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ABSTRACT

The aim of this work is to try to understand spacetime geometry (and in partic-
ular causal relations) in the manifold of light rays of a given (globally hyperbolic)
spacetime.

After defining the fundamental notions of the manifold of light rays and the
sky of a spacetime point (chapter 1), some important ideas about static spacetimes
are reviewed (chapter 2), and examples of skies in such spacetimes (both (2+1) and
(3-+1)-dimensional) are examined (chapters 3 and 4). The conjectured relationship
between linking and causality is discussed (chapter 5). The contact structure of
the manifold of light rays is studied and the idea of Legendrian linking described
(chapter 6). This contact structure is then used to analyze (2+1)-dimensional
skies (chapter 8). Results are obtained for the (2+1) and (3+1)-dimensional cases

(chapters 9 and 10).
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CHAPTER 1

The manifold of light rays

1.1 The set of light rays

Definition 1 Given a spacetime (M, g) (M being a real 4-manifold and g a smooth

Lorentzian metric on M ), its set of light rays is just the set N of its null geodesics.

Proposition 2 This set can be thought of as a quotient set D" M/ ~, where D"M
is a certain fibre bundle over M with fibre S? and ~ is a certain equivalence relation

on D"M.

Proof: The tangent bundle TM possesses a sub-bundle 7" M obtained by
selecting the nonvanishing null vectors on each tangent space T,M (z € M).
Notice that T"M (which is not a vector bundle) admits an obvious effective, free
action by R*(the multiplicative group of real numbers). Taking the quotient of
T™M by this action originates a fibre bundle over M with fibre S2, which we shall
call the bundle of null directions of (M, g), and shall denote by D" M. It is obvious
that every null geodesic on M has a unique lift to D™ M, and that these lifted null
geodesics foliate D" M by one-dimensional manifolds. Thus taking ~ to be the
equivalence relation of belonging to the same lifted null geodesic clearly gives us
the bijection N ~ D"M/ ~.O

Of course that since any Lorentzian metric is by definition nondegenerate,

we have a natural diffeomorphism TM =~ T*M, and could therefore make this



construction using the cotangent bundle instead of the tangent bundle; this is
done in [L].
For certain classes of spacetimes, it is possible to endow N with a differentiable

structure. The most obvious example will be discussed in the next section.

1.2 Globally hyperbolic spacetimes

Proposition 3 Let (M, g) be a globally hyperbolic spacetime and ¥ any Cauchy

surface. Then N has a natural structure of a fibre bundle over ¥ with fibre S2.

Proof: Since every null geodesic intersects ¥ exactly once, it is clear that we
have the bijection D"M/ ~ ~ D"M|x. Because D"M|y, is clearly a fibre bundle
over ¥ with fibre S?, one can use the bijection to introduce this structure on N.O

Of course that we are not so much interested in the fibre bundle structure
mentioned above but just in the differentiable structure it implies. To this end the

following result is important:

Proposition 4 The differentiable structure induced in N by the identification

D"M/ ~ = D™"M|yx, is independent of the choice of ¥.

Proof: Let 31, 35 be two Cauchy surfaces. It is obvious that because D"M/ ~
~ D"M]|s, and D"M/ ~ ~ D"M]|y,, we have the bijection D"M|z, ~ D"M|s,.
All that remains to prove then is that this bijection is in fact a diffeomorphism.
But this is a consequence of the smooth dependence on initial data of the solutions

of the geodesic equations (recall that we are assuming g to be a smooth tensor

field).O



Thus for any globally hyperbolic spacetime N has a natural differentiable struc-

ture.

Definition 5 We shall define the manifold of light rays of a globally hyperbolic

spacetime to be its set of light rays N endowed with this differentiable structure.
It is clear from the identification N = D"M|y that
dim(N) = dim( D"M|s) = dim(Z) + dim(S%) =3+ 2 =5.

Any Cauchy surface ¥ of our globally hyperbolic spacetime (M, g) is of course

a Riemannian manifold with (minus) the induced metric. We have the following

Definition 6 Let (X, h) be a Riemannian manifold. Then its tangent sphere bun-

dle is the sub-bundle TS(X) of TE consisting of all unit tangent vectors to T.

By considering at each point z € ¥ the natural decomposition T,M = T, ¥ &

(T, )" one readily obtains

Proposition 7 Let (M, g) be a globally hyperbolic spacetime and ¥ any Cauchy

surface. Then N is diffeomorphic to T'S(X).

1.3 Other spacetimes

There are of course non-globally hyperbolic spacetimes whose set of light rays
possesses a natural differentiable structure. Nevertheless we shall from this point
on assume that all spacetimes we’re dealing with are globally hyperbolic. For

technical reasons, we shall also assume them to be time orientable.



1.4 Skies and light rays

Every point 7 of the manifold of light rays N of a spacetime (M, g) represents
a null geodesic of this spacetime. One might think of reversing this correspondence

and for every point z € M consider the set X C N of all null geodesics through z.

Definition 8 Given x € M, the set X = {y € N : x € v} shall be called the sky

of the point z.

Proposition 9 The sky X of any point x € M is an embedded submanifold of N

diffeomorphic to S°.

Proof: Recall we are assuming (M, g) to be globally hyperbolic. Let ¥ be
a Cauchy surface through z. Using the identification N =~ T'S(X) it is clear
that X is just the fibre over z, and is thus obviously an embedded submanifold
diffeomorphic to S2.0

This leads us to try to reinterpret spacetime geometry in the manifold of light
rays, the causal properties being of course our first main concern. In doing this,
we must have in mind that some information about the geometry is lost as one

goes to the manifold of light rays. For instance, we have the well known (see [W])

Proposition 10 Let (M,g) and (M, §) be conformally related spacetimes. Then

they have the same null geodesics.

Proof: Let § = Qg and {z®} be local coordinates on M (we will be using the

notation conventions of [PR]). The Christoffel symbols for the Levi-Civita connec-



tion associated to g are related to those associated to g through the expression

. 1. ~ ~ ~
be = §gad (VbGed + VeGbd — Vagbe)

_ 1 g% [Vb (Qgea) + Ve (Qgba) — Ve (Vgee )|

= gc + Q_l (vngca + Vcnga - angbc) .

Now let 2 = z?(s) be an affinely parametrized geodesic for the metric g. We

have

i T2 &P3°=0
and therefore

i T8 %% = 3 412, 2°2° +071 (VpQlg,® + Vellg,® — V2Qgpe) 2°1°

= Q! (2% i® —gpe T°5° VaQ) )

Thus affinely parametrized null geodesics of the metric g (which of course
satisfy gapb %3P = 0) are (in general) non-affinely parametrized geodesics of the
metric g, which are necessarily null geodesics in view of the relationship § = Q?g.
The roles of the two metric tensors can obviously be interchanged and it is therefore
clear that the null geodesics for both these metrics coincide.O

On the other hand, we also have

Proposition 11 Let g, § be two Lorentzian metrics on the same 4-manifold M

such they have the same null vectors. Then they are conformally related.

Proof: Let {t%, z%, y%, 2°} be an orthonormal frame on some coordinate neigh-

bourhood U with respect to g. Since both metric tensors yield the same null



vectors we have
git* £zt t°+2%) =0=gt* £ z%t*+z*) =0
which is equivalent to
g(t%,t*) + g(z%, z%) £ 2g(t*, z%) =0
yielding
gt*,z*) =0

and
g(z% %) = —g(t%,t%).

This is of course also true for y* and 2* and thus we get

§ - g(ta’ ta)g

clearly showing that g and g are conformally related.O

We thus see that

Proposition 12 Let (M, g) be a spacetime; then the knowledge of its (parametrized)

null geodesics is equivalent to the knowledge of its conformal structure.

So merely by considering only null geodesics we are throwing away information
about the scale factor of the metric tensor. Things are even worse if we are only
given the manifold of light rays N and information about which 2-submanifolds
are associated with points of spacetime. For one thing, different points may have

the same sky. This happens when all light rays through a certain point refocus on



another point, as is the case for instance in the Einstein universe, or in the closed
matter-dominated Friedmann-Robertson-Walker universe. As a matter of fact it
would not be possible to distinguish between these two spacetimes based solely
on the manifold of light rays, although they are clearly distinct (and are not even

conformally related).



CHAPTER 2

Static spacetimes

2.1 Space manifold

Null geodesics on static spacetimes are particularly simple. Studying these
will allow us to understand the manifold of light rays of a number of spacetimes
(namely those conformally equivalent to static spacetimes). We shall review some

ideas about static spacetimes, beginning with the well known

Definition 13 A spacetime (M, g) is said to be stationary if it possesses a com-

plete nowhere vanishing timelike Killing vector field.

Definition 14 A stationary spacetime (M, g) is said to be static if the orthogonal

distribution to its Killing vector field t* is integrable.

We shall restrict ourselves to (globally hyperbolic) static spacetimes such that
the integral surfaces of this distribution are Cauchy surfaces. Thus from this point
on ”static spacetime” means ”globally hyperbolic static spacetime such that the
integral surfaces of the orthogonal distribution to the Killing field are Cauchy
surfaces”.

If ¥ is an arbitrary such surface, one can extend any local chart {m‘} on ¥ to
a local chart {t, a:i} on M by using the integral curves of ¢, t being the parameter

along these curves (here we will take the indices i, j, k, ... to run from 1 to 3). On



these coordinates, the fact that ¢* is a Killing field translates into

agab
ot

=0

whereas the fact that ¥ is an integral surface of £, is translated into

Goilz =0

These two facts taken together obviously imply that on the coordinate chart

mentioned above the metric tensor is written

Goo 0
(gab) -

0 —hy
where the functions goo and hi; do not depend on t. Notice that the fact that g
is a Lorentzian metric obviously implies that goo > 0 and that the matrix (hy;) is
positive definite, thus defining a Riemannian metric A on ¥. This is enough to

prove

Proposition 15 Let (M, g) be a (globally hyperbolic) static spacetime with a time-

like Killing vector field t*. Then all the integral surfaces of t, with the Riemannian

metric induced by g are isometric, the isometry being provided by the flow of t°.
]

Moreover, there ezists a global time function t such that t* = £ and the integral

surfaces of t, are the time slices t = const.

Thus one may think of a static spacetime as having a space manifold (namely
the Riemannian manifold (£, h)), which remains unchanged in time, and a global

time in which events unfold. We shall tend to do so, committing frequent abuses
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of language: for instance, we will talk of light rays either referring to null geodesics
on M or to their (obvious) projections on ¥ parametrized by the global time.

It should be noted that Minkowski spacetime is a very atypical case of a static
spacetime in the sense that it admits a 3-parameter family of timelike Killing vector
fields (corresponding to the set of nonvanishing constant future-pointing timelike
vector fields), and thus a 3-parameter family of global time functions (this being
the reason for the non-existence of a unique notion of simultaneity for inertial
observers in Minkowski spacetime). A more typical example would be the region
r > 2M of Schwarzschild spacetime, which possesses just a one-parameter family
of timelike Killing vector fields, and consequently just a one-parameter family of
global time functions. Since these functions are constant multiples of each other,
one may in fact say that Schwarzschild spacetime admits essentially one global
time function (which in a sense is the time measured by an observer at infinity).
What happens here is of course that by introducing matter in our static spacetime
we single out a special class of observers, namely those at rest with respect to that

matter, and consequently a preferred notion of simultaneity.

