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In this paper we discuss several aspects of the Hamiltonian structure of the Lotka-Volterra
equations. In particular we show that the dynamics on the attractor are hamiltonian.

Introduction

In his famous book “Legons sur la Théorie Mathématique de la Lutte pour la Vie” ([6]) Volterra
introduced the system of differential equations

(1) Ty =egjTj+ — ) ity J=1,...,n)

as a model for the competition of n biological species. In this model, x; represents the number
of individuals of species j (so Volterra assumes x; > 0), the a;;’s are the interaction coefficients,
the €;’s and the 3;’s(> 0) are parameters that depend on the environment. For example, £; > 0
means that species j is able to increase with food from the environment, while £; < 0 means that
it cannot survive when left alone in the environment. One can also have ¢; = 0 which means
that the population stays constant if the specie does not interact. Notice that by performing
the change of variables z; — x;/3; we can assume that the §; = 1.

The following type of qualitative behavior can be expected (and can probably be justified
in biological grounds). At first, the species evolve with varying interaction to reach some final
stage. In this final stage, some species will attain some constant value population, while a few
others continue to evolve without ever reaching a steady population. It is therefore natural that
the dynamics in the final stage will be conservative. In fact, in this paper we will show the
following result holds (some of the terms used will be explained later):

Theorem 0.1. Consider system (1) restricted to the flow invariant set Rt = {(x1,...,x,) €
R"™: x; > 0,5 =1,...,n}, and assume that the system has a singular point in R;. If the matriz
(ajr) is stably dissipative then the system has an attractor and the dynamics on the attractor
are hamiltonian.

The word “hamiltonian” is to be interpreted in a convenient way to be explained in the first
two sections. The hypothesis “stably dissipative” was introduced by Redheffer et al. ([3, 4, 5])
under the name “stable admissible”, who used it to demonstrate the existence of an attractor
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(see section 3). We prefer the former name in honor to Volterra (see [6], chp. IIT). We shall proof
theorem 0.1 in section 4.

This paper is an account of some of the results presented at the conference. A more detailed
account, including a description of the possible dynamics on the attractor, the Painlevé analysis
of system (1), a discussion of integrability and further analysis of the Poisson geometry associated
with the system, will be published alsewhere.

1 Volterra’s hamiltonian formulation

Let us recall that in the case were the interaction matrix is skew-symmetric (a;; = —ag;)
Volterra was able to introduce a hamiltonian structure for system (1) by enlarging the system.
One introduces new variables @); (called by Volterra quantity of life) by the formula:

@) Qj:/o 5()dr G=1,....n)

and rewrites system (1) as a second order o.d.e.:

(3) Qj =¢5;Q; + Zaijij (G=1...,n).

k=1

Then the function H = Z;‘ZI(E]-Q]- - Q]) is a first integral of the system because, on account
of skew-symmetry,

H = ) (5Q,—Q)),

Jj=1
n
= Z a;jkQ;Qr = 0.
Jh=1

Now, if we introduce another set of variables P; by the formula
1 n
(4) Pj=logQ;— 5> auQr  (G=1....n)
k=1

(which are well defined when we restrict the original system to R'}), then in the coordinates
(Qj, Pj) the function H is expressed as

(5) H =3 ejQ;— Y ellits Siena

j=1 j=1
and a simple computation shows that system (3) can be rewritten in hamiltonian form:

> _  OH
P = 3g;
(6) (G=1,...,n).

)., — _9H
O = 3



We remark that this system has n, time-dependent (if €; # 0), first integrals given by the
formulas

1« .
(7) fj(Qj,Pj,t):Pj—izajkcgk—gjt (G=1,...,n).
k=1

In fact, one checks easily that

- 0l

I; = 8—;+{Ij7H}:0y
where { , } is the classical Poisson bracket associated with the symplectic structure w =
Z?:l dQ] A deZ

(8) {f17f2} _ Z <afl 8f2 8f2 8fl>
j=1

dP; 0Q; OP; 0Q;
Moreover, one finds

9) {I;, I} = ajp.

2 A new hamiltonian formulation

The modern approach to hamiltonian systems is based on the following definition of a Poisson
bracket (see for example [1]).

Definition 2.1. A Poisson bracket on a smooth manifold M is a bilinear operation { , } :
C*®(M) x C>*(M) — C°°(M) on the space of smooth functions satisfying the following proper-
ties:

i) {fi, f2} = —{f2, f1} (skew-symmetry);
ii) {fufe, [} = filfe, f} + {f1, f}/f2 (Leibnitz’s identity);
ii) {f1,{f2, fs}} + {fo: {f3, fr}} + {fs, {f1, fo}} = O (Jacobi’s identity);

A hamiltonian system on a Poisson manifold M is defined by a choice of a function h €
C°(M), namely, the defining equations for the flow are

(10) & = Xp(x),
where the hamiltonian vector field X}, is the vector field on M defined by
Xn(f)={fn},  VfeC®M).

