
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recall the definition here:

Definition III.1.1 By a locale is meant a sup-lattice L satisfying the fol-
lowing distributivity law, for all x ∈ L and Y ⊆ L:

x ∧
∨

Y =
∨
y∈Y

x ∧ y .

Locales are also known as frames. The distinction in terminology will be
addressed below. The relation to quantales can be described as follows:

Proposition III.1.2 ([10]) Any frame L is an idempotent unital quantale
whose unit is the top. Conversely, any unital quantale with these properties
is a frame.

Proof. If L is a frame then it is obviously a unital quantale with e = 1 and
the idempotent multiplication given by binary meet. Conversely, let L be an
idempotent unital quantale with e = 1, and let a, b ∈ L. We shall prove that
ab = a ∧ b, showing that L is a frame. First, we have ab ≤ a1 = ae = a and
ab ≤ 1b = b, showing that ab is a lower bound of a and b. Let c be another
lower bound of a and b. Then c = cc ≤ ab, and thus ab is the greatest lower
bound: ab = a ∧ b.

Definition III.1.3 A homomorphism of frames is a homomorphism of unital
quantales between frames. The resulting category, denoted by Frm, is the
category of frames.

Frm is a full subcategory of the category of commutative unital quantales,
and algebraically we handle frames in much the same way as we handle
commutative unital quantales. For instance, any homomorphic image of a
frame is still a frame, and thus frame quotients are described by quantale
nuclei. Also, the coproduct of two frames as unital quantales is again a
frame, and thus the coproduct of two frames L and M coincides with their
tensor product L⊗M as sup-lattices, with meet defined by

(x⊗ y) ∧ (x′ ⊗ y′) = (x ∧ x′)⊗ (y ∧ y′) ,

where the coprojections

L
i1 // L⊗M M

i2oo

are given by

i1(x) = x⊗ 1M

i2(y) = 1L ⊗ y .
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The motivation behind locales is topological: the topology Ω(X) of a
topological space X is a frame, and if f : X → Y is a continuous map then
the inverse image f−1 : ℘(Y ) → ℘(X) restricts to a frame homomorphism
f−1 : Ω(Y ) → Ω(X). Hence, the category of frames can be regarded as an
approximation of (the dual of) category of topological spaces and continuous
maps, and locales are often referred to as point-free spaces — or, more tongue-
in-cheek, pointless spaces [6, 7].

Many definitions and properties readily carry over from topological spaces.
We provide some simple examples:

Definition III.1.4 Let L be a frame, and let a ∈ L. By a cover of a is
meant a subset C ⊆ L such that a ≤

∨
C. A cover of L is by definition

a cover of 1. We say a frame L is compact if every cover of L has a finite
subcover: that is, for all C ⊆ L such that

∨
C = 1 there is a finite subset

F ⊆ C such that
∨
F = 1.

Of course, a space X is compact if and only if its frame Ω(X) is compact.
Another similar situation occurs with the notion of regularity:

Definition III.1.5 Let L be a frame, and let a, b ∈ L. We say that a is
well inside b, and write a 0 b, if there exists c ∈ L such that b ∨ c = 1 and
a ∧ c = 0. Then L is regular if every x ∈ L is the join of the elements well
inside itself:

x =
∨
a0x

a .

Of course, a space X is regular if and only if the frame Ω(X) is regular.

Definition III.1.6 Let L be a frame. A basis of L is a cover B of L such
that for all a ∈ L we have

a =
∨
{b ∈ B | b ≤ a} .

The following simple property of any basis will play an important role
later on.

Proposition III.1.7 Let h : L → M be a frame homomorphism, and let
B ⊆ L be a basis of L which furthermore is a downwards closed subset. Then
h is injective if and only if its restriction h|B : B →M is.



66 CHAPTER III. LOCALIC GROUPOIDS

Proof. Assume that h|B is injective. We shall prove that h is injective (the
converse is trivial). Let b ∈ B and x ∈ L be arbitrary elements. Then,

h(b) ≤ h(x) ⇐⇒ h(b) ∧ h(x) = h(b)
⇐⇒ h(b ∧ x) = h(b)
⇐⇒ b ∧ x = b (Because b ∧ x ∈ B.)
⇐⇒ b ≤ x .

Now let x and y be arbitrary elements of L. Then y =
∨
Y for some Y ⊆ B,

and we have
h(y) ≤ h(x) ⇐⇒ h(

∨
Y ) ≤ h(x)

⇐⇒
∨
h(Y ) ≤ h(x)

⇐⇒ ∀b∈Y h(b) ≤ h(x)
⇐⇒ ∀b∈Y b ≤ x
⇐⇒ y ≤ x .

Hence, h is an order embedding.

Exercise III.1.8 1. Let L be a frame, and let j be a closure operator on
L. Show that j is a nucleus if and only if j(x ∧ y) = j(x) ∧ j(y) for all
x, y ∈ L.

2. Show that the sup-lattice tensor product of two frames is a frame.

3. Show that Frm is a reflective subcategory of the category of commuta-
tive unital quantales.

4. Show that the topological notion of regularity is equivalent to the def-
inition given in Definition III.1.5.

5. Show that if L is a regular frame then so is any of its quotients.

6. Show that the notion of regularity of III.1.5 can be defined equivalently
in terms of residuations, by defining the well-inside relation as follows,

a 0 b ⇐⇒ ¬a ∨ b = 1 ,

where ¬a = 0/a.

7. Let p : E → X be a local homeomorphism. Consider the set Γ(p) of
all the continuous local sections of p, ordered by restriction. The sets
S ⊆ Γ(p) for which

∨
S exists in Γ(P ) are precisely the sets of sections

which are pairwise compatible. Defining L∨(Γ(p)) to be the set of
downwards closed sets of Γ(p) which are closed under the formation of
joins (as in Definition II.3.23), show that L∨(Γ(p)) is a locale isomorphic
to the topology Ω(E) of E. (This technique will be used in Theorem
III.2.13.)
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Frames versus locales. The idea that Frm is an approximation of
Topop gives rise to the following notion:

Definition III.1.9 Let A and B be locales. By a (continuous) map f : A→
B of locales is meant a frame homomorphism f ∗ : B → A, referred to as the
inverse image of f . The resulting category is the dual of Frm, and we denote
it by Loc. It is called the category of locales and continuous maps, or simply
the category of locales. We shall denote by

Ω : Top→ Loc

the (obvious) functor that to each topological space X assigns the locale
Ω(X) and to each continuous map f : X → Y assigns the map

Ω(f) = Ω(X)→ Ω(Y )

which is defined by Ω(f)∗ = f−1.

Before we proceed we shall introduce some more or less traditional nota-
tion: the identity functor on Frm is a contravariant functor O : Locop → Frm;
accordingly, if A is a locale we shall write O(A) for the locale itself seen as
an object of Frm. Metaphorically, O(A) can be thought of as the frame of
“open sets of A”, in imitation of the notation Ω(X) for topological spaces.
For example, using this notation we could have said, in the above definition,
that a locale map f : A→ B is defined to be a frame homomorphism

f ∗ : O(B)→ O(A) .

This may seem unreasonably redundant, but this notation is often useful.
For instance, if A and B are two locales we shall write A×B for the product
of A and B in Loc, with the following projections:

A A×Bπ1oo π2 // B

Of course, this is the coproduct in Frm of the frames O(A) and O(B), where
the coprojections are π∗1 and π∗2; indeed, we could have defined the locale
product A×B by the equation

O(A×B) = O(A)⊗O(B) .

Accordingly, we shall usually write O(A)×O(B) (rather than again A×B)
for the product in Frm, without any need to specify the category in question.
(But cumbersome expressions like O(Ω(X)) should be avoided!)
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Another aspect in which we distinguish frames and locales is when we
refer to quotients and subobjects: a subframe is just a subset of a frame
which is a unital involutive subquantale; but by a sublocale of a locale A will
always be meant a frame quotient of the frame O(A), mimicking the fact that
a subspace inclusion X → Y determines a surjective frame homomorphism
Ω(Y )→ Ω(X); that is, we should think of a sublocale as the localic analogue
of a subspace. We shall be loose about the precise definition of the notions of
sublocale, which can often be taken to be a nucleus, or equivalently a subset
of a frame closed under arbitrary meets and residuations (cf.II.2.23-3), or an
isomorphism class of a frame surjection.

Exercise III.1.10 1. Let p : X → B and q : Y → B be maps of locales.
Show that the pullback X ×B Y coincides, as a frame, with the tensor
product O(X)⊗O(B) O(Y ) of O(X) and O(Y ), which are regarded as
right and left O(B)-modules, respectively, with the action given by
multiplication via change of “base ring”:

O(X)⊗O(B) → O(X)

V ⊗ U 7→ V ∧ p∗(U)

O(B)⊗O(Y ) → O(Y )

U ⊗W 7→ W ∧ q∗(U) .

2. Show that the topology Ω(X×Y ) of a product space is a frame quotient
of Ω(X) ⊗ Ω(Y ) (hint: each U ⊗ V is mapped to the open rectangle
U × V ).

3. Show that ifX is a locally compact space then Ω(X×Y ) ∼= Ω(X)⊗Ω(Y )
(cf. [8]).

4. Let Q be the set of rational numbers with the subspace topology of the
reals. Show that Ω(Q × Q) and Ω(Q) ⊗ Ω(Q) are not isomorphic (cf.
[8]).

5. Recall the negation operator ¬ of frames (cf. Exercise III.1.8), which
is given by ¬a = 0/a. Show that the double negation a 7→ ¬¬a is a
nucleus on any frame.