2.2 Fermat’s principle

The main reasons why the null geodesics of static spacetimes are easier to

understand are of course contained in

Proposition 16 Let (M,g) be a static spacetime. Then its geodesics possess a

time translation invariance, in the following sense: if t = f°(s), = = fi(s) is a
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solution of the geodesic equations then t = f%(s) +c, = = fi(s) is also a solution

for anyc e R.
Proof: The geodesic Lagrangian in our chosen coordinate chart is of course

1= (g i —hy ')

N =

meaning that the geodesic equations are

2 (amt) =0 (2.1)

(which can be thought of as an energy conservation law), and

is (hy &) + %Vigoo i —%vihjk Hi¥= 0 (2.2)

We thus see that the result stated above is a trivial consequence of the fact
that for each value of s both sets of functions have the same values of ¢, &' and
z!, the value of ¢ being of course irrelevant as far as the geodesic equations are

concerned. It is easy to see that this result in fact holds for general stationary

spacetimes.]

Proposition 17 Let (M, g) be a static spacetime. Then its geodesics possess a
time reflection invariance, in the following sense: if t = fO(s), o' = fi(s) is a
solution of the geodesic equations then t = 2f°(0) — f%(—s), ' = fi(—s) is also a

solution.

Proof: One has but to check that, assuming that the geodesic equations 2.1

and 2.2 hold for the first set of functions, they also hold for the second set. It
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can be shown that, unlike the previous result, this proposition does not hold for
general stationary spacetimes.O]

Light rays single out preferred curves along the space manifold of a static
spacetime. Indeed, proposition 16 guarantees that a light ray through a certain
point of the space manifold in a certain direction will always transverse the same
spatial path irrespective of the instant in time in which it happens to pass through
that point. On the other hand, proposition 17 tells us that light rays travelling in
opposite spatial directions follow the same path. This is characteristic of geodesic

curves, and as a matter of fact we have

Theorem 18 Let (M, g) be a static spacetime and (X, h) its space manifold. Then
the light rays on ¥ are the geodesics of the Riemannian manifold (X, goLOh) (where

goo = t,t® is well defined), and the global time t is an affine parameter for these

geodesics.

Proof: As is well known any null geodesic will satisfy

. 1 i
L=0 <:>t2= —hij .
900
Using this on equation 2.2 one gets
ki (hs &) + L Vigoohye $5* —EVihy #55= 0 (2.3)
ds ij 2900 igoo ik 2 iltjk . .

Now one can use equation 2.1 and the scale freedom in the affine parameter s
of the null geodesic to set

) . 1
goo t= 1 &t= —
goo
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allowing us to write 2.3 as

d (1 ddf 1 dzi dz¥ 1 dz’ dz¥
— [ —h;— —— V;ig00hix———— — ——V;h
dt (goohJ dt )  5gz Vidwhic T = 9 -V

20% i g g = ©

d (1 ddo 1 1 dz’ dz
— | —hy— | — =V —h | ——— =0
T (goo I dt) 2 (goo J“) dt dt

which are clearly the Euler-Lagrange equations for the Lagrangian

L= L p 98

or, in other words, the geodesics for the line element

1
goo

dt* = —hy;dz'd2’.0

One can think about this result in a number of ways. The first and most
obvious one is to think that light rays are determined by this new Riemannian
metric on ¥ (which we shall call the light metric), which is conformally equivalent
to the natural metric h. Stationary observers (i.e., observers whose worldlines are
the integral curves of ¢*) would measure (a quantity proportional to) the distance
determined by this metric in radar experiments. However a much more interesting
way to think about this is to use the fact that ¢ is an affine parameter of the
geodesics of the light metric to realize that theorem 18 is really saying that we have
a Fermat’s principle (see [A]) for the propagation of light on our space manifold:
a light ray will travel between two points using the path that allows it to do so in
minimum time, the speed of light at each point being given by ./goo.

We shall be interested in studying light wavefronts emanating from one point

from our space manifold and propagating across it. To this end it is interesting to

recall the following
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Theorem 19 Let (3,h) be an arbitrary Riemannian manifold and x € ¥. Let
Bc(z) be the set of all points lying at a distance € > 0 from z (along some geodesic),
and y € B.(z) a point not conjugate to x. Then the geodesic joining = to y is

orthogonal to B.(x).

Proof: Let T be the unit tangent vector to the congruence of geodesics ema-
nating from z. Consider an arbitrary nonzero tangent vector to B.(z) at y. Since y
is not conjugated to z, there exists a Jacobi field J along the geodesic connecting
z to y which coincides with the given tangent vector at y. Such Jacobi field can
be chosen to satisfy

[T,J] =0 T°V,J° = J*V,T®

and since T satisfies the geodesic equation,
T°V,T* =0
it follows that

T°V, (JbT") = T*T°V,J, + J,T°V,T?

1
= TPJV,T, = J°V, (ET”TI,) —0.

Now since we are considering the congruence of geodesics through z, and chose
J® to satisfy [T,J] = 0, we have J* = 0 at z, and therefore J,7° = 0 along the
geodesic. Therefore the tangent space to Be(z) at y is orthogonal to 7.0

It is then clear that a light wavefront emanating from one point z in our

space manifold 3 is orthogonal to the light rays that comprise it (with relation to
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either the light metric or the space metric, as these are conformally related). This
information will be useful later on.

There are many other interesting aspects of static spacetimes, which we shall
not mention as they are not directly relevant to our problem. We cannot however

resist stating

Theorem 20 Let (M, g) be a static spacetime with Killing vector field t*, Gy its
Einstein tensor and R the Ricci scalar curvature of its space manifold. Then in any

orthonormal frame containing a timelike vector parallel to t* we have Gy = %R

The proof of this curious connection between the geometry of the space mani-
fold and Einstein’s equations is fairly straightforward. Notice that if no cosmologi-
cal constant term is present we can write R = —167p, where p is the energy density
measured by the static observers. Thus for instance for static vacuum solutions of
Einstein’s field equations (e.g. the region r > 2M of Schwarzschild’s spacetime)

the space manifold satisfies R = 0.



CHAPTER 3

Examples in (2+1)-spacetimes

3.1 (2+1)-spacetimes

Definition 21 A (2+1)-spacetime is a pair (M, g), where M is a real 3-manifold

and g is a smooth Lorentzian metric on M.

Again we shall assume all (241)-spacetimes to be globally hyperbolic. All that
has been said about ordinary (3+1)-dimensional spacetimes (except for theorem
20) carries over in a fairly straightforward way to (2+1)-spacetimes, the main dif-
ference being the dimensionality of the various objects that have been introduced.
So if (M, g) is a globally hyperbolic (2+1)-spacetime and ¥ a Cauchy surface, its
set of light rays NV is diffeomorphic to T'S(X), thus being a differentiable manifold
with

dim(N) = dim(Z) + dim(S*) =2+ 1 = 3.
This makes the manifold of light rays for a (2+1)-spacetime easy to visualize.

Given z € M, we shall again call the set X = {TI' € N : z € v} the sky of the

point z; it is clearly an embedded submanifold of N diffeomorphic to S!.

Proposition 22 Any Cauchy surface & of an orientable (globally hyperbolic) (2+1)-

spacetime (M, g) is necessarily orientable.

Proof: Recall that any globally hyperbolic spacetime possesses a nonvanishing

timelike vector field ¢*, which can obviously never be tangent to ¥. We can use this
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and the orientability of M to define an orientation on the tangent space to ¥ as
follows: fix an orientation on M; if z € ¥ we shall say that the basis {z%,y*} C T, X
is right-handed iff {¢®, 2% vy*} is right-handed. It is obvious that this gives us
indeed a consistent orientation for 3.0

We can use this to give the sky of any point £ € M an orientation (assuming
that M is orientable). In fact, because ¥ is orientable, we can clearly give an
orientation to the fibres of 7'S (X) (say the right-handed one); and since any sky is
a fibre of T'S (%) for some ¥, any sky is thus endowed with an orientation. It is easy
to see that the orientation attributed to the sky of a point z € M is independent

of the particular Cauchy surface ¥ 3 z used to do so.

3.2 Minkowski (2+1)-spacetime

Definition 23 We shall define Minkowski (2+1)-spacetime as R® with Cartesian

coordinates {t,z,y} and the flat Lorentzian metric
ds® = dt? — dz? — dy?.

Proposition 24 The manifold of light rays of Minkowski (2+1)-spacetime is R% x

St

Proof: This is clear from the fact that the plane ¢ = 0 is a Cauchy surface for
Minkowski (2+1)-spacetime.O

An easy way to visualize this manifold is to consider R? x [0,2n] C R? with
the planes R? x {0} and R? x {27} identified (see figure 3.1). In this manner,

the sky of a point (0,z,y) on our Cauchy surface t = 0 will be represented as



18

the line {(z,y)} x [0,2n], which is a closed curve by virtue of the identification.
The orientation of this sky will obviously be upwards, corresponding to the right-
handed orientation of S! as a fibre of the tangent sphere bundle to ¢t = 0, if the S!

coordinate 6 is chosen in the usual way as the angle from 3%.

(IDENTIFY)

Figure 3.1: The manifold of light rays of Minkowski (2+1)-spacetime

If we now think of the point (¢, z,y) with ¢ < 0, we see that the null geodesics
through this point intersect ¢ = 0 along a circle with centre (0, z,y) and radius |¢|.
Also these are outgoing null geodesics; it is therefore not hard to see that the sky

of this point will be

{(z + |t|cosB,y + |t|sinh,0) : 0 < 6 < 27}.

The orientation of this sky is again upwards.
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If t > 0 the null geodesics through (¢, z,y) will intersect ¢ = 0 along a circle
with centre (0, z,y) and radius ¢. Since now these null geodesics are ingoing, we

get as the sky of this point the curve
{(z +tcos(8 + ),y +tsin(0+7),0): 0< 0 < 2rm}.

The sky orientation is still upwards; this can be thought of as a consequence of
the fact that the antipodal map on S? is orientation-reversing.

We thus see that the skies of points in Minkowski spacetime are represented
by certain vertical helices on R? X [0, 2] going once around. Notice that not every
such helix represents the sky of a point: if, for instance, we take an helix that does
represent a sky and rotate it slightly about its symmetry axis we end up with an
helix that does not.

It is interesting to see that the points timelike-separated from (0,z,y) corre-
spond to helices that wind around {(0,z,y)} % [0, 27], always in the positive sense.
Another way to put this is as follows: R? is diffeomorphic to the 2-dimensional
open ball B?; therefore the manifold of light rays of Minkowski (2+1)-spacetime
is diffeomorphic to B? x S?, which in turn is diffeomorphic to the interior of a
3-dimensional solid torus (regarded as a subset of R®). We can therefore apply the
well known notions of linking and linking number to skies by simply interpreting
them as closed oriented curves on R3. This, of course, depends on the choice of

solid torus and diffeomorphism.
Definition 25 The standard solid torus in R3 is the set

T ={(2cosp +rcosf,2sinp +rcosf,rsinf) :0<r<1,0<6,p < 2m}.
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Definition 26 The standard diffeomorphism f : B? x S' — T is the map defined

by

f(rcos@,rcosb,p) = (2cosp + rcosb,2sinp + rcosf,rsinb)

forall0<r<1,0<6,p < 27.

