
THE CLASSIFICATION OF 1 DIMENSIONAL MANIFOLDS

This is a proof of the classification of connected, second countable1, Hausdorff
1-manifolds in excruciating detail following the basic plan of the appendix of [Mi].
This solves Exercises 1.2.6 and 1.4.9 in Hirsch.

In all that follows M denotes a connected, second countable, Hausdorff manifold
of class Cr possibly with boundary with 0 ≤ r ≤ ∞.

We will fix the following notation: ϕ : U → R and ψ : V → R are charts of M
satisfying

• U ∩ V 6= ∅,U 6⊂ V and V 6⊂ U ;
• I = ϕ(U) and J = ψ(V ) are bounded intervals (possibly containing end-

points);
• α = ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ).

Note that ϕ(U ∩ V ) is a disjoint union of relatively open separated intervals of I.

Lemma 0.1. Let K be a connected component of ϕ(U ∩ V ) and a an endpoint of
K. Then

(i) a 6∈ K.
(ii) If a ∈ I then

c = lim
t→a
t∈K

α(t) 6∈ J.

In particular, c is an endpoint of J where J is open.

Proof. The limit exists because J is bounded and α|K is a homeomorphism of an
interval and therefore either increasing or decreasing on K.

If a is not an endpoint of I then a 6∈ K because K is relatively open in I.
Suppose a is an endpoint of I and a ∈ K. Then α(a) must be a boundary point
of J (as α(K) is relatively open in J). Let b be the other boundary point of K.
Since U 6⊂ V , b ∈ I and since V 6⊂ U , d = limt→b,t∈K α(t) ∈ J , but then ϕ−1(b)
and ψ−1(d) are distinct points of M which can’t be separated by open sets.

To prove (ii), suppose c ∈ J . Then, as the connected components of ϕ(U ∩ V )
are separated, ψ−1(c) 6∈ U and ϕ−1(a) 6∈ V . However, any two neighborhoods of
these points in M intersect (they contain points of ϕ−1(K)) and this contradicts
the assumption that M is Hausdorff. �

Corollary 0.2. Each interval in ϕ(U ∩ V ) is open and has at least one endpoint
in common with I. In particular, ϕ(U ∩ V ) consists of either one or two open
intervals.

1A connected paracompact Hausdorff manifold is automatically second countable so this is a
classification of paracompact Hausdorff 1-manifolds. Sketch proof: Paracompactness allows us to

define a Riemannian metric on M . Need to find a countable dense set on M . Pick a point and
take a maximal geodesic ball around it. Take the points in this ball with rational coordinates (for

some choice of coordinates). Consider maximal geodesic balls with centers in these points and

take all points with rational coordinates in these new balls. Continue in this way to infinity to
get a countable dense set.
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Proof. Lemma 0.1 says that ϕ(U∩V ) is a union of open intervals since the endpoints
of its components K do not belong to K.

If a component K ⊂ ϕ(U ∩ V ) has both endpoints not on the boundary of I.
Lemma 0.1 implies that α(K) = J (the limits at the boundary of K can’t be equal
as α is increasing or decreasing) contradicting the assumption that V 6⊂ U . �

Proposition 0.3. (i) If ϕ(U∩V ) consists of two intervals then I and J are open
and U ∪ V is homeomorphic to S1.

(ii) If ϕ(U ∩ V ) consists of one interval with the same endpoints as I, then I
contains exactly one boundary point and U ∪ V is homeomorphic to [0, 1] or
[0, 1[ according to whether J contains one boundary point or not.

(iii) Otherwise U∪V is homeomorphic to ]0, 1[, [0, 1[ or [0, 1]. I and J each contain
at most one boundary point and the total number of these is the number of
boundary points of the interval to which U ∪ V is homeomorphic.

Furthermore, if U ∪ V is homeomorphic to [0, 1] or S1 then M = U ∪ V .

Proof. (i) Suppose ϕ(U ∩ V ) contains two intervals K1 and K2. Let ai be the
endpoint of Ki which is not an endpoint of I and bi be the other endpoint of
Ki. Corollary 0.2 says that I and J are open. Define

ci = lim
t→ai,t∈Ki

α(t); di = lim
t→bi,t∈Ki

α(t).

Then c1 6= c2 (even if a1 = a2) because equality would imply that α is not
injective. Hence c1 and c2 are the endpoints of J and d1 and d2 are interior
to J (they could be equal).

Suppose without any loss that b1 < a1 ≤ a2 < b2. Then either c1 < c2 and
α is decreasing on K1 =]b1, a1[ and K2 =]a2, b2[ or c1 > c2 and α is increasing
onK1 andK2. In either case it is easy to define a homeomorphism S1 → U∪V .
Suppose for instance that α is increasing. Then, either d1 = d2 and U ∪ V
is the one point compactification of U and hence homeomorphic to S1 or
d2 < d1. In the latter case pick increasing homeomorphisms λ : ]0, π[→]b1, b2[
and µ : [π, 2π]→ [d2, d1] and define f : S1 → U ∪ V by

f(eiθ) =

{
ϕ−1(λ(θ)) if 0 < θ < π,

ψ−1(µ(θ)) if π ≤ θ ≤ 2π.