6. Let j : L → L be a nucleus on the frame L. We say that j is dense if
j(0) = 0.
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(a) Show that if i : X → Y is the inclusion of X into Y as a subspace
then X is dense in Y if and only if the nucleus induced by i (i.e.,
i−1
∗ ◦ i−1) is dense.

(b) Show that ¬¬ is dense, on any frame.

(c) Show that ¬¬ is the least dense nucleus, on any frame.

(d) Let R be the space of real numbers. Show that the locale Ω(R)¬¬
has no points (hint: both Q and R \Q are dense in R).

Open sublocales and closed sublocales. We have already given a
definition of the notion of sublocale, and now we shall give two important
examples, namely the open and the closed sublocales, which are the localic
counterpart of open and closed subspaces of topological spaces.

Definition III.1.11 Let L be a locale, and let j be a nucleus on O(L). The
sublocale defined by j is open (and j itself is said to be open) if j is the
nucleus induced by the quotient

(−) ∧ a : O(L)→ ↓a

for some a ∈ O(L).

Of course, if L is the topology of a space X, then an open sublocale ↓U
with U ∈ Ω(X) is the topology of the open subspace U .

Definition III.1.12 Let L be a locale, and let a ∈ O(L). The mapping

(−) ∨ a : O(L)→ O(L)

is a nucleus on O(L), and it is called a closed nucleus. The image of this
nucleus is just ↑a, which may be regarded as a concrete definition of the
closed sublocale induced by a.

Again the motivation behind this terminology is topological. If X is a
topological space and C ⊆ X is a closed subspace then Ω(C) is isomorphic
to the frame ↑(X \ C). In other words, the sublocale induced by a in the
previous definition should be regarded as the analogue of a closed subspace
consisting of the “complement of a”.

Open and closed sublocales have many interesting properties. For in-
stance, the set N(L) of nuclei on a frame L is itself a frame, called the
assembly of L. This is the localic generalization of the boolean algebra of
all the subspaces of a space, but unlike the topological case it is not comple-
mented. There is a frame homomorphism, which is both a monomorphism
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and an epimorphism (but not an isomorphism), from L into N(L), which to
each a ∈ L assigns the closed nucleus corresponding to a. We shall not go
more into the properties of the assembly of a frame (except for a few exercises
below) because we shall not need them in these notes. For more details see
[8].

Exercise III.1.13 Show that the open nucleus corresponding to a is given
in terms of residuations by x 7→ x/a.

Open maps and local homeomorphisms. A locale map f : L→M
is said to be semiopen if the frame homomorphism f ∗ : O(M) → O(L)
preserves all the meets of O(M); equivalently, if f ∗ has a left adjoint f! —
the direct image of f . (For adjoints between partial orders see [17, Ch. IV]
or [8, Ch. I].)

This terminology is motivated by open maps of topological spaces: if
f : X → Y is a continuous open map then the direct image map

U 7→ f!(U) = {f(x) | x ∈ U}

is a sup-lattice homomorphism Ω(X) → Ω(Y ) and it is left adjoint to
f−1 : Ω(Y ) → Ω(X). However, semiopen maps are insufficient as a lo-
calic generalization of open maps, in particular because they are not stable
under pullback (cf. exercise III.1.16).

The right localic definition of open map is based, as with topological
spaces, on the idea that open subspaces are mapped to open subspaces; in
this case open sublocales must be mapped to open sublocales. In order to
make sense of this idea first we need to define what we mean by the image
of a sublocale. For that we remark that in Frm every homomorphism

h : O(M)→ O(L)

can obviously be factorized as m◦e where e : O(M)→ h(O(M)) is surjective

(equivalently, a regular epimorphism in Frm) and m : h(O(M))
⊆→ O(L) is

a subframe inclusion (hence, a monomorphism in Frm). Consequently, Loc
has a “dual” factorization system: every map f : L → M factors as an
epimorphism e followed by a regular monomorphism m (i.e., a sublocale
inclusion)

L
e // L′

m //M .

Hence, L′ is a sublocale of L, and we define it (up to isomorphism) to be the
image of f .
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Definition III.1.14 Let f : L→ M be a map of locales, and let i : S → L
a sublocale inclusion (i.e., i∗ : O(L)→ O(S) is a surjective frame homomor-
phism). The image of S by f is the image of the map f ◦ i. The map f is
open if the image of every open sublocale of L is an open sublocale of M .

The open locale maps f : L → M are exactly the semiopen maps that
satisfy the following condition for all a ∈ O(L) and b ∈ O(M),

f!(a ∧ f ∗(b)) = f!(a) ∧ b ,

known as the Frobenius reciprocity condition (see [9, p. 521] or [10, Ch. V]).
If a ∈ O(L), the open sublocale of M to which ↓a is mapped is ↓f!(a).

Definition III.1.15 An open locale map f : L → M is a local homeo-
morphism if there is a cover C of L such that for each a ∈ C the frame
homomorphism

((−) ∧ a) ◦ f ∗ : O(M)→ ↓a

is surjective (this is the analogue for locales of a continuous open map of
spaces whose restriction to each open set in a given cover is a subspace
inclusion).

Exercise III.1.16 1. Let L be a locale and consider the following sublo-
cale inclusion i : M → L. Show that M is an open sublocale if and
only if i is an open map.

2. Show that a continuous map of topological spaces f : X → Y is a local
homeomorphism if and only if the map of locales Ω(f) : Ω(X)→ Ω(Y )
is a local homeomorphism.

3. Let f : X → Y be a continuous map of topological spaces. Show that
if f is open then so is Ω(f). Show that the converse fails; that is, f is
not necessarily open of Ω(f) is.

4. Show that both open maps and local homeomorphisms are stable under
pullbacks.

5. Show that semiopen maps are in general not stable under pullbacks.

6. Give a suitable definition of local section for maps of locales and repeat
Exercise III.1.8-7 for local homeomorphisms of locales.
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Groupoids. A localic groupoid is an internal groupoid in Loc. The
definitions of open groupoid and of étale groupoid are analogous to the cor-
responding notions for topological groupoids, now with open maps and local
homeomorphisms being defined for locales:

Definition III.1.17 Let G be a localic groupoid

G2
m // G1

i

�� r //

d
// G0uoo

We say that G is open if d is open, and that G is étale if d is a local homeo-
morphism.

Spatial locales and sober spaces. Just as spaces give rise to locales
via the functor Ω, so locales can be approximated by spaces via a spectrum
functor Σ. Such spatial aspects will be largely irrelevant in these notes, but
we include them in this section for the sake of motivation.

We shall write 1, as usual, for some fixed final object in Loc. This is an
initial frame, which in turn is a free sup-lattice on one generator, so we may
use again the O notation and write

O(1) = ℘(1) .

The locale 1 is the localic analogue of a “singleton” space, and we may use
it in order to define points of locales:

Definition III.1.18 Let A be a locale. By a point of A is meant a map
p : 1→ A (equivalently, a frame homomorphism p∗ : O(A)→ O(1)).

The set of points of A is therefore given by the covariant hom functor

Loc(1,−) : Loc→ Set .

There is an obvious pairing

Loc(1, A)×O(A)→ O(1)

that maps each (p, a) to p∗(a), and thus each a ∈ O(A) defines a function

â : Loc(1, A)→ O(1) ,

in turn defining a subset Ua ⊆ Loc(1, A) by

Ua = {p | â(p) = 1O(1)} = {p | p∗(a) = 1O(1)} .

The family (Ua) is a topology on Loc(1, A):
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Proposition III.1.19 For all a, b ∈ O(A) and S ⊆ O(A) we have

U1A = Σ(A)

Ua∧b = Ua ∩ Ub
UW

S =
⋃
a∈S

Ua .

Definition III.1.20 The spectrum of a locale A is the set of points Loc(1, A)
equipped with the above topology, and we shall denote the resulting space
by Σ(A).

For each locale map f : A→ B the function

f∗ = f ◦ (−) : Loc(1, A)→ Loc(1, B)

is easily seen to be continuous with respect to the topologies of Σ(A) and
Σ(B), and thus we obtain a functor

Σ : Loc→ Top .

Theorem III.1.21 Ω is left adjoint to Σ.

Proof. Let A be a locale. Proposition III.1.19 shows that the assigment
a 7→ Ua is a homomorphism of frames O(A) → Ω(Σ(A)), hence giving us
a map of locales ε : Ω(Σ(A)) → A, which will provide the co-unit of the
adjunction. Now let X be a topological space, and let f : Ω(X) → A be a
map of locales. We define a function f̄ : X → Σ(A) by

f̄(x)(a) = 1O(1) ⇐⇒ x ∈ f ∗(a) .

Then if Ua is an open set of Σ(A) we have

f̄−1(Ua) = {x ∈ X | f̄(x)(a) = 1} = f ∗(a) ∈ Ω(X) ,

showing that f̄ is continuous. It is equally easy to prove that the following
diagram is commutative

Ω(Σ(A)) ε // A

Ω(X)

Ω(f̄)

OO

f

77oooooooooooooo

and that f̂ is the only continuous map X → Σ(A) with this property. This
concludes the proof.
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Definition III.1.22 A locale A is spatial if and only if the A component of
the co-unit of the adjunction is an isomorphism of locales (equivalently, the
assignment a 7→ Ua is an isomorphism of frames). A topological space X is
sober if the X component of the unit of the adjunction is a homeomorphism.

Theorem III.1.23 Let X be a topological space, and A a locale.

1. Ω(X) is a spatial locale.

2. Σ(A) is a sober space.