From this point on we shall identify any subset of B? x S! with a subset of
R? via the standard diffeomorphism, thus being able to discuss linking and linking
numbers on such subset of B?2 x S'. It is important that we fix a particular
diffeomorphism as there are many ways to embed a torus in R®. Our definition is
natural in that it prevents any knotting or twisting of the torus in the embedding.

We can then say that the skies of points timelike-separated from (0, z,y) are
linked with the sky of (0,z,y), the linking number being +1. Notice as well
that points null-separated from (0,z,y) correspond to skies intersecting the sky
of (0,z,y) in one point (the null geodesic going through both points), and that
the skies of points spacelike-separated from (0, z,y) clearly do not link the sky of
(0,z,y).

For convenience, we make the following
Definition 27 The generators of T' ~ B%x S! are the curves of the form {z}x S*.
We can now summarize what we’ve been saying in the following

Proposition 28 The manifold of light rays of Minkowski (2+1)-spacetime is (dif-
feomorphic to) the standard torus T C R3. The skies of spacetime points are

certain curves homotopic to the generators of the torus. Two spacetime points are
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timelike-separated if and only if their skies are linked (the linking number being

necessarily +1).

3.3 Chronological and causal relations

As one moves on to consider curved spacetimes, the notions of timelike, null
and spacelike separation must be reconsidered. It is still possible to say that
two points are timelike- or null-separated when they belong to the same timelike
or null geodesic; but consideration of such examples as R3\ {(0,z,y) : z > 0} with
the Minkowski metric ds? = dt? —dz? — dy? suggests that more adequate definitions

are as follows:

Definition 29 Let (M,g) be a (2+1)-spacetime and z,y € M. The point z is
said to chronologically precede the point y if there exists a continuous, piecewise
geodesic curve v : [0,1] — M such that ¥(0) = z, v(1) = y and ¥ is timelike
and future-pointing whenever it exists. Two points are said to be chronologically

related when one of them chronologically precedes the other.

Definition 30 Let (M,g) be a (2+1)-spacetime and z € M. The set I'(z) of
all points y € M such that x chronologically precedes y is called the chronological
future of z. Also, the set I~ (z) of all points y € M which chronologically precede

z 15 called the chronological past of z.

Definition 31 Let (M, g) be a (2+1)-spacetime and z,y € M. The point x is
said to causally precede the point y if there ezists a continuous, piecewise geodesic

curve v : [0,1] —+ M such that v(0) = z, v(1) = y and ¥ is non-spacelike and
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future-pointing (or zero) whenever it exists. Two points are said to be causally

related when one of them causally precedes the other.

Definition 32 Let (M, g) be a (2+1)-spacetime and z € M. The set J*(z) of all
points y € M such that z causally precedes y is called the causal future of z. Also,

the set J~(x) of all points y € M which causally precede x is called the causal past

of x.

These definitions also make sense, and shall be adopted, for (3+1)-dimensional
spacetimes. Notice that for Minkowski spacetime ”chronologically related” is
equivalent to ” timelike-separated”, and ” causally related” is equivalent to ” timelike-
or null-separated” (here we adopt the convention that the zero vector is a null
vector). This may however not be the case for other spacetimes, as the above
example clearly shows. In globally hyperbolic spacetimes, the chronological and

causal future and past are related as follows:

Theorem 33 If (M, g) is a globally hyperbolic spacetime and x € M then I*(z) =

intJ*(z) and J*(z) = I*(z).

Proof: See [W].O

3.4 Wavefronts in static (2+1)-spacetimes

As we have pointed out before, the study of null geodesics in static spacetimes

is considerably simplified. We start by stating a trivial proposition:
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Proposition 34 Let (M,g) be a (globally hyperbolic) (2+1)-spacetime and ¥ one
of its Cauchy surfaces. If ¥ is diffeomorphic to a subset of R? then the manifold of
light rays of (M, g) is diffeomorphic to a subset of the standard torus. The skies of
spacetime points are certain (unknotted) closed curves homotopic to the generators

of the torus.

Proof: This arises from the facts that if ¥ is diffeomorphic to a subset of
R? ~ B? then TS(X) is a trivial fibre bundle. Since B2 x S! is diffeomorphic to
the standard torus and one can use any Cauchy surface to build the manifold of
light rays, the rest of the proposition easily follows.O

Thus one can in this case again use the familiar concepts of linking and linking
number as defined for closed oriented curves on R?® applied to skies. Notice that a
similar line of reasoning allows us to define the winding number of a closed oriented

curve about a point in ¥.

Definition 35 Let (M, g) be a static (2+1)-spacetime, (X, h) its space manifold
and £ € ¥. The wavefront originating at ¢ at time £ > 0 is the geodesic sphere
®(&,t) of radius t for the light metric ﬁh, oriented by considering the right-handed

orientation on T¢X of the initial condition of each geodesic.

Proposition 36 Let (M, g) be a static (2+1)-spacetime, (3, h) its space manifold
and t the global time, ¥ being diffeomorphic to a subset of B®. Let z,y € M be
given by x = (t1,€) and y = (to,n), where t1,t2 € R and &, € L, and suppose

that t1 < ty and that z,y do not belong to the same null geodesic. Then the linking
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number of X and Y is given by the winding number of ®(,ty — t1) around n on

z.

Proof: This is a consequence of the way in which we identify the space of light
rays (regarded as the sphere bundle of £71(¢;)) with a subset of the standard torus,
and of the way in which we have chosen our orientations. In fact, as shown if
figure 3.2, by fixing a surface of constant ¢ on the standard torus and sliding the
sky of z along the generators one can deform it into a curve as close as we wish
from ®(&,t2 —1t1) (seen as a subset of that slice) plus a number of generators which
obviously do not link the sky of y (which is itself a generator), and can therefore
be ignored in the calculation of the linking number (in many cases, such as the
one depicted in figure 3.2, these generators may be deformed away). One then
performs the standard trick of deforming Y into a straight line (by considering a
sequence of deformations consisting of a line segment and half a circumference with
radii approaching infinity) to conclude that link(X,Y’) equals the linking number
of ®(£,t2 —t1) (seen, for convenience, as a subset of R? x {0}) and the z-axis with
positive orientation (which can be thought of as a curve closing at infinity). Let
®(&,t2 — t1) be parametrized by r;(s), and the z-axis with positive orientation by

rz(s); then we have (see [DFN])

link(X,Y) = ; 7{?{ (ry —r3) - (dry x dry)
T

|r1 — r2||

i too (r; — se;) - (dry X e;)
N 4%%/ ds

||lry — sez||

. 7{/+°°r1 drlxez)d

(llealf? + 52)?
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where e, is the unit vector along the positive z-direction. Now since

/+oo ds 3 z/% asec? pdp _[F icosgodg0=£
—o (g2 +s2)2 J-§ a’sec’y -z a? a?
we see that
1 - (dr; X e,
link(X,Y) = —7{” (dry <° )
2m [

which is just the winding number of ®(&,ts — ;) about the origin. In fact, if we

set r1(s) = z(s)e; + y(s)e,, we have

ri-(drixe;)=|dz dy 0|=zdy—yds

0 0 1
and consequently
) 1 fzdy —ydz
X,Y)=— ]{ —_—
k(X Y) =00 § o v 2

which is the more usual formula for the winding number.O
Notice that clearly link(X,Y) = link(Y, X), and therefore one cannot use the
linking number of skies to tell which point is to the future of which. We shall come

back to this later on.

Theorem 37 Let (M,g) be a static (2+1)-spacetime, (X, h) its space manifold
and t the global time. Let x € M be given by z = (£1,£), wheret; € R and £ € X.
Suppose that t; < t; € R and let = = t~1(t;). Then the set of points on E causally

related to = is {ta} X tlSLtJStZ (¢, 1).

Proof: This can be seen to be a consequence of Huygens’s principle (see [A]).O
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Figure 3.2: Deforming a sky into a wavefront

We have now the tools to compute the linking number of the skies of two points
on a static (2+41)-spacetime, as well as to determine their causal relationship. In
both cases this amounts to studying wavefronts on the space manifold. It should be
noted that because our spacetime is static the particular global time coordinates of
the events are irrelevant: only their difference is meaningful. This is an additional

simplification.

3.5 Schwarzschild static (241)-spacetime

Definition 38 We shall define the Schwarzschild static (2+1)-spacetime with
mass parameter M > 0 as R*\ {(t,r, ) : r < 2M} (where {t,r, 0} are cylindri-

cal coordinates) endowed with the Lorentzian metric

-1
s = (1- g) at - (1- 2—7{‘{) dr? — r2dg?.
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The reason for this definition should be obvious. We consider here only positive
mass parameters since the Schwarzschild (2+1)-spacetime with M = 0 is just
Minkowski (2+1)-spacetime and the Schwarzschild (2+1)-spacetime with M < 0
is not globally hyperbolic (because of the naked singularity at r = 0).

The space manifold is of course diffeomorphic to R?/ {0}; this and proposition

34 make clear that

Proposition 39 The manifold of light rays of Schwarzschild static (2+1)-spacetime
with mass parameter M > 0 is (diffeomorphic to) the standard torus T' C R with-

out a generator.

The geodesic equations for the light metric can be obtained from the La-

grangian

and are thus given by

d (0L oL : ZM( 2M
or

and
d (8L\ 0L d [, oM\ .
E(ﬁ)'%‘”’%(r (-=) “’>—°

or better yet, integrating once the ¢ equation,

L'p-—_l_(l_%>

r2 r

and
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To calculate the wavefront originating at a given point (which we can assume
without loss of generality to have coordinates (R, 0)) we must integrate the system
of differential equations above for all initial conditions at point (R,0). Of course

that we have the Hamiltonian integral

1 oM\ ? . oM\ .
L=—¢>(1——) r2+r2(1——) ©’=1.
2 r r

Therefore, the easiest way to obtain all initial conditions at the mentioned

point is to choose

-1 oM
(1 - %) r= cosf &r= (1 — ?) cos@

and

OM\"T 2M
R(l—’ﬁ"> 2<P=sm9¢)l=R(1——R—) sin @

N

with 6 ranging from 0 to 27.
Unfortunately, we must rely on numerical calculations to integrate the system
of differential equations above. The evolution of a typical wavefront is depicted on

figure 3.3. Based on this one can state the following

Proposition 40 Two points in Schwarzschild static (2+1)-spacetime are causally
related if and only if their skies either intersect or are linked; if they are linked,
the linking number is ezactly the number of non-homotopic timelike curves with

the given points as endpoints, and can therefore take any value in N.

Proof : These conclusions are clear from the numerically computed shape of the
evolving wavefront. To make sure we are justified in believing in the numerical cal-

culation we prove that none of the light geodesics contains conjugate points (which
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G (%,t)

Figure 3.3: Typical wavefront on Schwarzschild (2+1)-spacetime

would lead to singularities in the wavefront, as we shall see in the next section;
these singularities could conceivably be unresolved in the numerical calculation, or
arise only after a very large amount of time).