With this extended concept of hamiltonian system it is possible, in the case where the matrix
(aji) is skew-symmetric (and under the additional assumption (12)), to give a hamiltonian
formulation for system (1), without extending the number of variables in the system.

One introduces on R™ the Poisson bracket

0f10 Ofy O

j<k



which one easily verifies satisfies the conditions of definition 2.1. Then, if there is an equilibrium
(q1---,qn) for system (1) satisfying

n
(12) g+ apa=0, j=1,....n
k=1
and we let
n
(13) h=> (xj—gjlogzj),
j=1

we see that system (1) can be written in the form
Tj= {xjv h}

and therefore is hamiltonian.
Although this may seem an artificial construction, in fact the quadratic bracket (5) and the
classical Poisson bracket (4) are related in a natural way by a geometric type of “reduction”:

Theorem 2.2. The map V¥ : (Q;, P;) — z; defined by

T = e(Pita Tizy ajnQ) Y(Q,P) € R*™"
is a Poisson map from R®™ with the canonical Poisson bracket (8) to R™ with bracket (11). If
(q1,---,qn) is a solution of (12), this map reduces the enlarged system (6) to the Volterra system

(1).
Remarks.

(i) In general, even in the skew-symmetric case, one cannot get way without some assumption
of the type of (12) and so it is not possible to give a hamiltonian formulation without
introducing new variables (if, for example, (a;;) = 0 and €; > 0 then the origin is a source
and the system cannot be hamiltonian).

(it) If the e; =0 (j = 1,...,n), then system (1) is always hamiltonian. If one considers the
action on R®™ of the group of symmetries generated by the integrals (7) then it can be
shown, using the commutation relations (9) that the reduction given in theorem 2.2 is in
fact a symmetry reduction.

(11i) In [2] the hamiltonian structure (11) is also introduced, along with other hamiltonian
formulations wvalid for particular classes of interaction matrices. However, there is no
reference to its relation to the Volterra hamiltonian formulation.

3 The non skew-symmetric case

Even in the case where (a;;) is not skew-symmetric it is sometimes possible to introduce a
hamiltonian formulation. For this we need the following definition

Definition 3.1. A matrix A is called skew-symmetrizable if there exists an invertible diag-
onal matrix D such that AD is skew-symmetric.



Suppose the interaction matrix associated with system (1) is skew-symmetrizable through
some diagonal matrix D = diag(dy,...,d,). Then the change of variables

- 1 .
Nj:d—ja;j G=1,...,n)

transforms the system into the equivalent system
. n
(14) Nj :Eij—i-deajkNij, (jzl,...,n)
k=1

which has a skew-symmetric interaction matrix. Therefore, this system can be turn into a
hamiltonian system either if it has a singular point satisfying (12) or by Volterra’s extension
procedure.

The following proposition gives a necessary and sufficient condition for a matrix to be skew-
symmetrizable.

Proposition 3.2. A matriz (aji) is skew-symmetrizable if, and only if, a;; = 0 and it satisfies
(15) Wi Qi+~ iiy = (—1) @iy Qigiy i,
for every finite sequence of integers (i1, ..., is), with i, € {1,...,n} forr=1,...,s.

Condition (15) is better understood in terms of the graph G(A) associated with the matrix
(or the system). With each species j we associate a vertex O labeled with the letter j and we
draw an edge connecting vertex j to vertex k whenever a;; # 0 or a; # 0.
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Graph G(A) associated with a matrix A = (a;).

Then the exact meaning of condition (15) is the following. The matrix associated with the
system is skew-symmetrizable if, and only if, for each cycle in the diagram with a even (resp. odd)
number of vertices we obtain the product (resp. minus the product) of the coefficients when we
go around the cycle in opposite directions. Hence, for example, a matrix with the diagram above
is skew-symmetrizable if, and only if, a;; = 0 and

ajrk 70 = ap; #0,
(16) agrargags =  —Q68a87A76,

423034045052 = a25054043032-

Recall that a graph K is a forest if K = K |J---|J K, (disjoint) where each Kj is a tree.In this
case, we obtain



Corollary 3.3. If the matrix associated with the system satisfies a; = 0,
(17) ajk 75 0= Ak ?é 0
and the graph is a forest, then the system has a direct hamiltonian formulation.

Remark. If we do not allow the sign change in condition (15) then we obtain a necessary
and sufficient condition for the matriz to be symmetrizable. In this case, the system is gradient
with respect to the pseudo-metric ds® = > ie(djajpzjzy)dr;day.