3. The adjunction Ω a Σ restricts to an equivalence of categories between
sober spaces and spatial locales.

Locales are often important as replacements for the notion of topological
space in a constructive setting, by which is meant the ability to interpret
definitions and theorems in an arbitrary topos. See [6, 7]. For instance, the
locale RIdl(R) of radical ideals of a commutative ring R can be regarded as
the “constructive Zariski spectrum” of R because Σ(RIdl(R)) is (classically)
homeomorphic to the usual space of prime ideals with the Zariski topology
(cf. exercises below).

Exercise III.1.24 1. Show that the following two conditions are equiv-
alent:

• The locale A is spatial;

• There is a topological space X such that Ω(X) ∼= A in Loc.

2. Describe the unit of the adjunction Ω a Σ explicitly.

3. Show that the points of a locale A can be identified with either of the
following concepts:

• Completely prime filters of O(A), by which are meant filters F ⊆
O(A) such that

∨
S ∈ F implies a ∈ F for some a ∈ S (these

correspond to 1-kernels of the points p∗ : O(A)→ O(1)).

• Prime elements of O(A), by which are meant elements p ∈ O(A)
such that p 6= 1 and such that the condition a ∧ b ≤ p implies
a ≤ p or b ≤ p, for all a, b ∈ O(A) (the prime elements are the
joins of the 0-kernels of the points).

4. Describe the topology of the spectrum of a locale directly in terms of
prime elements, and of completely prime filters.
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5. Let X be a topological space. Show that the points of the locale Ω(X)
can be identified with the (nonempty) irreducible closed sets of X (hint:
these are the complements in X of the primes of Ω(X)).

6. Describe the topology of the spectrum of a locale Ω(X) directly in
terms of irreducible closed sets.

7. Show that every Hausdorff space is sober.

8. Give an example of a space which is not sober.

9. Let X and B be topological spaces, and let f : X → B be a local
homeomorphism. Show that if B is sober then so is X.

10. Let X and B be locales, and let f : X → B be a local homeomorphism.
Show that if B is spatial then so is X. (Hint: recall Exercise III.1.16-6.)

11. Let R be a commutative ring. Show that the prime ideals of R are
precisely the prime elements of the locale of radical ideals RIdl(R).
Show that the topology of Σ RIdl(R) is precisely the Zariski topology.

12. Let X be a compact Hausdorff space. Show that X is homeomorphic to
the spectrum Σ(I(C(X))) of the locale I(C(X)) of norm-closed ideals
of the commutative C*-algebra C(X) of continuous functions X → C.

13. Let f : A → B be a map of locales. Show that if f is a local homeo-
morphism then so is Σ(f) : Σ(A) → Σ(B). Show that the analogous
assertion for open maps instead of local homeomorphisms is false.

14. Let G be a localic groupoid

G2
m // G1

i

�� r //

d
// G0 .uoo

Defining ΣG to be the structure defined by

Σ(G2)
Σ(m) // Σ(G1)

Σ(i)

�� Σ(r) //

Σ(d)
// Σ(G0)Σ(u)oo

show that Σ(G) is a topological groupoid, and that in this way we define
a functor Σ from the category of localic groupoids to the category of
topological groupoids.
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15. Show that if G is a localic étale groupoid then Σ(G) is a topological
étale groupoid.

16. Let X and Y be topological spaces. Show that if X is locally compact
then the locale Ω(X)⊗Ω(Y ) is spatial. Give an example showing that
Ω(X)⊗ Ω(Y ) may fail to be spatial in general.

17. Show, based on the previous exercise, that a topological groupoid G
does not necessarily give rise to a localic groupoid “Ω(G)”.

2 Quantal frames

We have already remarked that the topologies of certain topological groupoids
are quantales. Besides this they are also frames, of course, hence suggesting
the following definition:

Definition III.2.1 By a quantal frame is meant a quantale Q such that for
all a, bi ∈ Q the following distributivity property holds:

a ∧
∨
i

bi =
∨
i

a ∧ bi .

In this section we shall see how (localic) groupoids or at least categories
can be obtained from suitable quantal frames. The main result (theorem
III.2.19) states simply that the localic étale groupoids correspond bijectively,
up to isomorphisms, to the inverse quantales that are also quantal frames.
To a large extent this is a consequence of a bijective correspondence between
these quantales and the abstract complete pseudogroups that furthermore
is part of an equivalence of categories (theorem III.2.15). At the end, in
section 2, we provide examples whose purpose is to separate all the classes
of quantales considered so far.

Stable quantal frames. We begin by considering quantal frames of
which nothing is required except that their underlying quantales should be
stably supported. This condition can be expressed equivalently as follows:

Definition III.2.2 By a stable quantal frame will be meant a unital invo-
lutive quantal frame satisfying the following additional conditions:

a1 ∧ e ≤ aa∗

a ≤ (a1 ∧ e)a .

[Equivalently, satisfying the equations a1 ∧ e = aa∗ ∧ e and a = (a1 ∧ e)a.]
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Let Q be a stable quantal frame. The sup-lattice inclusion

υ : ςQ→ Q .

has a right adjoint given by

υ∗(a) = a ∧ e ,

which preserves arbitrary joins and is the inverse image frame homomorphism
of an (obviously) open locale map

u : G0 → G1

whose direct image is u! = υ, where G0 and G1 are defined by the conditions

O(G0) = ςQ and O(G1) = Q .

Now consider the sup-lattice homomorphism δ : Q→ ςQ defined by

δ(a) = a1 ∧ e .

(This is just the support ς with codomain restricted to ςQ.)

Lemma III.2.3 δ is the direct image d! of an open map d : G1 → G0.

Proof. Consider the map ςQ → Q given by a 7→ a1. By the properties of
stably supported quantales this is an isomorphism ςQ → R(Q) followed by
the inclusion R(Q)→ Q. Hence, it is a frame homomorphism and it defines
a map of locales d : G1 → G0, which furthermore is semiopen with δ = d!

because d∗ is the right adjoint δ∗ of δ:

δ(d∗(a)) = ς(a1) = ςa = a for all a ≤ e
d∗(δ(a)) = ςa1 = a1 ≥ a for all a ∈ Q .

In order to see that d is open we check the Frobenius reciprocity condition.
Let a, b ∈ Q, with b ≤ e. Then

d!(d
∗(b) ∧ a) = ς(b1 ∧ a)

= ς(ba) (By II.3.5-5 and ςb = b.)
= bςa (By II.3.8-2.)
= b ∧ ςa (ςQ is a locale.)
= b ∧ d!(a) .
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The involution of Q is a frame isomorphism that defines a locale map
i : G1 → G1 by the condition i∗(a) = a∗, and thus we have i ◦ i = id and
i! = i∗. Our aim is that ultimately d should be the domain map of a groupoid,
and we obtain a candidate for an open range map

r : G1 → G0

just by defining r = d ◦ i. These maps satisfy the appropriate relations:

Lemma III.2.4 Consider the locale maps

G1i
** d //

r
// G0uoo

as defined above. We have

d ◦ u = id

r ◦ u = id

d ◦ i = r

r ◦ i = d .

Proof. The first condition is equivalent to u∗ ◦ d∗ = id, which holds because
for all a ≤ e we have ςa = a, and thus

u∗(d∗(a)) = a1 ∧ e = ςa = a .

Similarly, the second condition is true: for all a ≤ e we have a = a∗, and
thus

u∗(r∗(a)) = ς(a∗) = ςa = a .

The third condition is the definition of r, and the fourth follows from this
because i ◦ i = id.

So far we have obtained from the stable quantal frame Q a localic graph
G that is equipped with an involution i, and whose maps d, r, and u, are
all open. There is additional structure on G, consisting of a certain kind of
multiplication defined on the “locale of composable pairs of edges” G1×G0G1,
although not (yet) necessarily the multiplication of a groupoid or even of a
category. In order to see this let us first notice that the frame O(G0) = ςQ
is, as a quantale, a unital subquantale of Q because meet in ςQ coincides
with multiplication in Q (see II.3.3). Hence, there are two immediate ways
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in which Q is a module over ςQ: multiplication on the left defines an action of
ςQ on Q, and multiplication on the right defines another. We shall regard Q
as an ςQ-ςQ-bimodule with respect to these two actions, namely letting the
left (resp. right) action be left (resp. right) multiplication (in fact each action
makes Q both a right and a left ςQ-module because ςQ is a commutative
quantale, but this is irrelevant). We shall denote the corresponding tensor
product over ςQ by Q ⊗ςQ Q. This coincides (fortunately for our notation)
with O(G1 ×G0 G1):

Lemma III.2.5 The tensor product Q⊗ςQ Q coincides with the pushout of
the homomorphisms d∗ and r∗.

Proof. This is equivalent to showing, for all a, b, c ∈ Q, with a ≤ e, that the
equality

(b ∧ r∗(a))⊗ c = b⊗ (d∗(a) ∧ c)

is equivalent to
ba⊗ c = b⊗ ac ,

which is immediate from II.3.5-5:

d∗(a) ∧ c = a1 ∧ c = ςac = ac .

[For r∗ it is analogous, using the obvious dual of II.3.5-5.]