To do this it suffices to show that the light metric has positive scalar curvature
(i.e., negative Gaussian curvature, if we take our conventions about the Riemann
tensor into account). In fact, it is well known (see for instance [W]) that for

2-dimensional Riemannian manifolds

1
Rabcd = ER (gacgbd - gadgbc)

and that consequently Jacobi’s equation along a geodesic with tangent unit vector

T* is written

D%*J, = Ry, TtJeT?
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- IR (o — T T)
2 a a .
where D = T*V, and we've used T,7* = 1. Since DT* = 0, we then have
D?(J,7*) =0
and consequently
1
2 b\ _ © b
D*(J, — JT*T,) = SR (Jo = JT'T) .
Let
K®=J*— J,T°T*
be the component of the Jacobi field orthogonal to the geodesic. Then we have
2 rra 1 a
D*K® = ERK
and consequently
D?*(K,K*) = 2D(K,DK?%)
= 2K,D?’K°+2DK,DK"

= RK,K°+2DK,DK"

So we see that if R > 0 then K, K® is a non-negative function with non-negative
second derivative and hence either vanishes identically or has at most one zero. If
K* vanishes identically then J* has exactly the same number of zeros as the affine
function J,T*, and hence cannot have more than one zero. We conclude that if
R > 0 then J° has at most one zero, and hence no conjugate points occur on the

geodesic.



The light metric is

2 -2
dt2=<1——]\—/[—> dr2+r2(l—%
T r
and an orthonormal coframe is therefore
-1
g = (1 — %) dr
T
1

0 = r (1 - —2—7‘%) ’ dy

Now

" = 0=0°Aw, "=—0°Aw, ¥
_1
o - ((1_2_) My
T T
_3
= (1—3—)<1—%) 2dr/\dcp
T T
- (-2 (-2
T T

and consequently the connection 1-form is

r

o v = (1) (12

yielding the curvature 2-form

r

=

;

.3
_ %(z—ﬂ)@—%) " dr Adp
T T T
- %(z—%)emew
T r

-1
) @

dp
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Thus the scalar curvature is

and is clearly positive for r > 2M.0O

3.6 Optical (2+1)-spacetimes

The previous example might lead one to suggest that in a (2+1)-spacetime
with Cauchy surface diffeomorphic to a open subset of B? two points are causally
related if and only if their skies either intersect or are linked with positive linking
number. To see that this is not the case we introduce an admittedly artificial class

of examples.

Definition 41 An optical (2+1)-spacetime is a static (2+1)-spacetime confor-

mally related to R? with the Lorentzian metric
ds® = dt* — A(z,y) (da:2 + dyz)
where A > 0 is an otherwise arbitrary C*° function.

The reason for the above definition is of course that these spacetimes have a
light metric given by

dt* = A(z,y) (dz2 + dy2)

and therefore their light rays mimic the light rays of a dispersive medium with
refraction index n = Az. A simple example of an optical (2+1)-spacetime can be

got (symmetries allowing) from the line element of a static classical solution of the
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linearized Einstein equations (see for instance [S]),

ds* = (1+2¢)dt’ — (1—2¢) (dz® + dy’ + dz*)

1—2¢
1+2¢

= (1+29) (dt2 - (d:::2 +dy? + dzz))

where ¢ is the classical gravitational potential. In this case one therefore has

C1-2 o
A_1+2¢_u 29)2 ~ 1 — 46

The light rays for an optical (2+1)-spacetimes can be obtained from the La-
grangian
1 /2 .2y 1 .9
L_EA(m +7) = S A%
where x =(z,y) and we shall use the ordinary vector calculus notation in R?. The
Euler-Lagrange equations are

d . 1.2 _ .. 1 Ly . 1 - 2 _
d_t(Ax)_ix VA—O<=>X+Z(VA'X)X—ﬂX VA=0

and they admit the first integral

L=%@A£=
which allows us to write
.. 1 1 A %) 5
X= EVA_Z(V SX) X

It is interesting to note that this equation requires only that VA be piecewise
continuous, i.e., that A be continuous and piecewise C*. The light rays obtained
in such a metric would be the limit (in the appropriate sense) of the light rays of a

sequence of C'*° Lorentzian metrics approaching our C* metric. This is important
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as it will simplify our choice of A. One of the simplest choices one may think of is

to take

R—r
R

A=1+BH(R—-r)

where r = (z2 +y2)%, R > 0, B > —1 and H is the Heaviside function. This
corresponds to a sphere of radius R centered at the origin of the coordinate system
lying in a vacuum and with refraction index going from 1 at its boundary to
(1+ B)% at its center. For convenience let us call this a thickening sphere. Taking
B > 0 and computing numerically the shape of a wavefront originating outside the
thickening sphere after being scattered by it one typically gets something like as
shown on figure 3.4. Although one gets only +1 and +2 linking numbers with this

wavefront, one gets an interesting new feature - cusps.

O ( G E,t) 4 vt

Figure 3.4: Typical wavefront scattered by thickening spheres
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Now if one uses two thickening spheres with B > 0 placed so that their centers
are in the same straight line as the origin of the wavefront and allows it to be
scattered by both spheres one gets something like figure 3.4, i.e., cusps within cusps.
This leads to zero linking number of the corresponding skies. Although the linking
number is zero, the skies are nonetheless linked; in fact, they form the so-called
Whitehead link, as is clear from figure 3.5. In this figure, as in figure 3.2, one of
the skies is deformed into the wavefront bearing in mind that at self-intersections
the segment which goes over is determined by the normal vectors, whereas the
other sky is deformed into the z-axis (seen as a curve closing at infinity). This and
other examples led Low to conjecture that causally related points correspond to
linked (or intersecting) skies (see [L]). We present here a modified version of his

conjecture, consistent with what we’ve done so far:

Figure 3.5: Linking with zero linking number
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Conjecture 42 Let (M, g) be a globally hyperbolic (2+1)-spacetime with a Cauchy
surface diffeomorphic to an open set of R?, and z,y € M. Then = and y are

causally related if and only if X and Y either intersect or are linked.

3.7 Einstein static (2+1)-spacetime

Definition 43 The Einstein static (2+1)-spacetime (with scale factor a = 1) is

R x S? endowed with the Lorentzian metric
ds* = dt* — (d6* + sin® fd?)
(where {6, p} are spherical polar coordinates on S2).

This is an interesting example as it is a globally hyperbolic (241)-spacetime
whose Cauchy surfaces are not diffeomorphic to an open subset of B2, and thus
it is not clear wether its manifold of light rays can be embedded in R3. In fact it

cannot, as is clear from
Proposition 44 The tangent sphere bundle of S? is (diffeomorphic to) SO(3).
Proof: Let us think of S? as
§*={xeR:||x|| =1}
and let A € SO(3). If {ej, ez, €3} is the canonical basis of R3, it is easily seen that
Aey € Tye, S?

and clearly ||Aey|| = 1, so that Ae, in fact belongs to the tangent sphere bundle
T'S (S?) of all unit vectors tangent to S2. It is easy to see that the correspondence

between A € SO(3) and Ae, € T'S (S?) is in fact a diffeomorphism.0
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It is perhaps worthwhile noticing that in this case the manifold of light rays is

not even orientable (as is well known, SO(3) is diffeomorphic to RP?).



CHAPTER 4

Examples in (3+1)-spacetimes

4.1 Orienting skies

Proposition 45 Any Cauchy surface ¥ of an orientable (globally hyperbolic) (8+1)-

spacetime (M, g) is necessarily orientable.

The proof is completely analogous to that of proposition 22. Again we can use
this to give the sky of any point z € M an orientation by noticing that we can
orient the fibres of T'S (¥); one can check that the orientation attributed to the
sky of a point z € M is independent of the particular Cauchy surface ¥ > z used

to do so.

4.2 Wavefronts in static (3+1)-spacetimes

Proposition 46 Let (M, g) be a (globally hyperbolic) (8+1)-spacetime and ¥ one
of its Cauchy surfaces. If ¥ is diffeomorphic to a subset of R® then the manifold
of light rays of (M, g) is diffeomorphic to a subset of R? x (R3\ {(0,0,0)}). The

skies of spacetime points are certain closed surfaces homotopic to {(0,0,0)} x S2.

Proof: This arises from the facts that if ¥ is diffeomorphic to a subset of R3
then T'S(X) is a trivial fibre bundle. Since Rx S? is diffeomorphic to R*\ {(0,0,0)}

(via spherical polar coordinates, say), we have

TS(Z) = R® x §? = R x (R*\{(0,0,0)}).
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The second statement easily follows from this identification and from the fact
that one can use any Cauchy surface to build the manifold of light rays.O

Thus one can in this case again use the familiar concepts of linking and linking
number as defined for embedded S?%s in R® on skies. Once again we must be
careful to fix a diffeomorphism beforehand, as these concepts depend on the choice
of diffeomorphism; the obvious choice is clear, and we shall not insist on this point
any further. Notice that by similar reasons we can define the winding number of
a closed oriented surface about a point in .

Obviously definition 35 can be extended to (oriented) wavefronts on the space

manifold of static (3+1)-spacetimes:

Definition 47 Let (M, g) be a static (8+1)-spacetime, (X, h) its space manifold
and £ € ¥. The wavefront originating at £ at time ¢ is the geodesic sphere ®(£,t)
of radius t for the light metric goioh, oriented by considering the right-handed ori-

entation on T;X of the initial condition of each geodesic.
We still have

Proposition 48 Let (M, g) be a static (3+1)-spacetime, (3, h) its space manifold
and t the global time, ¥ being diffeomorphic to a subset of R3. Let x,y € M be
gwen by x = (t1,€) and y = (t2,n), where t1,t, € R and £,n € X, and suppose
that t, <ty and that xz,y do not belong to the same null geodesic. Then the linking
number of X and Y is given by the winding number of ®(£,ty — t1) around n on

X.
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Proof: By analogy with the (2+1)-dimensional case, once the manifold of light
rays is embedded in R° the skies of z and y can be deformed into ®(,t, — t;)
(seen as a subset of R® x {(0,0)}) and {(0,0,0)} x R? with positive orientation
(seen as a surface closing at infinity). Notice that now one has to slide X along the
meridians of the S fibres of N, thus getting S2s at the north pole (say), which we
then discard as they do not contribute to the winding number. Let ®(§, ¢, —t;) be
parametrized by ri (0, ), and {(0,0,0)} x R? with positive orientation by ry(s,t);

then we have (see [DFN])

Iy — Iy
oy
o6
. 3 1
link(X,Y) = j[ ?{ S| an | dsdtdddy
82 ) S Iy — o7 | O
ory
Os
Ory
ot
Iy — 8eq — te5
ary
00
?( / e / o dsdtdfd
= ory S
82 o |1 — ses — teg|] o0 4
€4
€5

oy | dsdtdfdp

- 87r2j[/+oo/+°°

5
(I +s2+t2)2
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where % is obviously the volume of S* and e; is the unit vector along the positive

i-direction. Now since

+oo  ptoo ds +oo rdr 27
[ e [ e
—00 J—oo (g2 + §2 4 12)2 0 (aZ+712)? 3al

we see that

1 r

—— - ndS(r)

. 17 1
link(X,Y) = .- 7{ | | d0de -

00 LAY

which is just the winding number of ®(§, ¢, — ¢1) about the origin.O
Notice that clearly link(X,Y) = —link(Y, X), and therefore in (3+1)-spacetimes
one can use the linking number of skies to tell which point is to the future of which.