(ii) Since U 6⊂ V , I must contain one of its boundary points. It can not contain
both or U would be open and closed in M . Suppose for instance that I = [a, b[
(so K = φ(U ∩V ) =]a, b[) and let ψ(U ∩V ) =]c, d[. Then c = limt→a,t∈K α(t)
is an endpoint of J where J is open by Lemma 0.1. Suppose for instance
that α is increasing and let e = limt→b,t∈K α(t). Since V 6⊂ U , it must then
be that either J =]c, d[ with e < d (if V does not contain a boundary point)
or J =]c, d] with e ≤ d (if V does contain a point in the boundary of M).
Assume for example that V has no boundary point. Pick a homeomorphism
µ : [b, b+ d− e[→ [e, d[ and define

f : [a, b+ d− e[→ U ∪ V

by

f(x) =

{
ϕ−1(x) if x < b

ψ−1(µ(x)) if b ≤ x < b+ d− e.



THE CLASSIFICATION OF 1 DIMENSIONAL MANIFOLDS 3

Composing f with a homeomorphism [0, 1[→ [a, b + d − e[ we obtain the
desired homeomorphism. The remaining (seven) cases are handled in exactly
the same way.

(iii) This is exactly as (ii) and is left as an exercise.
The last statement follows from connectedness of M . �

We need to prove a version of the previous Proposition when r ≥ 1. The difficulty
is that it is harder to extend diffeomorphisms than homeomorphisms: the transition
functions α might not extend as the limits of the derivatives may not exist when
we approach the boundary. However, if we have charts U and V which intersect,
we can shrink them to smaller charts U ′ ⊂ U ′ ⊂ U and V ′ ⊂ V ′ ⊂ V and then it
is not hard to glue the charts U ′ and V ′ as the following lemma explains.

Proposition 0.4. Let r ≥ 1, A = ϕ(U ∩ V ), B = ψ(U ∩ V ) and suppose α can
be extended to a diffeomorphism between open neighborhoods of A and B. Then
Proposition 0.3 holds with ”homeomorphic” replaced 2 by ”Cr diffeomorphic”.

Proof. We will just do the case of Proposition 0.3(iii) when I and J are both open.
We will pick particular intervals I,J in order to make the argument easier to follow.

Let ϕ : U →]0, 1[ and ψ : V →]1, 2[ and suppose ϕ(U∩V ) =] 12 , 1[, ψ(U∩V ) =]1, 3
2 [

(so α is increasing). Suppose α can be extended to an increasing Cr map on ] 12 , 1+ε].
Let λ : ]0, 3

2 [→ [0, 1] be smooth and such that

λ(x) =

{
1 if x ≤ 1,
0 if x ≥ 1 + ε

and λ is decreasing. Let g :]1, 3
2 [→]1, 2[ be an increasing affine function so that

g( 3
2 ) = 2 and g(x) ≥ α(x) for 1 ≤ x ≤ 1 + ε. Define a map

f : ]0, 3
2 [→ U ∪ V

by the expression

f(x) =

{
ϕ−1(x) ifx < 1
ψ−1(λ(x)α(x) + (1− λ(x))g(x)) if x ≥ 1.

Then f is smooth, has image U ∪ V , and for x ≥ 1, we have

(ψ ◦ f)′(x) = λ′(x)(α(x)− g(x)) + λ(x)α′(x) + (1− λ(x))g′(x) > 0

so we can precompose f with a diffeomorphis ]0, 1[→]0, 3
2 [ to obtain the required

diffeomorphism. �

Theorem 0.5. Let 0 ≤ r ≤ ∞. Every connected, Hausdorff, second countable Cr

1-manifold is Cr diffeomorphic to one of the following:

S1, ]0, 1[, [0, 1], [0, 1[.

Proof. Let {Ui} be a locally finite countable cover of M by coordinate patches
with ϕi(Ui) bounded intervals. If r ≥ 1, replace {Ui} by a shrinking (i.e. an open
cover {Vi} with Vi ⊂ Vi ⊂ Ui). This will guarantee that the transition functions
between intersecting charts can be extended to a neighborhood of the closures of
their domains. We will abuse notation and still denote the shrinking by {Ui}.

2But note that some cases of Proposition 0.3 are excluded by the assumption that α extends
to a neighborhood of the closure of its domain.
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Using Zorn’s lemma we can pick a subcover (still denoted {Ui}) with the property
that Ui 6⊂ Uj when i 6= j. Identify the indexing set of the cover with an initial
segment of the natural numbers in such a way that

• If M contains a boundary point, then U1 contains a boundary point,
• Un ∩ (U1 ∪ . . . ∪ Un−1) 6= ∅.

The second condition can be enforced because M is connected. Note that if M is
compact the indexing set must be finite.

If M is compact, a finite number of applications of Propositions 0.3 or 0.4 gives
a Cr diffeomorphism from [0, 1] or S1 to M (we disregard Uk if it happens to be
contained in U1 ∪ . . . ∪ Uk−1, otherwise we apply the Propositions to these two
intervals).

Suppose M is not compact and suppose for instance that it contains a boundary
point. We define inductively a (possibly finite) sequence an ∈ R with 0 < a1,
an ≤ an+1 and fn : |0, an[→ M so that f−1

n is a chart for U1 ∪ . . . ∪ Un and
fn|[0,an−1[ = fn−1. Set f1 to be the inverse of a chart for U1 to start the induction.
If Un 6⊂ U1 ∪ . . . ∪ Un−1 use Propositions 0.3 or 0.4 to obtain fn. Otherwise just
set an = an−1 and fn = fn−1. Note that Un can not contain a boundary point if
n > 1 for then M would be either compact or disconnected. Having defined this
sequence, let a = lim an ∈]0,∞], and define f : |0, a[→M by

f(x) = lim
n→∞

f(x).

Compose this with a diffeomorphism [0, 1[→ [0, a[ to get the required Cr diffeomor-
phism.

The argument for the case when M does not contain a boundary point is very
similar and is left as an exercise. �
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