Now we notice that the quantale multiplication Q ⊗ Q → Q factors
through the above pushout because it is associative and thus in particu-
lar it respects the relations ba ⊗ c = b ⊗ ac for a ≤ e that determine the
quotient Q⊗Q→ Q⊗ςQQ. This enables us to make the following definition:

Definition III.2.6 Let Q be a stable quantal frame, and let

G = G1i
** d //

r
// G0uoo

be the corresponding involutive localic graph. The quantal multiplication
induced by Q on G is the sup-lattice homomorphism

µ : O(G1 ×
G0

G1)→ O(G1)

which is defined by, for all a, b ∈ Q,

µ(a⊗ b) = ab .
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Multiplicative quantal frames. Let us now examine a condition un-
der which the localic graph associated to a stable quantal frame has the
additional structure of a localic category.

Definition III.2.7 By a multiplicative quantal frame will be meant a stable
quantal frame for which the right adjoint µ∗ of the quantal multiplication
µ : Q⊗ςQ Q→ Q preserves arbitrary joins.

The multiplicativity condition is that under which µ is the direct image
m! of a (semiopen) locale map m, which then gives us a category, as the
following theorem shows.

Theorem III.2.8 Let Q be a multiplicative quantal frame. Then the locale
map

m : G1 ×
G0

G1 → G1

which is defined by m∗ = µ∗ (equivalently, m! = µ), together with the maps
d, r, and u, defines a localic category.

Proof. In III.2.4 we have obtained many of the needed conditions. The only
ones missing are the unit laws, the associativity of m, and those that specify
the domain and range of a product of two arrows:

d ◦m = d ◦ π1(III.2.9)

r ◦m = r ◦ π2 .(III.2.10)

We shall begin by proving these. In fact we shall prove (III.2.9) only, as
(III.2.10) is analogous. We have to show, for frame homomorphisms, that
m∗ ◦d∗ = π∗1 ◦d∗. In order to do this we shall prove that d! ◦m! is left adjoint
to π∗1 ◦ d∗ (this identifies m∗ ◦ d∗ and π∗1 ◦ d∗ because adjoints between partial
orders are uniquely determined), in order to take advantage of the following
simple formulas:

d!(m!(a⊗ b)) = ς(ab)

π∗1(d∗(a)) = a1⊗ 1 (a ≤ e)

We prove that the adjunction exists by proving the following two inequalities
(resp. the co-unit and the unit of the adjunction):

d!(m!(π
∗
1(d∗(a)))) ≤ a for all a ≤ e

π∗1(d∗(d!(m!(a⊗ b)))) ≥ a⊗ b for all a, b ∈ Q .
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Let us prove the first inequality. Consider a ≤ e. Then

d!(m!(π
∗
1(d∗(a)))) = d!(m!(a1⊗ 1)) = ς(a11) = ς(a1) = ςa = a .

Now let us prove the second inequality. Let a, b ∈ Q. Then

π∗1(d∗(d!(m!(a⊗ b)))) = π∗1(d∗(ς(ab))) = ς(ab)1⊗ 1 =

= ab1⊗ 1 = aςb1⊗ 1 ≥ aςb⊗ 1 =

= a⊗ ςb1 = a⊗ b1 ≥ a⊗ b .

Hence, (III.2.9) holds, and for analogous reasons so does (III.2.10).
Let us now prove the unit laws, which state that the following diagram

is commutative:

(III.2.9)

G0 ×
G0

G1
u×id // G1 ×

G0

G1

m

��

G1 ×
G0

G0
id×uoo

G1

〈d,id〉

OO

G1 G1

〈id,r〉

OO

First we remark that, since the frame homomorphism u∗ has a left adjoint
u!, the maps u× id and id× u are semiopen, with

(u× id)! = u! ⊗ id

(id× u)! = id⊗ u! ,

because the operations id ⊗ − and − ⊗ id are functorial and thus preserve
the conditions u! ◦u∗ ≤ id and u∗ ◦u! ≥ id that define the adjunction u! a u∗.
Secondly, the maps 〈d, id〉 and 〈id, r〉 are isomorphisms whose inverses are,
respectively, the projections π2 : G0×G0 G1 → G1 and π1 : G1×G0 G0 → G1.
Hence, in particular, these maps are semiopen, and we have

〈d, id〉! = π∗2
〈id, r〉! = π∗1 .

Hence, since m∗, too, has a left adjoint m!, we conclude that the commuta-
tivity of (III.2.9) is equivalent to that of the following diagram:

(III.2.9)

O(G0 ×
G0

G1) u!⊗id // O(G1 ×
G0

G1)

m!

��

O(G1 ×
G0

G0)id⊗u!oo

O(G1)

π∗2

OO

O(G1) O(G1)

π∗1

OO
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Now the commutativity of the left square of (III.2.9), i.e., the condition

m! ◦ (u! ⊗ id) ◦ π∗2 = id ,

follows from the fact that Q is a unital quantale with e = u!(1G0), since for
all a ∈ Q we obtain

(m! ◦ (u!⊗ id) ◦ π∗2)(a) = m! ◦ (u!⊗ id)(1G0 ⊗ a) = m!(u!(1G0)⊗ a) = ea = a .

Similarly, the right square of (III.2.9) follows from ae = a.

Finally, we shall prove that the multiplication map m is associative. Let
m′ : O(G1)⊗O(G1)→ O(G1) be the quantale multiplication,

m′ = m! ◦ q ,

where q is is the quotient homomorphism

q : O(G1)⊗O(G1)→ O(G1) ⊗
O(G0)

O(G1) .

It is clear that the associativity of m′, which is equivalent to the commuta-
tivity of

(O(G1)⊗O(G1))⊗O(G1)
m′⊗id //

∼=
��

O(G1)⊗O(G1)

m′

��

O(G1)⊗ (O(G1)⊗O(G1))

id⊗m′
��

O(G1)⊗O(G1) m′ // O(G1) ,

implies (in fact it is equivalent to) the commutativity of

(O(G1) ⊗
O(G0)

O(G1)) ⊗
O(G0)

O(G1) m!⊗id //

∼=
��

O(G1) ⊗
O(G0)

O(G1)

m!

��

O(G1) ⊗
O(G0)

(O(G1) ⊗
O(G0)

O(G1))

id⊗m!

��
O(G1) ⊗

O(G0)
O(G1) m! // O(G1) ,
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as the following diagram chase shows:

(a⊗ b)⊗ c
_
∼=
��

� m!⊗id // (ab)⊗ c
_

m!

��

a⊗ (b⊗ c)
_

id⊗m!

��
a⊗ (bc) � m! // a(bc) (ab)c .

Taking the right adjoints of all the above morphisms gives us the frame
version of the associativity of m,

(G1 ×
G0

G1)×
G0

G1
m×id //

∼=
��

G1 ×
G0

G1

m

��

G1 ×
G0

(G1 ×
G0

G1)

id×m
��

G1 ×
G0

G1 m // G1 ,

because, similarly to what we have argued for u, we have

(m× id)! = m! ⊗ id

(id×m)! = id⊗m! .

Now we see a fundamental example of multiplicative quantal frame.

Theorem III.2.9 Let S be an abstract complete pseudogroup. Then L∨(S)
is a multiplicative quantal frame.

Proof. The right adjoint of the quantal multiplication,

µ∗ : L∨(S)→ L∨(S)⊗ς L∨(S) L∨(S) ,

is given by the formula

µ∗(U) =
∨
{V ⊗W | VW ⊆ U} .

Due to the universal property of L∨(S) as a sup-lattice, the question of
whether L∨(S) is multiplicative, that is of whether µ∗ preserves joins, is
equivalent to asking whether the map

f : S → L∨(S)⊗ς L∨(S) L∨(S)
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defined by

f(x) =
∨
{↓y ⊗ ↓z | yz ≤ x}

preserves all the joins that exist, in which case µ∗ is the unique homomorphic
extension of f ; that is, for each compatible set X ⊆ S we need to see that

f(
∨

X) ⊆
∨

f(X) .

Equivalently, we need to see that yz ≤
∨
X implies ↓y ⊗ ↓z ⊆

∨
f(X) for

all y, z ∈ S.
Consider then y, z ∈ S such that yz ≤

∨
X. For each x ∈ X we have

yzx−1x ≤ x because

yzx−1x ≤ (
∨

X)x−1x =
∨
w∈X

wx−1x ≤ x ,

where the equality is a consequence of distributivity, and the last inequality
follows from the fact that X is compatible and therefore wx−1 ∈ E(S) for
all w ∈ X. Hence,

y(y−1yzx−1x) = (yy−1y)zx−1x = yzx−1x ≤ x

and thus, by definition of f , we obtain

↓y ⊗ ↓(y−1yzx−1x) ⊆ f(x) .

From here, using distributivity, it follows that

↓y ⊗ ↓

(
y−1yz

∨
x∈X

x−1x

)
= ↓y ⊗ ↓

(∨
x∈X

y−1yzx−1x

)

= ↓y ⊗

(∨
x∈X

↓(y−1yzx−1x)

)
=

∨
x∈X

↓y ⊗ ↓(y−1yzx−1x)

⊆
∨

f(X) .

Since
∨
x x
−1x = (

∨
X)−1(

∨
X) [cf. I.2.7], we further conclude that

yz
∨
x∈X

x−1x = yz
(∨

X
)−1 (∨

X
)

= yz
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(the last equality follows from the fact that for any elements a and b of an
inverse semigroup the condition a ≤ b implies a = ab−1b), and thus

↓y ⊗ ↓z = ↓(yy−1y)⊗ ↓z = ↓y↓(y−1y)⊗ ↓z = ↓y ⊗ ↓(y−1y)↓z

= ↓y ⊗ ↓(y−1yz) = ↓y ⊗ ↓

(
y−1yz

∨
x∈X

x−1x

)
⊆
∨

f(X) .