Again we have the following

Theorem 49 Let (M,g) be a static (3+1)-spacetime, (X,h) its space manifold
and t the global time. Let x € M be given by x = (¢1,§), wheret; ER and £ € L.
Suppose that t; < t; € R and let = = t"1(t;). Then the set of points on = causally

related to z is {t2} % tlSLtJStZ (¢, t).

Proof: This can once more be seen to be a consequence of Huygens’s principle
(see [A]).O

Thus both computing the linking number of skies of two points on a static-
(3+1) spacetime and determining their causal relationship amounts to studying
wavefronts on the space manifold.

We would like to extend our (2+41)-dimensional examples to their (3+1)-

dimensional analogues. In all these examples we notice that the 3-dimensional
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space manifold is symmetric about an axis, and that the 3-dimensional wavefront
originating from a point in this axis is just the surface of revolution generated by
the 2-dimensional wavefront of the same point on rotation about the axis. One
expects then that the linking numbers of the two wavefronts about points in the

axis are related, and in fact we have the following

Proposition 50 Let v be a piecewise smooth curve in the Euclidean plane sym-
metric about a line I, and suppose it has no double points on this line. Let ®
the surface of revolution generated by v by rotating it about I. If p € I\ then

wind(y,p) = wind(®,p) (provided that v and ® are given the right orientations).

Proof: We assume without loss of generality that [ is the y-axis in R3, p is the

origin and v C {(z,y, z) € R® : z = 0}. We have

. 1 r
wind(®,p) = E?i) W -ndS

where r = (z,y, z) and n is the outward-pointing unit normal vector to &. We
choose orientations such that on the plane z = 0 we have n = t X e,, where t
is the unit tangent vector to v with the positive orientation. This and the axial

symmetry of ® allow us to write

. 1 /= p
wind(®,p) = E/o ﬁmg-(dpxez)lp-ezld‘)—

—~ ¢ ——=-e, (p X dp)
40 lpll

where p = (z,y,0). In other words, we get

. 1
wind(®, p) = Zjé; (22 +y2)?

2] (zdy — ydz)
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which strangely enough is just wind(vy,p). To see this, one introduces polar coor-

dinates {r, ¢} on the plane z = 0; since

zdy — ydz
dp = —————
¥ $2 + y2
one gets
: 1 :
wind(®,p) = 7 f |cos | dip = wind(,p)
v
as

2w z
/ |cosp|dp = 2/2 cospdyp = 4.0
0

[SIE]

Proposition 50 allows us to extend some of our results in (2+1) dimensions to
the (3+1) case in a straightforward manner. However, it can only be applied to
the case where v has no double points on the axis of symmetry; as we shall see,
when such double points are present one has to be quite careful when determining

the correct orientations.

4.3 Minkowski (3+1)-spacetime

For completeness, we introduce the well known

Definition 51 We define Minkowski (3+1)-spacetime to be R* with Cartesian

coordinates {t,z,y,z} and the flat Lorentzian metric

ds® = dt? — dz® — dy? — d22.

From the previous section and our analysis of Minkowski (2+1)-spacetime the

following results should be obvious.
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Proposition 52 The manifold of light rays of Minkowski (8+1)-spacetime is (dif-

feomorphic to) R® x §% ~ R? x (R3\ {(0,0,0)}).

Proposition 53 Two points x and y in Minkowski (8+1)-spacetime are timelike-
separated if and only if their skies X and Y are linked in RS. Furthermore,

link(X,Y) = +1 iff y € I*(z).

Proof: If z and y are timelike-separated and y € I (z), then take the Cauchy
surface ¥ = t~!(¢(y)) and consider the spherical wavefront ® on this surface gener-
ated by its intersection with the integral line of % though z after a time ¢(y) —t(z).
Let z be a point in a symmetry axis of this sphere; it is clear that there exists a

path v :[0,1] — X such that v(0) =y, ¥(1) = z and v ([0,1]) N ® = 0. Thus
link(X,Y) = wind(®,y) = wind(®, z) = +1

as is clear from proposition 50 and our results in (2+1)-dimensions, and X and Y
are linked. If z and y are timelike-separated and y € I~ (z), then z € I (y) and

consequently

link(X,Y) = —link(Y,X) = —1

and X and Y are again linked. If z and y are lightlike-separated then X and Y
intersect and therefore are not linked. Finally, if z and y are timelike-separated
we use the same ideas as above to show that link(X,Y) = 0. The proof is then
concluded by the observation that in R% two embedded 5?’s are linked if and only

if their linking number is different from zero (see [RS]).0
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4.4 Schwarzschild static (3+1)-spacetime

Definition 54 We shall define the Schwarzschild static (3-+1)-spacetime of mass
parameter M > 0 as R*\ {(t,7,0,¢) : r < 2M} (where {t,7,0,p} are cylindrical

coordinates) endowed with the Lorentzian metric

-1
ds? = (1 — %) dt® — (1 — g) dr? — r2df? — r? sin® 0cl(,02.

Again we consider only positive mass parameters since the Schwarzschild static
(3+1)-spacetime with M = 0 is just Minkowski (3+1)-spacetime and the Schwarzschild
(3+1)-spacetime with M < 0 is not globally hyperbolic (because of the naked sin-
gularity at r = 0).

The space manifold is of course diffeomorphic to R3\ {0}; this and proposition

46 make clear that

Proposition 55 The manifold of light rays of Schwarzschild static (3+1)-spacetime
with mass parameter M > 0 is (diffeomorphic to) (R®\ {(0,0,0)}) x §? ~ Rx 5% x

S2.

Because the wavefronts in the Schwarzschild static (2+1)-dimensional space-
time develop double points on the axis of symmetry, we cannot use a similar argu-
ment to that of the proof of proposition 53. In fact, it turns out that it is not true
that two points in Schwarzschild static (3+1)-spacetime are causally related if and
only if its skies either intersect or are linked. The reasons for this are exactly the
reasons why the equivalent statement is not true for an optical (3+1)-spacetime

containing one thickening sphere, which we now examine.
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4.5 Optical (3+1)-spacetimes

Definition 56 An optical (3+1)-spacetime is a static (3+1)-spacetime confor-

mally related to R* with the Lorentzian metric
ds* = dt* — A(z,y, 2) (da:2 +dy® + dz2)
where A > 0 is an otherwise arbitrary C* function.

Proposition 57 The manifold of light rays of an optical (8+1)-spacetime is (dif-

feomorphic to) R® x 5% ~ R? x (R3\ {(0,0,0)}).

Again we say that our optical (3+1)-spacetime contains a thickening sphere at

the origin if
R—r

A=1+BH(R—r)—

where r = (z? + ¢° +z2)%, R > 0, B > —1 and H is the Heaviside function.
This corresponds to a sphere of radius R centered at the origin of the coordinate
system lying in a vacuum and with refraction index going from 1 at its boundary
to (1+ B)% at its center.

Proposition 50 cannot be used in this example in the case when the wavefront
in (2+1) dimensions double points on the axis of symmetry, and hence we must
compute the linking numbers directly. Take B > 0 and consider the skies X and
Y of the points z = (¢1,£) and y = (¢5,7), where t1,t, € R and £, € X. Suppose
that ¢; < ¢, and that z,y do not belong to the same null geodesic. We know that
link(X,Y) is given by the winding number of ®(¢,t; — t;) around 1 on X, where

the geodesic sphere ®(&,t; — ¢1) must be oriented by considering the right-handed
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orientation on T¢% of the initial condition of each geodesic. Let t; — ¢; be big
enough so that ®(£,t, — t;) has already been scattered by the thickening sphere;
thus it is the surface of revolution generated by the smaller wavefront on figure
3.4, containing one singular point and a circular cusp edge. While determining the
orientation of the outer component of ®(&,t, —t;) is simple enough (it corresponds
to an outward-pointing normal vector), the orientation of the inner surface is not
obvious. If however one considers the intersections of the wavefront with orthogonal
planes through the symmetry axis and follows through what happens to small
displacements on the sphere of initial conditions on T which lead to points in
that inner surface along those planes, it is not hard to convince oneself that the
orientation of the inner surface corresponds to a normal vector pointing to the
inside of that surface. This can be thought of as a consequence of the fact that the
antipodal map on S? is orientation-reversing. Thus if 7 is inside the inner surface,

we have

link(X,Y) = wind(®(&,t2 — t1),n) = 0!

This is perhaps a bit surprising. We could have instead considered the static

metric

ds® = dt* — A(z,y) (da:2 + dyz) —dz®

with the same function A which yields the two thickening spheres in the (241)-
dimensional case. Then we would have two thickening cylinders, and for € >
0 sufficiently small the wavefront in {—e < z < €} would just be the Cartesian

product wavefront for the (2+1)-dimensional case by (—¢,¢€), and all the winding
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numbers would coincide (we therefore need two aligned thickening cylinders to get
zero linking number). Actually the case of the thickening sphere is a degenerate
case of a similar process of generating cusps within cusps, as can be seen from
studying the evolution of a ellipsoidal wavefront in Minkowski spacetime backwards
in time.

Therefore we have proved

Proposition 58 The manifold of light rays of an optical (3+1)-spacetime contain-
ing one thickening sphere contains skies of causally related points whose linking

number is zero and which therefore are not linked in R®.

This shows that our modified version of Low’s conjecture clearly does not apply
in the (3+1)-dimensional case. In order to try to prove an appropriate result in

this case we must first analyze the concept of linking a little more carefully.



CHAPTER 5

Linking and causality

At this point it is perhaps useful to recall the following

Definition 59 Let M be a (2n + 1)-dimensional manifold (n € N), and f, g :
S™ — M be embeddings. Then f(S™)I1g(S™) is said to be a link if f(S™)Ng(S™) =

0.

Definition 60 Two links X1 I Xy and Y7 11 Y, are said to be equivalent if there
ezists a one-parameter family of diffeomorphisms ®; : M x [0,1] — M such that

(i) ®y is the identity map; (1) ®1(X;) =Y; fori=1,2.

A one-parameter family of diffeomorphisms as above receives a special desig-

nation:

Definition 61 Let M be a differential manifold. A one-parameter family of dif-
feomorphisms ®; : M x [0,1] — M such that ®q is the identity map is called a

(smooth) isotopy.

In our (2+41)- and (3+1)-dimensional examples we embedded our manifold of
light rays in R3 or R’ before considering the linking of skies. The following trivial

proposition is therefore relevant:
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Proposition 62 Let M be a (2n+ 1)-dimensional manifold (n € N), and U C M
an open subset. If two links are not equivalent in M, then they are not equivalent

in U (seen as a manifold itself).

5.2 Sky motions

We start by stating a well-known

Theorem 63 Let M be a (2n+ 1)-dimensional manifold and f;, g: : S™ x [0,1] —
M smooth one-parameter families of embeddings such that f;(S™) II g,(S™) is a
link for allt € [0,1] Then there exists an isotopy ®; : M x [0,1] — M such that

fi=®i0 fo and g = ;0 gy for all t € [0,1].