4 Asymptotic stability and hamiltonian dynamics

In a series of papers [3, 4, 5] Redheffer et al. have studied the asymptotic stability of a class of
Volterra systems. They consider the system

Tj = 55 + D p_q GRT;Tk
(18) (j=1,...,n)
€j + D k=1 kqr = 0

restricted to R’} , under the assumption that the system (or the matrix (a;)) is stably dissipative,
a concept we now recall.

Definition 4.1. A matrix A is said to be dissipative if there exists a positive diagonal matrix D
such that AD < 0. By a perturbation of A one means a matrix A such that ajr =0 & ajg = 0.
Finally, a matrix A is called stably dissipative if every sufficiently small perturbation A is
dissipative:

36>0 : max |ajr — aji| < 6 = A is dissipative.
j

Redheffer et al. use the name stably admissible. Since what they call admissible is called
by Volterra dissipative ([6],chp. III), we prefer the term stably dissipative. For conditions for a
matrix to be stably dissipative see [3].

Let us start then with a Volterra system (18) with A = (a;;) stably dissipative. If D =
diag(dy,...,d,) is a positive matrix such that AD < 0, we perform the change of coordinates
xj — djz; so we can assume that A < 0. It can be shown that one can also choose the matrix
D so that the following condition holds

n

(19) Z AW Wj :0:>ajjwj =0, (] = 1,...,n).
Jk=1

Then we have a Liapunov function given by
n
(20) V= Z (xj —gjlogz;) .
j=1

In fact, we find that

n

V=" ajz;—q;) (@ — @) <0
j,k=1



which implies, by La Salle’s theorem, that the solutions exist for all £ > 0 and that the set V=0
is an attractor. Therefore one would like to understand the set V' = 0.
Notice that by (19) and (20) solutions on the set V' = 0 satisfy

Tj =25 3 5 ajk(Tr — i),
(21)
Cij(.’Ej—q]'):O (jzl,,n)

Therefore, one has either a;; = 0 or a;; < 0, and in the later case we have x; = ¢; on the
attractor. Hence it will be convenient to modify slightly the notion of graph associated with the
system as follows. One now draws a black dot @at vertex j if either aj; < 0 or a;; = 0 and
somehow we have shown that z; = ¢; on the attractor. Otherwise, one draws an open circle O
at vertex j. It is also convenient to put a @ at vertex j if one can show that x; is constant on
V = 0. Then, using (21) the following propagation rules are deduced:

(a) If there is a @ or @ at vertex j and @ at all neighbors of j except one vertex [, then we
can put a @ at vertex [;

(b) If there is a @ or @ at vertex j, and a @ or @ at all neighbors of j except one vertex [,
then we can put a @ at vertex [;

(c) If there is O at vertex j, and @ or @ at all neighbors of j, then we can put @ at vertex j;

One calls the reduced graph R(A) of the system, the graph obtained by repeated use of the
rules of reduction (a), (b) and (c).

T / O T / T / )
® e —0 —o
A graph G(A) and it’s reduced form R(A).

For more details on these rules and on the reduced graph see ([4]). Here we shall only need
the following fact which follows from the results in [5].

Proposition 4.2. Let K denote the subgraph of the reduced graph formed by vertices with O
or @ and connections between them. Then K is a forest.

We are now in condition to prove:

Theorem 4.3. Consider system (1) restricted to the flow invariant set R} = {(x1,...,2,) €
R"™: x; > 0,5 =1,...,n}, and assume that the system has a singular point in R';. If the matriz
(ajr) is stably dissipative then the system has an attractor and the dynamics on the attractor
are hamiltonian.

Proof. Consider the system restricted to {V} = 0. We split the variables z; into two groups
labeled by sets J, and J,. In the first group {z;};cs, we have all the z;’s corresponding to
vertices with open circles O or @ in R(A), while the second group {z;};cs, we have all the



x;’s corresponding to vertices with black circles @ in R(A). For j € J, we have z; = ¢;, hence
the restricted system satisfies

:i’j = (Ej + ZkeB ajqu)a:j + ZkeA AjkT;T if ] S JO
(22)
T; = qj if j € Jo

Therefore if we define &; = ¢ + >, c ;. @jrqr, Gjx = ajx (j,k € J,), we obtain a new Volterra
type system:

(23) T =¢&;r5 + Z kT Tk (j €Jo)
keA

where the graph associated with the matrix (@;); ke, is precisely the subgraph K of the reduced
graph R(A) formed by vertices with O or @ and connections between them. Also, the (g;);je,
form a solution of the system

t;:j—l-ZEijqk:O (]E JO).
keA

By proposition 4.2 and corollary 3.3, the system (23) is hamiltonian. O
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