Inverse quantal frames. Now we shall prove some facts about those
quantal frames that are also inverse quantales. In particular we shall see that
such quantal frames are necessarily multiplicative and of the form L∨(S), up
to isomorphism, and that this gives us a category which is equivalent to the
category of abstract complete pseudogroups ACPGrp.

Definition III.2.10 By an inverse quantal frame Q will be meant a sup-
ported quantal frame whose maximum is a join of partial units:

1 =
∨
I(Q) .

We remark that any inverse quantal frame Q is an inverse quantale in the
sense of our original definition, due to distributivity: if a ∈ Q then

a = a ∧ 1 = a ∧
∨
I(Q) =

∨
{a ∧ s | s ∈ I(Q)} ,

where each a∧ s is of course a partial unit. Hence, in particular, any inverse
quantal frame is a stable quantal frame.

Recall the adjunction L∨ a I of II.3.27, between the category ACPGrp of
abstract complete pseudogroups and the category StabQu of stably supported
quantales. For each stably supported quantale Q we shall denote by

εQ : L∨(I(Q))→ Q

the corresponding component of the co-unit of the adjunction. This is a
homomorphism of unital involutive quantales that is explicitly defined by

εQ(U) =
∨

U .

In the following results we shall apply again the technique of Exercise
III.1.8-7 for the sheaf topology:

Lemma III.2.11 Let Q be an inverse quantal frame. Then εQ is a surjec-
tive frame homomorphism whose restriction to the set of principal ideals of
L∨(I(Q)) is injective.
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Proof. εQ is surjective because Q is an inverse quantale. Hence, it remains
to show that εQ preserves binary meets. First, I(Q) is an abstract complete
pseudogroup and thus in particular it is a meet semilattice. The fact that εQ
preserves binary meets is now an essentially immediate consequence of the
coverage theorem for frames [8] (with minor adaptations due to the possible
absence of a maximum in I(Q)), but a direct proof using the explicit formula
for the co-unit is also immediate and we give it here: for any U, V ∈ L∨(I(Q))
we have

U ∩ V = {s ∧ t | s ∈ U, t ∈ V } ,

and thus using the frame distributivity of Q we obtain

εQ(U ∩ V ) = εQ({s ∧ t | s ∈ U, t ∈ V }) =
∨

s∈U, t∈V

s ∧ t

=
∨

U ∧
∨

V = εQ(U) ∧ εQ(V ) .

Finally, the restriction of εQ to principal ideals is the assignment

↓s 7→
∨
↓s = s ,

and, of course, this is an order embedding.

Lemma III.2.12 Let S be an abstract complete pseudogroup. The principal
ideals of L∨(S) form a downwards closed set.

Proof. Let s ∈ S, and let U ∈ L∨(S) be such that U ⊆ ↓s. For all t, u ∈ U
we have tu−1 ≤ ss−1 ≤ e, and, similarly, t−1u ≤ e; that is, t and u are
compatible and we conclude that U is a compatible subset of S. Since S is
complete the join

∨
U exists in S, and since U is closed under joins it must

contain
∨
U . Hence, U is the principal ideal ↓

∨
U .

Theorem III.2.13 Let Q be an inverse quantal frame. Then there is an
isomorphism

L∨(I(Q)) ∼= Q

of unital involutive quantales.

Proof. εQ is a homomorphism of unital involutive quantales, and the fact
that it is an isomorphism follows immediately from III.1.7 and the previous
two lemmas.

Corollary III.2.14 Any inverse quantal frame is multiplicative.
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Denoting by InvQuF the full subcategory of Qu∗e whose objects are the
inverse quantal frames, we have:

Theorem III.2.15 The categories ACPGrp and InvQuF are equivalent.

Proof. From III.2.13 it follows that the adjunction L∨ a I between ACPGrp
and InvQu restricts to a reflection between ACPGrp and InvQuF . Now let
S be an abstract complete pseudogroup. The unit of the adjunction gives us
the injective homomorphism of abstract complete pseudogroups

ηS : S → I(L∨(S))

defined by s 7→ ↓s, and in order to prove that the reflection is in fact an
equivalence it remains to see that ηS is surjective. Let then U ∈ I(L∨(S)).
By definition of partial unit this is an element of L∨(S) such that UU∗ ⊆
E(S) and U∗U ⊆ E(S). Hence, st−1 ∈ E(S) and s−1t ∈ E(S) for all s, t ∈ U ,
which means that U is a compatible subset of S. Hence, again as in III.2.12, U
must coincide with the principal ideal ↓

∨
U ; that is, ηS(

∨
U) = U , showing

that ηS is surjective.

Étale groupoids from quantales. Now we determine the conditions
under which the category associated to a multiplicative quantal frame Q is
a groupoid. As we shall see, this happens if and only if Q is an inverse
quantal frame. A first step is given by the following result, which basically
produces a straightforward translation of the inversion law of groupoids into
the language of quantales.

Lemma III.2.16 Let Q be a multiplicative quantal frame. The localic cate-
gory (G1, G0, d, r, u,m, i) associated to Q is a groupoid (with inversion i) if
and only if Q satisfies the following two conditions, for all a ∈ Q:

(a ∧ e)1 =
∨

xy∗≤a

x ∧ y ,(III.2.17)

1(a ∧ e) =
∨

x∗y≤a

x ∧ y .(III.2.18)

Proof. Recall the two groupoid inverse laws, namely the commutativity of
the following diagram:

G1

d

��

〈id,i〉 // G1 ×
G0

G1

m

��

G1
〈i,id〉oo

r

��
G0 u

// G1 G0.u
oo
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Consider its dual frame version:

(III.2.17)

O(G1)
OO

d∗

oo [id,i∗] O(G1 ×
G0

G1)
OO
m∗

O(G1)//[i∗,id]

OO

r∗

O(G0) oo
u∗

O(G1) O(G0)//
u∗

The commutativity of the left square of (III.2.17) is equivalent, for each
a ∈ Q = O(G1), to the equation

(III.2.17) d∗(u∗(a)) = [id, i∗](m∗(a)) .

Taking into account the following formulas, for all b, x, y ∈ Q,

i∗(b) = b∗

d∗(u∗(b)) = (b ∧ e)1
m∗(b) =

∨
{x⊗ y | xy ≤ b}

[f, g](x⊗ y) = f(x) ∧ g(y) ,

we see that (III.2.17) is equivalent to

(a ∧ e)1 =
∨
xy≤a

x ∧ y∗ ,

which is equivalent to (III.2.17). Similarly, the right square of the diagram
(III.2.17) is equivalent to (III.2.18).

The following two lemmas are motivated by the equations (III.2.17) and
(III.2.18). We remark that, even though the equations have been introduced
in the context of multiplicative quantal frames, the lemmas hold for more
general quantal frames.

Lemma III.2.17 Let Q be a stable quantal frame. Then for all a ∈ Q the
following inequalities hold:

(a ∧ e)1 ≥
∨

xy∗≤a

x ∧ y(III.2.18)

1(a ∧ e) ≥
∨

x∗y≤a

x ∧ y .(III.2.19)
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Proof. Recall the property (II.3.18) of supported quantales:

ς(x ∧ y) ≤ xy∗ .

The support ς coincides with the sup-lattice homomorphism

u! ◦ d! : Q→ Q ,

and thus from (II.3.18) we obtain, by adjointness, x∧ y ≤ d∗(u∗(xy∗)). This
is equivalent to the statement that x ∧ y ≤ d∗(u∗(a)) for all a ∈ Q such that
xy∗ ≤ a, and thus we obtain

d∗(u∗(a)) ≥
∨

xy∗≤a

x ∧ y .

Then (III.2.18) is a consequence of this and of the equality (a ∧ e)1 =
d∗(u∗(a)), and (III.2.19) is proved analogously taking into account that 1(a∧
e) = r∗(u∗(a)) and, again using (II.3.18), u!(r!(x ∧ y)) = u!(d!((x ∧ y)∗)) =
ς(x∗ ∧ y∗) ≤ x∗y.

This has as a consequence that the conditions (III.2.17) and (III.2.18) are
equivalent, for any stable quantal frame, to the following lax version of them,

(a ∧ e)1 ≤
∨

xy∗≤a

x ∧ y(III.2.18)

1(a ∧ e) ≤
∨

x∗y≤a

x ∧ y ,(III.2.19)

leading us to the second lemma:

Lemma III.2.18 Let Q be a unital involutive quantal frame. Then Q sat-
isfies the two conditions (III.2.18) and (III.2.19) if and only if

∨
I(Q) = 1.

Proof. Let us assume that
∨
I(Q) = 1 and prove from there that Q satisfies

(III.2.18):

(a ∧ e)1 = (a ∧ e)
∨
{x | xx∗ ≤ e and x∗x ≤ e}

≤ (a ∧ e)
∨
{x | xx∗ ≤ e}

=
∨
{(a ∧ e)x | xx∗ ≤ e}

≤
∨
{(a ∧ e)x | xx∗a ≤ a}

=
∨
{(a ∧ e)∗x | xx∗a ≤ a}

≤
∨
{a∗x ∧ x | xx∗a ≤ a}

=
∨
{a∗x ∧ x | x(a∗x)∗ ≤ a}

≤
∨
{x ∧ y | xy∗ ≤ a} .
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Proving (III.2.19) is done in an analogous way, but in the beginning retaining
the inequality x∗x ≤ e instead of xx∗ ≤ e.