Proof: Consider the map F' : S™ x [0,1] = M x [0,1] given by F; = (f3,1t);
this yields a vector field on im(F) C M x [0,1]. Similarly, we can consider a map
G:8"x[0,1] - M x [0,1] given by G; = (g:,t), which generates a vector field
on im(G) C M x [0,1]. Since im(F) Nim(G) = 0, it is clear that there exists a
vector field on M x [0, 1] which coincides with the two previous vector fields on
their domains and whose corresponding one-parameter group of diffeomorphisms
®: M x[0,1] = M x [0,1] at M x {0} is of the form &, = (®;,¢). Then &, is the
required isotopy.O

One can think of this theorem as stating that links are equivalent iff one can
find smooth motions of its components taking one link into the other in such a
way that the two components never intersect throughout the motion. On the other

hand, if (M, g) is a globally hyperbolic (d+ 1)-spacetime (d = 2 or 3), any smooth
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curve ¢ = z(t) on M yields a smooth motion X = X (t) of the skies of the points of
the curve on the corresponding manifold of light rays N. This allows us to prove

the following

Proposition 64 Let (M,g) be a globally hyperbolic (d + 1)-spacetime (d = 2 or
3), and N its manifold of light rays. Then the link consisting of the skies of two
non-causally related points is equivalent to the link consisting of the skies of any

other two non-causally related points.

Proof: Let z1, x2 be a pair of non-causally related points, and y;, y2 be another
such pair. Let ¥ be a Cauchy surface such that all these points belong to I (X).
Let t* be a nowhere vanishing future-pointing timelike vector field. It should be
clear that there exist curves z;(t), z2(¢) (¢ € [0,1]) such that z;(0) = ;, z;(1) € &
(¢ = 1,2) and z;(¢) and z4(t) are never causally related; one can take for instance
appropriate parameterizations of the integral curves of t* joining z; and z5 to X.
Similarly, there exist curves y;(¢), y2(¢) (¢ € [0, 1]) such that y;(0) € Z, v:(1) = v
(¢ = 1,2) and y;1(t) and y2(t) are never causally related. Since ¥ is connected
(because M is connected and has the topology ¥ x R) and open it is pathwise
connected and one can therefore find paths z;(t) and 2(t) (¢ € [0,1]) such that
2;(0) = z;(1) and z(1) = ¥;(0) (¢ = 1,2). Since a Cauchy surface is achronal, z; (%)
and z5(t) are never causally related unless they coincide, and one can certainly
choose the parameterizations such that they do not. Therefore, composing each of
the three paths z;(t), 2;(t) and y;(t) (¢t € [0,1]) in the usual way, and considering

the corresponding skies, one gets a motion of the link X; IT X, into the link Y; ITY;
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on the manifold of light rays.O

This proposition shows the following definition to be a natural one:

Definition 65 Let (M, g) is a globally hyperbolic (d + 1)-spacetime (d =2 or 3),
and N its manifold of light rays. Then the equivalence class of the link consisting
of the skies of two non-causally related points is said to be the class of trivial links;

any two embedded S%s forming a link in this class are said to be unlinked.

5.3 Linking and causality in (2+1)-spacetimes

Propositions 62 and 64 allow us to restate the results we got from our examples
in (2+41)-spacetimes without any reference to any particular embedding of the
manifold of light rays in R%: In all the examples we examined, two spacetime
points were causally related iff their skies either intersected or were linked (of
course that by definition if two points are not causally related their skies are
unlinked in N, and it happens to be that skies unlinked in N according to our
definition are unlinked in R?® when one uses the standard diffeomorphism; another
way to put the results obtained in chapter 3 would be that no two causally related
points had unlinked skies). Our modified version of Low’s conjecture implies that

this holds for all spacetimes with Cauchy surfaces diffeomorphic to a subset of RZ.

We can now state a more accurate version of Low’s conjecture:

Conjecture 66 Let (M,g) be a globally hyperbolic (2+1)-spacetime with Cauchy
surface diffeomorphic to a subset of R, and let N be its manifold of light rays.

Then two spacetime points are causally related in M iff their skies either intersect
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or are linked in N.

Notice that this version of the conjecture is actually weaker; its main advan-
tage is the fact that it does not make any reference to the standard embedding.
Notice however that there is no canonical definition of linking on N; definition 65
requires information which is not in the manifold structure of N, namely to which
equivalence class of links belongs the link formed by the skies of two non-causally

related points in our particular spacetime.

5.4 Linking and causality in (34+1)-spacetimes

Here one can use propositions 62 and 64 to conclude that in Minkowski (3+1)-
spacetime two spacetime points are causally related iff their skies either intersect
or are linked; for the Schwarzschild static (3+1)-spacetime or the optical (3+1)-
spacetime containing a thickening sphere, however, one cannot conclude anything
from the fact that there exist points whose skies are not linked in R5. Therefore it
is not clear whether this example rules out Low’s conjecture for (3+1)-spacetimes.

In fact it does, as we will show in the following proposition.

Proposition 67 The manifold of light rays N of an optical (8+1)-spacetime (M, g)
containing a thickening sphere contains skies of causally related points which are

not linked.

Proof: Suppose that the thickening sphere’s center is the origin. Consider the
wavefront ® C R? of a point £ on the z-axis after a big enough interval of time so

that the intersection of ® with the plane {2 = 0} has developed two cusps. This is
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the projection on the Cauchy surface of the sky X of a point £ whose future light
cone intersects the Cauchy surface along ®. Consider a point 7 on the intersection
of the z-axis with the region of zero winding number. Clearly it is the projection of
the sky Y of a point y on the same Cauchy surface. If one now moves the Cauchy
surface towards the past, these projections change into the different intersections of
the light cones of z and y with the moving Cauchy surface. Eventually, they turn
into the surfaces of revolution 7(X) and 7(Y) generated by the curves depicted in
figure 5.1 (where 7 : N — ¥ is the natural projection). Recall that the intersection
of, say, X, with a S? fibre is determined by the normal vector to 7(X) at that
point. Because the Cauchy surface we are considering is to the future of z but to
the past of y, the relevant normal is the outward-pointing normal for 7(X) and
the inward-pointing normal for 7(Y’). Let (p, p, z) be cylindrical coordinates in

R3, and consider the deformation of X given by

_ (. ntits
fi(§,n) = (&m)

for ¢ € m(X) and n the normal vector to 7(X) at £&. It should be clear that one
can move X away from Y (by moving 7 (f; (X)) away from 7(Y") along the z-axis,
say) without X ever intersecting Y, and that once one has moved X far enough
both can be deformed to skies of points on the Cauchy surface (which by definition
are unlinked).O

The same thing happens for the spacetime containing two thickening cylinders.
It is instructive to consider in detail how one can unlink skies in this case. The

proof of the following proposition is essentially due to Low (see [L}]).
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7 (X)

7 (Y)

Figure 5.1: Curves generating the projection of the skies of z and y

Proposition 68 The manifold of light rays N of a static (3+1)-spacetime (M, g)
containing two thickening cylinders contains skies of causally related points which

are not linked.

Proof: Suppose that the thickening cylinders are aligned along the z-axis with
axes parallel to the z-axis. Consider the wavefront ® C R3 of a point on the z-axis
after a big enough interval of time so that the intersection of ® with the plane
{z = 0} has developed two pairs of cusps. Recall that this is the projection on R?
of a sky X C N = R® x S? where we are using the Cauchy surface of constant
t such that its intersection with the light cone of the corresponding point z is ®.
The point on the S? fibre above a point £ € ® is determined by the normal vector

to @ at that point; points £ € ® at which ® has self-intersections are projections of
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points where X intersects the fibre over £ more than once (X itself, of course, does
not have self-intersections). Thus it is clear that if one deforms @ in such a way
that & is never self-tangent then there exists a corresponding deformation of X
which projects to this deformation of ®. Now consider the following deformation

of ®: we define

v = {(y,z) €R?:(0,y,2) € CIJ}

I' = {(z,9,2) €®: —e<z<e}m(—¢€e) Xy

and deform only the subset of X which projects to I' as follows: if f : [—¢,¢] —
[0, 4+00) is a smooth function satisfying f(—¢) = f(e) = 0 and f(0) =1, and +; is

the deformation of v shown if figure 5.2, we deform I' through

T, = {(S,’)’f(s)t) 8 € (—¢, e)}

Let X; be the deformation of X which projects down to I';; then X; does not
have any self-intersections up to the point when the two vertices of 7; coincide.
To allow them to coincide and cross without any self-intersections, we just have to
slightly alter X; by changing the point on the fibre around one of the intersecting
vertices (by adding, say, f (s)ta% and normalizing). Thus we can get the vertices to
cross, thereby making it possible for a point originally in the zero winding number
region of ® to be moved to an arbitrarily large distance from X;. Consequently,
the sky of this point is not linked with X on N (although this point is obviously
causally related to z).0

Thus we see that for (3+1)-dimensional spacetimes the mere linking of skies

is not enough; to understand causal relations on the manifold of light rays we



57
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|
s

Figure 5.2: Unlinking skies of causally related points

need a new concept of linking. An important clue for finding such concept is the
observation that in both the methods above for unlinking skies of causally related
points it was not enough deforming its projections on the Cauchy surface keeping
the normal vector as the point on the fibres: both deformations involved moving

the points in the fibres away from the normal vector at some stage.
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Legendrian linking

6.1 What kind of linking?

We would like to introduce a concept of linking in the manifold of light rays
such that two spacetime points would be linked if and only if their skies intersected
or were linked. As we’ve seen, the usual concept of linking is too permissive (at least
for (3+1)-dimensional spacetimes), as there are examples where the link formed
by the skies of two causally related points is equivalent to the link formed by the
skies of any two non-causally related points. In order to restrict our notion of
linking we must restrict the class of allowed deformations of skies. For instance,
one could only allow deforming skies into other skies of a given spacetime. Thus
our deformations of skies would all arise from motions of the corresponding points
on the spacetime manifold, and we would get indeed that the link formed by the
skies of two causally related points would never be equivalent to the link formed
by the skies of two non-causally related points (to move one of the points out of
the other point’s light cone one would have to cross it). However, this would be
a (not very interesting) direct translation of causality onto the manifold of light
rays, originating an extremely restrictive definition of linking. In order to search
for a broader concept of linking which would still reflect the causal structure we

must first try to identify some further structure on the manifold of light rays.
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6.2 The manifold of scaled light rays

Let (M,g) be a (globally hyperbolic) (d + 1)-dimensional spacetime, and N
its manifold of light rays. As we have noted previously, N can be obtained either
from the tangent bundle T'M or the cotangent bundle 7* M, which has a natural
symplectic structure. We shall now start examining in detail a particular way in
which this can be accomplished, paying special attention to what happens to the
symplectic structure.