For the converse let us assume that both (III.2.18) and (III.2.19) hold,
and from there let us prove that

∨
I(Q) = 1. From (III.2.18) we obtain

1 = (e ∧ e)1 ≤
∨
{x ∧ y | xy∗ ≤ e}

≤
∨
{x ∧ y | (x ∧ y)(x ∧ y)∗ ≤ e} =

∨
{x | xx∗ ≤ e} ,

and, similarly, from (III.2.19) we obtain

1 ≤
∨
{y | y∗y ≤ e} .

Hence,

1 ≤
∨
{x | xx∗ ≤ e} ∧

∨
{y | y∗y ≤ e}

=
∨
{x ∧ y | xx∗ ≤ e and y∗y ≤ e}

≤
∨
{x ∧ y | (x ∧ y)(x ∧ y)∗ ≤ e and (x ∧ y)∗(x ∧ y) ≤ e}

=
∨
{x | xx∗ ≤ e and x∗x ≤ e} =

∨
I(Q) .

We finally arrive at the main result of this section.

Theorem III.2.19 The following conditions are equivalent.

1. Q is an inverse quantal frame.

2. Q is a multiplicative quantal frame and the category associated to Q is
a groupoid.

3. Q is a multiplicative quantal frame and the category associated to Q is
an étale groupoid.

Proof. We already know that inverse quantal frames are multiplicative, and
it is clear from the previous three lemmas that the category associated to a
multiplicative quantal frame Q is a groupoid if and only if Q is an inverse
quantal frame. What remains to be proved is therefore that this groupoid is
necessarily étale. Let then Q be an inverse quantal frame. Then I(Q) is a
cover, and, since we already know that d is open, in order to show that d is a
local homeomorphism it suffices to prove, for each a ∈ I(Q), that the frame
homomorphism

f = ((−) ∧ a) ◦ d∗ : ςQ→ ↓a
is surjective. Let x ∈ ↓a. Then xx∗ ∈ ςQ because x is a partial unit. The
conclusion that f is surjective follows from the fact that f(xx∗) = x:
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• By (II.3.13) we have xx∗1 = x1. Then x ≤ xx∗1, and thus x ≤
xx∗1 ∧ a = f(xx∗);

• By II.3.5-5 we have f(xx∗) = xx∗1 ∧ a = xx∗a ≤ xa∗a ≤ xe = x.

Definition III.2.20 Let Q be an inverse quantal frame. We denote its
associated localic étale groupoid by G(Q).

Separating examples. We have studied various kinds of quantales,
and in particular we have obtained the following inclusions:

(III.2.21)

{
inverse

quantales

}
⊂

{
stably

supported
quantales

}
∪ ∪{

inverse
quantal
frames

}
⊂

{
multiplicative

quantal
frames

}
⊂

{
stable

quantal
frames

}
.

The examples that follow show that all the inclusions are strict.

Example III.2.21 A stable quantal frame which is not multiplicative is the
commutative quantale Q = ℘(X) with

• X = {1, x} (with 1 6= x),

• trivial involution,

• ςU = {1} for all U 6= ∅,

• e = {1},

• multiplication defined on the atom {x} by the condition {x}{x} =
{1, x} (and freely extended to unions in each variable).

This also shows that not every stably supported quantale is an inverse quan-
tale.

Example III.2.22 Let M be the idempotent ordered monoid which, besides
the unit 1, contains only one additional element x such that 1 ≤ x. The
set Q = L(M) of downwards closed subsets of M is an idempotent unital
quantale under pointwise multiplication, with e = {1}, and it is commutative.
With trivial involution, and with a support defined by ς(U) = {1} for all U 6=
∅, we obtain a multiplicative quantal frame that is not an inverse quantale
because M is not a union of partial units.
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We remark that this example differs from the previous one because the
quantale is not a powerset. There is a good reason for this: if the powerset
of (the set of arrows of) a small discrete involutive category is a supported
quantale at all, then it is necessarily an inverse quantale. This is because
the axiom ςa ≤ aa∗ alone forces the category to be a groupoid, since on
singletons the axiom gives us d(x) = ς({x}) ⊆ {xx∗}, i.e., d(x) = xx∗, and
also r(x) = d(x∗) = x∗x, and thus the involution of the category coincides
with inversion: x∗ = x−1.

Example III.2.23 Now we present an example of an inverse quantale that
is not a frame, hence showing that the two vertical inclusions of the diagram
(III.2.21) are strict. Consider a non-T0 topological space X = {x, y, z} with
three open sets ∅, {x, y}, and X. This space has exactly one non-idempotent
automorphism, namely the bijection s that permutes x and y. Hence, the
order structure of its pseudogroup S = I(X) is as follows:

e = idX s

f = id{x,y}

JJJJJJJJJJ
fs

��������

0

The multiplication of S is commutative, it is defined by the conditions s2 = e
and E(S) = {0, f, e}, and each element is its own inverse. The inverse
quantal frame Q = L∨(S), which in this example coincides with L(S), has
nine elements (we write s instead of ↓s, f ∨s instead of ↓f ∪↓s, etc.), namely
0, f , t = fs, e, a = f ∨ fs, s, b = e ∨ fs, c = f ∨ s, and 1 = e ∨ s, where of
course we have a = f1. It is now straightforward to obtain the multiplication
table of Q; we present only the upper triangle because Q is commutative:

0 f t e a s b c 1
0 0 0 0 0 0 0 0 0 0
f f t f a t a a a
t f t a f a a a
e e a s b c 1
a a a a a a
s e c b 1
b b c 1
c b 1
1 1
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Now consider the equivalence relation θ on Q whose only non-singular equiv-
alence class is {b, c, 1}. The rightmost three entries of each line of the table
are always equivalent, which means that θ is a congruence for the multipli-
cation. Similarly, any join of an element of Q with either b, c or 1 necessarily
produces an element in {b, c, 1} (because b and c are maximal elements of
Q), and thus θ is also a congruence for binary joins (and hence for all joins
because Q is finite). Since θ is trivially also a congruence for the involution,
the quotient Q/θ is a unital involutive quantale with seven elements ordered
as follows:

1

��������

>>>>>>>

e a

��������

======== s

f

======== t

��������

0

This lattice is not distributive (for instance we have s ∧ (e ∨ a) = s ∧ 1 = s
and (s ∧ e) ∨ (s ∧ a) = 0 ∨ t = t 6= s), but it is a supported quantale
because θ is a congruence also with respect to the support, since in Q we
have ςb = ςc = ς1 = e. Hence, Q/θ is an inverse quantale but not an inverse
quantal frame.

3 Groupoid quantales

In section 2 we have described the class of inverse quantal frames Q, showing
that they have associated localic étale groupoids G(Q). Now we shall do the
converse, namely showing that any localic étale groupoid G has an associated
inverse quantal frame O(G), such that the two constructions G and O are
inverse to each other up to isomorphism.

Quantal groupoids. As we have seen, if the topology Ω(G) of a topo-
logical groupoid G is closed under pointwise multiplication of open sets then
Ω(G) is a unital involutive quantale. The localic analogue of this is of course
a localic groupoid G whose multiplication map m is open, but even just by
assuming that m is semiopen relevant conclusions are obtained. In partic-
ular, as we shall see below, in that case O(G1) is a quantal frame, which
motivates the following definition.
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Definition III.3.1 By a quantal groupoid is meant a localic groupoid whose
multiplication map is semiopen. If G is a quantal groupoid, the groupoid
quantale of G, denoted by O(G), is defined to be the involutive quantale of
the following theorem.

Theorem III.3.2 Let G be a localic groupoid:

G1 ×
G0

G1 m // G1

i

�� r //

d
// G0.uoo

If G is quantal then O(G1) is a quantale whose multiplication

m′ : O(G1)⊗O(G1)→ O(G1)

is the sup-lattice homomorphism m′ = m! ◦ q, where

q : O(G1 ×G1)→ O(G1 ×
G0

G1)

is the frame quotient that defines G1 ×G0 G1 as a sublocale of G1 × G1.
Furthermore, this quantale has an involution given by

a∗ = i!(a) = i∗(a) .

Proof. The proof of associativity of m′ is, with direction reversed, entirely
analogous to the proof of associativity in III.2.8.

Let us prove that i! is an involution on O(G). The first condition, namely
a∗∗ = a, follows from i ◦ i = id, as does the fact that i! = i∗. For the second
condition, (ab)∗ = b∗a∗, we begin by recalling the equation

i ◦m = m ◦ χ ,

where χ is the isomorphism 〈i ◦ π2, i ◦ π1〉, which satisfies χ! = χ∗ because
χ ◦ χ = id. In particular, we have

χ!(a⊗ b) = χ∗(a⊗ b) = [π∗2 ◦ i∗, π∗2 ◦ i∗](a⊗ b) = π∗2(i∗(a)) ∧ π∗1(i∗(b))

= 1⊗ a∗ ∧ b∗ ⊗ 1 = b∗ ⊗ a∗ .

Hence, noting that i! ◦m! = m! ◦ χ!, we obtain

(ab)∗ = i!(m!(a⊗ b)) = m!(χ!(a⊗ b)) = m!(b
∗ ⊗ a∗) = b∗a∗ .

Lemma III.3.3 Let G be a quantal groupoid. Then d∗(a) is right-sided and
r∗(a) is left-sided, for all a ∈ O(G0).
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Proof. Let a ∈ O(G0). We have, in O(G),

(III.3.4) d∗(a)1 = m!(d
∗(a)⊗ 1) = m!(π

∗
1(d∗(a))) ,

where π1 : G1 ×G0 G1 → G1 is the first projection. One of the defining
conditions of G as a localic groupoid is d ◦ π1 = d ◦ m, and thus we can
replace π∗1 by m∗ in (III.3.4), which leads to

d∗(a)1 = m!(m
∗(d∗(a))) ≤ d∗(a) .

In a similar way one proves that r∗(a) is left-sided.

Lemma III.3.4 Let G be a quantal groupoid. Then, for all a ∈ O(G), we
have

d∗(u∗(a)) =
∨
bc∗≤a

b ∧ c(III.3.5)

r∗(u∗(a)) =
∨
b∗c≤a

b ∧ c .(III.3.6)

Proof. This is entirely similar to the proof of III.2.16, where the groupoid
inversion law was seen to be equivalent to the two conditions (III.2.17) and
(III.2.18), except that now we cannot assume equations like d∗(u∗(a)) =
(a∧ e)1 or r∗(u∗(a)) = 1(a∧ e), which make no sense because we do not even
have a unit e.

Lemma III.3.5 Any quantal groupoid has semiopen domain and range maps,
with d!(a) = u∗(a1) and r!(a) = u∗(1a).

Proof. Let us verify the conditions d!d
∗ ≤ id and d∗d! ≥ id with respect to

the proposed definition of d! (for r it is analogous). Let a ∈ O(G0). Taking
into account that d∗(a) is right-sided we obtain

d!(d
∗(a)) = u∗(d∗(a)1) ≤ u∗(d∗(a)) = a .

Now let a ∈ O(G1). Then d∗(d!(a)) equals d∗(u∗(a1)) which, by (III.3.5),
equals ∨

{b ∧ c | bc∗ ≤ a1} ,

and this is greater or equal to a (for instance, let b = c = a).
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Étale groupoids. In section 2 we have shown how to obtain localic
étale groupoids from inverse quantal frames, and now we shall do the con-
verse, showing not only any localic étale groupoid yields an inverse quantal
frame, but that indeed this is the case for any quantal groupoid G whose
sublocale of units is open; as a consequence it follows that such a groupoid
G is necessarily étale.

Definition III.3.6 A localic groupoid G is said to be unital if the map

u : G0 → G1

is open (and thus G0 is an open sublocale of G1).

Lemma III.3.7 Let G be a unital quantal groupoid. The involutive quantale
O(G) is unital, and the multiplicative unit is e = u!(1G0).

Proof. The proof is the same, with direction reversed, as the proof of the
unit laws in III.2.8.

Lemma III.3.8 Let G be a unital quantal groupoid. The following condi-
tions hold in O(G), for all a ∈ O(G0) and b ∈ O(G1):

b ∧ d∗(a) = u!(a)b(III.3.7)

b ∧ r∗(a) = bu!(a)(III.3.8)

Proof. Let a ∈ O(G0). We have

e ∧ r∗(a) = u!(1G0) ∧ r∗(a) = u!(1G0 ∧ u∗(r∗(a))) = u!(u
∗(r∗(a))) = u!(a) ,

where the second equality follows from the Frobenius reciprocity condition
for u, and the last equality is a consequence of the condition r◦u = id. Using
this, and noticing that the pushout of d∗ and r∗

O(G1) ⊗
O(G0)

O(G1)

satisfies the condition (cf. Exercise III.1.10-1)

(III.3.9) b⊗ (d∗(a) ∧ c) = (b ∧ r∗(a))⊗ c ,

we prove (III.3.7):

b∧d∗(a) = m!(e⊗ (b∧d∗(a))) = m!((e∧ r∗(a))⊗ b) = m!(u!(a)⊗ b) = u!(a)b .

Equation (III.3.8) is proved in a similar way, this time starting from the
condition e ∧ d∗(a) = u!(a), which is an instance of (III.3.7).
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Lemma III.3.9 Let G be a unital quantal groupoid. Then, for all a ∈
O(G1),

d∗(u∗(a)) = (a ∧ e)1
r∗(u∗(a)) = 1(a ∧ e) .

Proof. Let a ∈ O(G1). From (III.3.7) we have

d∗(u∗(a)) = 1 ∧ d∗(u∗(a)) = u!(u
∗(a))1 .

And we have u!(u
∗(a)) = a ∧ e because u is open:

u!(u
∗(a)) = u!(u

∗(a) ∧ 1G0) = a ∧ u!(1G0) = a ∧ e .

Hence, d∗(u∗(a)) = (a ∧ e)1. For r∗(u∗(a)) we use (III.3.8) and everything is
analogous.

Theorem III.3.10 Let G be a unital quantal groupoid. Then O(G) is an
inverse quantal frame, and its groupoid G(O(G)) is isomorphic to G.

Proof. First, we show that the sup-lattice homomorphism

ς = u! ◦ d!

defines a support:

• ςa = u!(d!(a)) ≤ u!(1G0) = e, which proves (II.3.2).

• An instance of (III.3.5) gives us

d∗(u∗(aa∗)) =
∨

xy∗≤aa∗
x ∧ y ,

and thus a ≤ d∗(u∗(aa∗)) (make a = x = y). Hence, by adjointness we
obtain u!(d!(a)) ≤ aa∗, i.e., we have proved (II.3.3).

• Now we prove (II.3.4):

ςaa = m!(ςa⊗ a)
= m!(u!(d!(a))⊗ a)
= m!((e ∧ r∗(d!(a)))⊗ a) [By (III.3.8)]
= m!(e⊗ (d∗(d!(a)) ∧ a)) [By (III.3.9)]
= d∗(d!(a)) ∧ a
= a (d∗ ◦ d! ≥ id) .
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Hence, O(G) is a supported quantal frame. Furthermore, from III.3.4 and
III.3.9 we obtain the equations

(a ∧ e)1 =
∨

xy∗≤a

x ∧ y

1(a ∧ e) =
∨

x∗y≤a

x ∧ y ,

which show, by III.2.18, that O(G) is an inverse quantal frame. Hence,

O(G) has an associated (étale) groupoid G(O(G)). Let us denote this by Ĝ,

with structure maps d̂, r̂, û, m̂, and î. We shall prove that G and Ĝ are
isomorphic. Since obviously we have G1 = Ĝ1, it is natural to look for an
isomorphism (f1, f0) : G → Ĝ with f1 = idG1 . Then f0 must be given by
f0 = d̂ ◦ f1 ◦ u = d̂ ◦ u, and, similarly, its inverse must be given by d ◦ û. Let
us verify that the pair (f1, f0) commutes with d and d̂, i.e., that the following
diagram commutes:

(III.3.10) G1

d

��

f1=id // Ĝ1 = G1

d̂
��

G0
f0=d̂◦u

// Ĝ0

In order to do this, first we remark that the results of section 2 on stable
quantal frames give for the homomorphisms d̂∗ ◦ û∗ and r̂∗ ◦ û∗ the formulas

(d̂∗ ◦ û∗)(a) = (a ∧ e)1
(r̂∗ ◦ û∗)(a) = 1(a ∧ e) ,

which are identical to those of III.3.9 for d∗ ◦u∗ and r∗ ◦u∗, thus yielding the
following identities of locale maps:

û ◦ d̂ = u ◦ d(III.3.11)

û ◦ r̂ = u ◦ r .(III.3.12)

Hence, using (III.3.11) we have

f0 ◦ d = d̂ ◦ u ◦ d = d̂ ◦ û ◦ d̂ = id ◦ d̂ = d̂ ◦ id = d̂ ◦ f1 ;

that is, the diagram (III.3.10) commutes. Using again (III.3.11) we show
that (f1, f0) commutes with u and û,

û ◦ f0 = û ◦ d̂ ◦ u = u ◦ d ◦ u = u ◦ id = id ◦ u = f1 ◦ u ,
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and using (III.3.12) we conclude that (f1, f0) commutes with r and r̂:

f0 ◦ r = d̂ ◦ u ◦ r = d̂ ◦ û ◦ r̂ = id ◦ r̂ = r̂ ◦ id = r̂ ◦ f1 .

Hence, (f1, f0) is a morphism of reflexive graphs. The fact that it is an
isomorphism with f−1

0 = d ◦ û follows again from (III.3.11):

(d̂ ◦ u) ◦ (d ◦ û) = d̂ ◦ û ◦ d̂ ◦ û = id ◦ id = id ,

(d ◦ û) ◦ (d̂ ◦ u) = d ◦ u ◦ d ◦ u = id ◦ id = id .

From these results it follows that the pullback of d and r coincides with
the pullback of d̂ and r̂ (both pullbacks are, as frame pushouts, given by
the same quotient of O(G1) ⊗ O(G1)), and thus it is obvious that m = m̂,
since both m∗ and m̂∗ are right adjoint to the same quantal multiplication
O(G1×G0G1)→ O(G1). Similarly, i = î because both i∗ and î∗ coincide with
the quantale involution, and we conclude that (f1, f0) is an isomorphism of
groupoids.

Our results provide equivalent but new alternative definitions for the no-
tion of étale groupoid:

Corollary III.3.11 For any localic groupoid G, the following are equivalent:

1. G is étale.

2. G is quantal and unital.

3. G is open and unital.

Proof. 2⇒ 1: Immediate consequence of III.2.19 and III.3.10.
3⇒ 2: Immediate because being open implies being quantal.
1 ⇒ 3: For an étale groupoid all the structure maps are local homeomor-
phisms, and thus, in particular, both m and u are open.

Groupoid maps and quantale homomorphisms. We remark that
as consequences of III.2.19 and III.3.10 we have obtained a duality between
étale groupoids and inverse quantal frames, which is given by isomorphisms

G ∼= G(O(G))

Q ∼= O(G(Q)) .