If {z®} are local coordinates on M, {v®} are the associated coordinates on
the fibres of the tangent bundle TM and {p,} are the corresponding canonical
coordinates on the fibres of the cotangent bundle 7* M, we know that the geodesic

Lagrangian is

1
L=— al ° b)
5 GabV" ¥
the conjugate momenta are
oL
a — & o abl
b 908 Gab
and the Hamiltonian is
a 1 ab
H =pyv —L=§g DaPb-

Therefore Hamilton’s equations are

dpa oH . 1 be

ds = 9z Pa= 2Vag DPoPe
dz® _ a_H <:>a-:a_ ab

dS - apa =3 Db

and its solutions yield the lifts to 7™M of the geodesics in M.



60

The canonical symplectic potential on T*M is given in our local coordinates
by

0 = padz®
and the canonical symplectic form by
w = df = dpa A dz®.

As is well known, Hamilton’s equations can be written as

dpa O dz® 0 B
(E@pa ds 89:8)Jw = —df

using this form.
If one is interested in null geodesics, one should consider the (2d+1)-dimensional
hypersurface of the cotangent bundle whose intersection with our local coordinate

patch is given by

0
N*M = {(pa, 2*) € T*M : g*°papp = 0 and gabpa% is future—pointing} .

(We shall from now on stop insisting on the fact that we’re using local coordinates,
and talk as if our coordinates were global. This does not change the exposition in
any way, but makes it considerably simpler). Since

0H

2 -0
0s

it is well known from the usual reduction theorem in Hamiltonian mechanics (see

[A]) that the null geodesics will be the so-called vortez lines of w on N*M, i.e.,

the integral lines of the distribution given by the zero-eigenvectors of w (where ob-

viously w - and 6 - are defined on N*M by restriction). Again these null geodesics
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define an equivalence relation ~ on N*M, where one takes two points to be equiv-
alent 4ff they lie on the same null geodesic. Since (M, g) is globally hyperbolic,

the set
N*M

~J

N =
is clearly in one-to-one correspondence with the set
N*M |s= {(pa,z®) € N*M : 2* € X}

where ¥ is an arbitrary Cauchy surface. We use this to endow N with a differen-

tiable structure.
Definition 69 We call N the manifold of scaled light rays.

Note carefully that N is not the manifold of light rays; for one thing,

o~

dim(N) = dim(N*M) — 1 = 2d = dim(N) + 1.

The extra dimension comes from the scaling: obviously, although the null
geodesics through (p,,z?) and (Apa,z?) (A € Rt\ {1}) have the same projection
on M, they are actually different geodesics on 7*M. As parametrized geodesics,

their parameters will be related by an affine transformation of the form

for some constant k € R.

Letq: N*M — N be the quotient map. Our aim will be to prove the following

Theorem 70 There ezist forms § € QY(N) and @ € Q*(N) such that § = ¢*8,

w = ¢*w.
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Notice that w = df on N*M (by restriction of the same equality in T*M);

therefore theorem 70 yields
(0 =dg'0 & ¢'v = ¢*df & ¢* (&7 — dé) =0.

Since ¢ is a surjective map, this implies that we will have W = df on N.

In order to prove theorem 70, we must consider forms on N ; it is therefore
convenient that one understands the tangent space T7N to N at a given scaled
geodesic . Any tangent vector on T,,N arises from a one-parameter family of
scaled geodesics. Let v : R? — M be such a family, where we take v(s,a) to
be the point corresponding to the value s of the affine parameter of the geodesic
indexed by a (we may, of course, assume our geodesics to be affinely parametrized).

Let us define

a i
b - ’Y* as

a 0
X ")’*£

We have

9 90
ds’ O

} =0=[p% XY =0 p’V,X* - X*Vyp* =0

or, defining the operator

D =p°V,

we have

DX = XbVp°.
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The fact that the curves indexed by « are affinely parametrized geodesics
translates as

Dp® =0. (6.1)

As is well known, these equations imply that

D:X* = D (va,,pa) = (DX") Vp® + p° XV Vp®
= p°X* (VVep® + Rysp?) + (X°Vep') Vip®
— Rdeapbxcpd+Xcvc (pbvbpa)

— Rdea pb )& pd

which is the Jacobi propagation equation; in other words, X° is a Jacobi field.

Notice that since we are dealing with a family of null geodesics we have
XV, (pop’) =0 ppXVop® = 0 & p, DX® =0 (6.2)

and therefore we can only take as initial conditions for the Jacobi equation vectors
D X*? in the three-dimensional orthogonal complement of p®. Thus the vector space
of Jacobi fields X we are considering on any null geodesic has dimension 2d — 1.

If we choose
X* = f(s)p® (6.3)
we have
R, P"X°p* = fR, S p°pp® =0
and

D2Xa — f”(S)pa.
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Thus if f"(s) =0, i.e., if f(s) = as + b for some a,b € R, then X* is a Jacobi
field. Also,

PaDX® = f'(s)pap® =0,

and thus X* connects null geodesics. Thus Jacobi fields of the form 6.3 account

for two of the 2d — 1 dimensions. Notice that fields proportional to p%, X = Ap?,

correspond to one-parameter families of null geodesics which comprise only one

parametrized geodesic, v(s, @) = y(s+ Aa, 0), and therefore correspond to the zero

vector in T.,]v . Thus we have

Proposition 71 Let (M, g) be a (globally hyperbolic) spacetime, N its manifold of
scaled light rays and vy € N. Then Tﬂ,]v is isomorphic to the vector space of Jacobi
fields X on -y which connect null geodesics quotiented by its (1-dimensional) vector

subspace spanned by its affine tangent vector field p®.

Next we must understand the map
Gu : Tipazs)N*M — TyN.

If

9 9
Ve + X*-L € Ty amyN*M
Bpa | Bgn (Pee)

then consider the one-parameter family of scaled geodesics with initial conditions
given by any curve tangent to this vector in N*M (affinely parameterized). This
yields a Jacobi field X* on the scaled geodesic v with initial conditions on N*M
given by (pa,z®) which at the point in M with coordinates z® satisfies

0

Xa — Xa
o2
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DX, = X'Vip, = (Va—[eppX*) da®,

which one can then identify with an element of T,,N .

If = ¢*0, then one must have

~ ~ 0
e = 3 2

8 .0
- 9<Vaa—pa—|—X aza>

ana = ana

(where we've used the identification in proposition 71). Notice that this does not

depend on the representative of the equivalence class of Jacobi fields chosen:
(X% + Ap?) = paX® + Apap® = p X° = §(X“)

for all A e R.

Similarly, if w = ¢*@ then one must have

~ a a o~ 0 a 0 0 a 0
o0, v) = oo (Ve + X0 ) e (W + V5 )

8 8 8 8
= w|Vaz—+ X2 W, ye
“ ( Opa * 0z®’" "~ Opa * Bma)
= VY2 —W,Xx*
= (Va—TEppX©) Y™ — (Wa— ThppY*) X°

a.

= DX,Y* - DY, X"

Again this is independent of the representatives of the equivalence class of

Jacobi fields used to perform the computation:

@ (X*+ A" Y+ pup*) = D (Xo+ Apa) (Y + pp®) — D (Yo + ppa) (X* + Ap%)
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= DX, (Y*+ pp®) — DY, (X* + Xp%)
= DX, Y* - DY, X*
= o(X4Y?
for all A, u € R, where we have used equations 6.1 and 6.2.
To complete the proof of theorem 70, all that remains to prove is that 6 and &

as defined above are well-defined, i.e., that # (X*) and & (X®,Y?) are independent

of the point of the null geodesic v we choose to perform the computation.

Proposition 72 Let (M,g) be a spacetime, v a null geodesic with affine tangent

vector field p* and X°, Y* Jacobi fields on v connecting null geodesics. Then

0(X*) =p.X*
and
w(X*Y*) =DX,Y*—- DY, X*
are constant throughout .
Proof: The invariance of 7] (X°) along v is a simple consequence of equations

6.1 and 6.2:

D (paX*) = pDX® = 0.

The invariance of @ (X, Y?) along v is a consequence of Jacobi’s equation and
the interchange symmetry of the Riemann tensor with respect to its two pairs of
indices:

D(DX,Y* - DY, X*) = D*X,Y* - D*,X*

— YaRdeaprC d __ XaRdeapbycpd =0.
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(this equation is sometimes referred to as Lagrange’s identity).O

To compute 8 and @ we must introduce local coordinates in N ; to this end the

following result is useful:

Proposition 73 Let (M, g) be a globally hyperbolic (d+ 1)-dimensional spacetime

and £ an arbitrary Cauchy surface; then N is diffeomorphic to T*¥\ (2 x {0}).

Proof: Choose an arbitrary nowhere vanishing future-pointing timelike vector
field t* on M and use it to extend any local chart {:v‘} on ¥ to alocal chart {t, :z:i}

on M and consequently to a local chart {po, Di, €, :ci} on T*M. Since

0
ad | = )
PalZ ( P t) Po
we see that the intersection of N ~ N*M |5 with the domain of the chart is clearly
the pre-image of
{(po,p1,0,2") : g*°papy = 0 and py > 0}
whereas the intersection of 7*%\ (¥ x {0}) C T*M with the domain of the same
chart is the pre-image of
{(O’pi) 07mi) :pidxi 7é O} :
Provided that p;dz! # 0, the equation
9*°pape = 0 g% (mo)* +2¢%pipo + g¥pip; = 0
0i 2 0i ,0j
g ij_ 949
& g% (Po + —Oapi) + (QJ - T) pip; =0
g g
can always be solved for a unique pg > 0, as

Bl = —g¥ 4
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is the Euclidean metric induced on T(zi)E by taking the orthogonal projection on
the orthogonal complement of d¢ (we shall call such metric the space metric, as it
coincides with our previous definition for static spacetimes). Indeed, the tangent
vectors {%} span the tangent hyperplanes to the Cauchy surfaces {dt = 0}. Since
dt (%) = 0 and dt (%) = 1, we see that dt corresponds to a future-pointing
timelike vector. Therefore its orthogonal complement is a spacelike hyperplane,

whose induced metric is minus a Euclidean metric. Because
(dt, gadz®) = g%q0 + ¢%g;

we have

0i . )

<dt, 9 A 4 qida:‘> —0
g

and consequently the orthogonal projection of g.dz® on the orthogonal complement

of dt is seen to be
oi

- ooql dt + gidz'.
g
Now
0i 0i, 0i 0j 0j
g4q i g aqi i g g i 9 4 .s
<_ gooldt + qidz ’"gTdt + gidz > = o 9T 2¢° —go—o'lqi + g¥qig;
= —higg;

which shows that kY is in fact an Euclidean metric on T(mi)E.

The solution
Do = Po(pi, Cvi)

provides the diffeomorphism between T*%\ (2 x {0}) and N: one identifies the
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point

(pi,z") € T*%\ (2 x {0})

with the scaled null geodesic with initial condition

(po(Pi,xi),pi,O,mi) € N*M |s .O

Notice that the zero section must be removed from T*% as py(0,z') = 0.
In particular, this proposition implies that one can use {pi, :ci} as local coor-

dinates on N. We can now prove

Theorem 74 (N,8,d) is a symplectic manifold symplectomorphic to T*Z\ (T x {0})
endowed with the canonical symplectic structure, where ¥ is an arbitrary Cauchy

surface on M.