[Indeed there is an obvious equality Q = O(G(Q)).] It is natural to ask how
well this duality behaves with respect to morphisms, a question that we shall
briefly address now.
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Lemma III.3.12 Let Q1 and Q2 be inverse quantal frames, and f : Q1 →
Q2 a sup-latttice homomorphism. Let also m1 and m2 be the multiplication
maps of G(Q1) and G(Q2), respectively. The following conditions are equiv-
alent:

1. f(a)f(b) ≤ f(ab) for all a, b ∈ Q1.

2. (f ⊗ f) ◦m∗1 ≤ m∗2 ◦ f .

Proof. 1⇒ 2: Condition 1 is equivalent to (m2)! ◦ (f⊗f) ≤ f ◦ (m1)!, which
by adjointness is equivalent to f ⊗ f ≤ m∗2 ◦ f ◦ (m1)!. Composing with m∗1
on the right we obtain (f ⊗ f)◦m∗1 ≤ m∗2 ◦ f ◦ (m1)! ◦m∗1, and thus we obtain
condition 2 because (m1)! ◦m∗1 ≤ id.
2⇒ 1: From condition 2 we obtain, by adjointness, (m2)! ◦ (f ⊗ f) ◦m∗1 ≤ f .
Now composing, on both sides of this inequality, with (m1)! on the right we
obtain condition 1 because m∗1 ◦ (m1)! ≥ id.

Theorem III.3.13 Let G and G′ be étale groupoids, and let

h = (h1, h0) : G′ → G

be a morphism of groupoids. Then for all a, b ∈ O(G) we have

h∗1(a)h∗1(b) ≤ h∗1(ab) .

Proof. This a corollary of the previous lemma, since a morphism (h1, h0)
of groupoids preserves multiplication and that is equivalent to the equality
(h∗1 ⊗ h∗1) ◦m∗ = (m′)∗ ◦ h∗1.

The following example shows that the inequality in the above theorem is
in general not an equality.

Example III.3.14 As an example of an étale groupoid consider a nontriv-
ial discrete group G (written multiplicatively), and let h : G → G be an
endomorphism. In general h−1 : ℘(G) → ℘(G) is not a homomorphism of
quantales: for instance, if h(g) = 1 for all g ∈ G, and U = V −1 = {g}
with g 6= 1, then h−1(U) = h−1(V ) = ∅, whence h−1(U)h−1(V ) = ∅ but
h−1(UV ) = h−1({1}) = G.

This shows that there is no immediate contravariant functor from étale
groupoids to quantales, and that in order to find a duality between étale
groupoids and inverse quantal frames in the categorical sense one must be
willing to change the morphisms under consideration, for instance allowing
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more general homomorphisms of quantales, in particular homomorphisms
that are lax on multiplication as in III.3.13, or restricting consideration of
maps of groupoids to those whose inverse images preserve quantale multipli-
cation, etc. (Similar problems apply to multiplicative units — for instance,
in III.3.14 we have e = {1} and h∗(e) = kerh, and thus h∗(e) = e if and only
if h is injective.)

Open groupoids. Recall that an open localic groupoid G is a localic
groupoid

G2
m // G1

i

�� r //

d
// G0uoo

whose domain map d is open. Similarly to topological groupoids, we have
(cf. Exercise I.1.8):

Proposition III.3.15 Let G be a localic groupoid as above. The following
properties are equivalent:

1. G is open;

2. r is open;

3. m is open.

Proof. The first two conditions are clearly equivalent because d = r ◦ i and
r = d ◦ i and i is an isomorphism. Now assume that G is open. Then m is
open because it is a pullback of d (cf. Exercise III.1.16). Conversely, assume
that m is open. By III.3.5 we know that d is semiopen because m is, and
furthermore it satisfies the Frobenius reciprocity condition because m does,
which can be proved as follows:

d!(a ∧ d∗(b)) = u∗((a ∧ d∗(b))1) (By III.3.5.)
= u∗(m!((a ∧ d∗(b))⊗ 1))
= u∗(m!(π

∗
1(a ∧ d∗(b)))) (π∗1(−) = −⊗ 1 .)

= u∗(m!(π
∗
1(a) ∧ π∗1d∗(b)))

= u∗(m!(π
∗
1(a) ∧m∗d∗(b))) (d ◦m = d ◦ π1 .)

= u∗(m!(π
∗
1(a)) ∧ d∗(b)) (Frobenius cond. for m .)

= u∗(a1 ∧ d∗(b)) (π∗1(a) = a⊗ 1 .)
= u∗(a1) ∧ u∗d∗(b)
= d!(a) ∧ b (By III.3.5 and d ◦ u = id .)

The quantales O(G) of open groupoids G have interesting properties, but
we shall not address them in these notes.
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Germ groupoids revisited. In these notes we have provided a de-
tailed account of a threefold interplay between inverse quantal frames, ab-
stract complete pseudogroups, and étale groupoids, beginning, in Chapter I,
with a description of direct relations between topological étale groupoids and
abstract complete pseudogroups over a space. Chapters II and III, on the
other hand, have developed a point free version of this where quantales act
as mediating objects between groupoids and inverse semigroups.

Although we have not said so explicitly in Chapters II and III, the re-
lation between sober étale groupoids and spatial inverse semigroups that
results from this is a generalization of that of Chapter I: this is obvious
when constructing inverse semigroups from groupoids; and in the reverse di-
rection the construction of groupoids from abstract complete pseudogroups is
easily seen to coincide, in the case of spatial locales, with the germ groupoid
construction of Chapter I, once we take into account the following two facts:

• local homeomorphisms reflect sobriety of the base spaces (cf. Exercise
III.1.24-9);

• the locale L∨(S) of an abstract complete pseudogroup S is necessarily
the topology of the germ groupoid of S, due to an argument similar to
that of Exercise III.1.8-7.

(See also the Exercise III.3.16 at the end of this section.)
In other words, the groupoid G(L∨(S)) of an abstract complete pseu-

dogroup S is the localic version of the germ groupoid of S. In particular,
if E(S) is a spatial locale then the spectrum of the groupoid is exactly the
germ groupoid of S, and we can summarize the results described in these
notes in the following diagram:

Inverse
quantal
frames

G

~~

I

""

equivalence of cats._ _ _ _ _ _

�
�
�
�
�
�
�

Étale
groupoids bisections

00

O

>>

Abstract
complete

pseudogroups

L∨

bb

germspp

Exercise III.3.16 1. Let S be an inverse semigroup. Let s ∈ S, and let
F ⊆ E(S) be a filter of E(S) such that ss−1 ∈ F . The germ of s at F
is defined to be the set

germF s = {t ∈ S | tt−1 ∈ F and ft = fs for some f ∈ F} .
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Prove the following assertions:

(a) fs ∈ germF s, for all f ∈ F ;

(b) tt−1 ∈ F , for all t ∈ germF s;

(c) F coincides with the set ↑{tt−1 | t ∈ germF s};
(d) germF s is a filter of S.

2. Let S be an inverse semigroup, and Φ a filter of S. Prove that the set
d(Φ) defined by

d(Φ) = ↑{tt−1 | t ∈ Φ}

is a filter of E(S), and that for all s ∈ Φ we have

Φ = germd(Φ) s .

3. Let S be an abstract complete pseudogroup. Show that a point of
L∨(S) can be identified with any of the following two things:

(a) A map p : S → ℘(1) such that

•
∨
ϕ(S) = 1,

• ϕ preserves binary meets,

• ϕ preserves joins of compatible sets;

(b) A filter Φ ⊆ S such that for every compatible set X ⊆ S such
that

∨
X ∈ Φ we have x ∈ Φ for some x ∈ X.

4. Calling the filters of the previous exercise compatibly prime, show that
the compatibly prime filters of S are exactly the same as the germs of
S defined on completely prime filters of E(S). (This shows by explicit
calculation that the points of the germ groupoid of S are the locale
points of L∨(S).)

5. The classical groupoid S̃ of an inverse semigroup S (see [14]) is defined
as follows:

S̃1 = S

S̃0 = E(S)

d(s) = ss−1

r(s) = s−1s

i(s) = s−1

m(s, t) = st if d(t) = r(s) .
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(a) Show that S is a topological étale groupoid whose topology is the
(co-)Alexandroff topology obtained from the natural order of S
(the open sets are the downwards closed sets).

(b) Show that the quantale of this groupoid, Ω(S̃), coincides with
L(S).

(c) Show that the principal filters of S are exactly the germs germF s
with F a principal filter of E(S).

(d) Show that S̃ is isomorphic to the full subgroupoid of Σ(G(L(S)))
whose points are the principal filters of S. (Hence, Σ(G(L(S)) is

in an obvious sense the soberification of S̃, and therefore G(L(S))

is the closest possible localic counterpart of S̃.)
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[19] I. Moerdijk, J. Mrčun, Introduction to Foliations and Lie Groupoids,
Cambridge University Press, 2003.

[20] C.J. Mulvey, &, Rend. Circ. Mat. Palermo (2) Suppl. (1986) 99–104.

[21] C.J. Mulvey, Quantales, Invited Lecture, Summer Conference on Locales
and Topological Groups, Curaçao, 1989.
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[28] J. Paseka, J. Rosický, Quantales, in: B. Coecke, D. Moore, A. Wilce,
(Eds.), Current Research in Operational Quantum Logic: Algebras, Cat-
egories and Languages, Fund. Theories Phys., vol. 111, Kluwer Academic
Publishers, 2000, pp. 245–262.

[29] A.L.T. Paterson, Groupoids, Inverse Semigroups, and their Operator
Algebras, Birkhäuser, 1999.
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