Proof: We already know that N is diffeomorphic to 7*E\ (£ x {0}). A tangent

vector on T( N*M given in our standard local coordinates by

po,p1,0,21 )

i = X' | — X'—
<6pi Bt Ozt ) Opo * Vapl i or!

clearly satisfies

o, O\ 8 .8 .0\ 8 .0
‘-’*((ain”La X)30+V3p,+X3 )‘V‘api“LXazi‘

Consequently,

~ 0 . 0 po Opy .1\ O d d
0| Vi—+X'— | = A =X — — i
(Vapi * 01}‘) 6 ((8piv + Bzv‘X> Opo +V8p, +X 33:‘)

0 0
- 00+p1 —pldm ( a 8:1:')
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Thus

6= pidzt

and consequently

@ = df = dp; A dz!

which are the canonical symplectic forms in T*X\ (2 x {0}).0

6.3 Contact structure on the manifold of light rays

Proposition 75 Let (M,g) be a (globally hyperbolic) (d + 1)-dimensional space-
time and ¥ an arbitrary Cauchy surface. Then its manifold of light rays N is

. . T*T\(Zx{0}) . . . .
diffeomorphic to =X O where "~” is the equivalence relation induced on

T*3\ (2 x {0}) by the action of Rt on its fibres.

Proof: As we have noted before, null geodesics through (ps, z2) and (Apa, 2?)
(A € R*), while being different geodesics on T* M, yield the same null geodesic on
M (with a different affine parametrization). Thus we get N from N ~ N*M |5 by

identifying the points given on our coordinate system by
(pO(pi7 mi)’pia O) xi)
and

(/\po(Pi, z'), Api, 0, mi) = (po()\Pi, z'), Ap:, 0, ')

for all A > 0 (notice that po is homogeneous of degree one in p;). This corresponds
to identifying

(pi) mi) ~ ()‘pi) mi)
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on T*%\ (£ x {0}) for all A > 0.0

Obviously N cannot be a symplectic manifold, as it has odd dimension, dim(N) =
2d — 1. However, the fact that it can be obtained from a cotangent bundle by quo-
tienting the fibres by the R*-action allows us to introduce a so-called contact

structure on N. In order to do this we start with

Proposition 76 Let 7 : N — N be the projection map. Then

A0

is a (2d — 2)-dimensional distribution on N.

Proof: Take the usual local coordinates {pi, mi} on N. The paths on N given

in these local coordinates by

(pi(2), 2" (1)) and (A(B)pi(t), 2'(t))

project down to the same path on N, where A is any positive function; thus, is
easy to see that the vectors which project down to the same vector on Ty, 1)V

are of the form

a i a 7
(ap; + AV}) o +X 31 © TopayN
for € R and X € R arbitrary. Now
~ o .0 .
7] i i) — X'— | = in
((ap + AW) o + 6m‘> Ap

and thus one sees that if X € ker (5) and 7.Y = 7.X then Y € ker (5) (notice
that X and Y do not have to belong to the same tangent space). This shows that

W is well-defined.
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To get a better understanding of this distribution, we introduce an arbitrary

Riemannian metric A on ¥ and identify N with T'S*%:
N =T8S ={(p,3') € T"S: hiipp; =1}.

This way we get N as a submanifold of N , and the map 7 : N — N becomes
the projection on this submanifold along the integral lines of the so-called Euler
vector field

0

The advantage of this approach is that now obviously 7 is the identity when
restricted to N; therefore, we get W = ker(6), where § = 6 |y. Since locally
§ = pidz’ and {m‘} can be extended to local coordinates on N, 6 never vanishes
identically and W is in fact a distribution of hyperplanes of codimension 1, i.e., of

dimension 2d — 2.0
Proposition 77 The 1-form 6 € Q*(N) satisfies the nondegeneracy condition
O AdO)* ! #£0.
Proof: Tt is easy to guess from
d (5/\ (dé)d_l) — (d8)" =& = didpy A ... Adpy Ada" A ... A da

that

~ d—-1 d . —

N (dé) =d—-1)!'Y (-1)'pdpr A .. Adpi A . Adpg A dz' A ... A dz?.

i=1

(where the hat means omission). Consequently, if

0
Op;

9 .
ozl

0 .
X, = Vl— Xl
! Y Op 1

0

e TN
8IE" ?

Xog—1 = V21— + X344
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we have

o A (dg)d—l (X1 X2d-1)

Vi v Vi X X{
d
= (d-1)!Y (-1)'p;
i=1
| Zal [ Vil X3 X1

D1 Pd 0 0
Calpy| WX
VP L VR X e XS
Since clearly
0 L
E=p— € (TN
Pig, € (T'N)

we see that if we take X1, ..., X241 to be linearly independent vectorson TN C TN
then
0 A (d9)* (X4, ..., Xog_1) # 0
as required.0
Notice that if ¢ € Q'(U) is any other 1-form defined on an open set U C N
such that on U we have W = ker(¢y) then necessarily ¢ = A for some nonvanishing

function A € C*(U); therefore,
PA(dp)*™ = MNAAAAG+ A =
= XA (dh)*T

and thus the nondegeneracy condition above is actually independent of the partic-

ular 1-form whose kernel yields W. It is easy to see that this condition is just the
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condition that df be nondegenerate on each of the planes of the distribution W'.

Definition 78 A (2d — 1)-dimensional manifold N endowed with a (2d — 2)-
hyperplane distribution W given locally by a 1-form satisfying the nondegeneracy

condition above is called a contact manifold.

Thus the manifold of light rays of a globally hyperbolic (d + 1)-spacetime
endowed with the distribution W arising from the canonical symplectic potential
 on N is a contact manifold. This fact is hinted in [PR] and [P], and fully
expressed in [L1] (where a considerably more compact abstract derivation of the
contact structure can also be found). We shall now discuss a few relevant issues
about contact manifolds concentrating on this particular example; a more general

discussion can be found in [A].

Definition 79 Let (N,W) be a contact manifold and v € N. Then the hyper-
planes W, C T, N are called the contact planes; any covector @ € TyN such
that ker(a) = W, is called a contact covector; and any (locally defined) 1-form
6 € QY(U) (U C N an open set) such that 6 |, is a contact covector for all v € U

1s called a local contact 1-form.

Because in the case of the manifold of light rays one has a globally defined
contact 1-form 6, at each point v € NN the set of contact covectors splits in two
disjoint sets, namely the set of positive multiples of 6 |, and the set of negative

multiples of § |,. We use this fact to make the (slightly nonstandard)
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Definition 80 The symplectification N of the (contact) manifold of light rays
(N,W) is the fibre bundle of all contact covectors which are positive multiples of

the canonical contact 1-form 6.

Clearly N is a fibre bundle over N with fibre R*. One can define a canonical
1-form 8 on N as follows: let 7 : N — N be the canonical projection, o € N and
£ € T,N; then we define

() = a(mg).

Obviously § is globally defined, and one can define @ = df.
Proposition 81 (JV , @) 1is a symplectic manifold symplectomorphic to (]V ,@).

Proof: Think of N as a submanifold of N. Givena € N, , there exists a unique
A > 0 such that @ = Ad. Use this to define the map f : N> N given in the

canonical local coordinates of N by
f(@) = Oy, z).
Clearly f is a diffeomorphism. We can use this to introduce local coordinates
{pi,mi} on N. Now if £ e Taﬁ, it is easy to see that

8+Xi0

&= Vic’?_pi ozt

= §(¢) = a (r.f) = \pdz! (Xi%) =6(¢€).0

Definition 82 Let (N,W) be a contact manifold. A diffeomorphism f: N — N
is said to be a contact diffeomorphism (or contactomorphism) if f W =W, i.e,
if iAWy = Wy(y) for ally € N. A vector field £ on N is said to be a contact vector
field if the one-parameter group of diffeomorphisms generated by £ is a group of

contact diffeomorphisms.
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A nice characterization of contact vector fields is as follows:

Proposition 83 Let (N,W) be a contact manifold and & a vector field on N.

Then & is a contact vector field iff 0 A £.0 = 0 for all local contact 1-forms 6.

Proof: Let ®; be the one-parameter group of diffeomorphisms generated by &,

ie, &= f—tfbt. Then £ is a contact vector field iff
()W, = Way(y)
for all y € N, i.e., iff
0(2,)((®:).V) =0

for all y € N, V € T,N and local contact 1-forms . This is of course equivalent

to saying that at each point
(2:)°0(2:) = f(2)0

for some function f, or to saying that at each point

% [(®,)*0(®,)] |s=o= F'(0)8 < £:0 = f'(0)0 = O A £:0 = 0.0

This characterization is especially useful to prove

Theorem 84 The set of all contact vector fields on a contact manifold is a Lie

subalgebra of the Lie algebra of smooth vector fields.

Proof: If £ and n are contact vector fields and 6 is a local contact 1-form then
we have
£0 = f6

£,0 = gb
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for some locally defined functions f and g. Therefore,

Liemf = [£¢, £0]0 = £,(90) — £,(f0) = (§g — nf)8.0

We now return to the case when N is the manifold of light rays of a glob-
ally hyperbolic (d + 1)-dimensional spacetime (M, g) (or, equivalently, the tangent

sphere bundle of a d-dimensional Riemannian manifold (Z, h):

Definition 85 Let (N,W) be a manifold of light rays and (N, ) its symplectifi-
cation. If f : N — N 1is a contactomorphism such that f*0 = (6 for some smooth
function f > 0, we define its symplectification f: N> N by assigning to each

contact covector o € ]V =~ N the contact covector

Notice that the fact that f is a contactomorphism implies that f*6 = 36 for
some function § # 0; in the above definition we discard the possibility 5 < 0 due
to our nonstandard definition of symplectification of the manifold of light rays.
Since we’ll be interested in one-parameter families of contactomorphisms through
the identity map, there is no loss of generality (for our purposes) in using only the

connected component of the identity map.

Theorem 86 Let (N,W) be a manifold of light rays and f : N — N a contac-
tomorphism; then its symplectification f N> Nisa symplectomorphism which
commutes with the action of Rt and preserves the canonical symplectic potential

6.
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Proof: It is obvious from the definition that

FO@) = ()7 (0a) = A () a = Af(a)
for all A > 0. Thus all we have to prove is that f*§ =6 (obviously if ]7 preserves 7]
it also preserves @ = df). If (f*)™" 8 = 36 for some function § > 0 (note that this
function £ is the multiplicative inverse of the function £ in definition 85), we have

(78) 1ro () = () Inso (&) = ABO (mufub) = ABO (fumal) = MBS0 (m.8)

where we've used the fact that f commutes with the action of Rt on N (and thus

T ﬁ = f.m., as 7 corresponds precisely to taking the quotient by this action). But
F(6) =50 (f)70=p50<6=5f0

and therefore
(7%6) 1xo (€) = A8 (ma&) =8 30 (£)

i.e.,

as we needed to show.O

This theorem admits the following converse:

Theorem 87 Every symplectomorphism of the symplectification (ﬁ , @) of the man-
ifold of light rays (N, W) which commutes with the action of R™ projects onto N

as a contactomorphism and preserves the canonical symplectic potential 9.

Proof: Let F : N — N be a symplectomorphism which commutes with the

action of R* on N; then clearly it projects to a diffeomorphism f: N —+ N. Now
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if F* = 6 then for all £ € TN

FO@) =00 «8(F.)=0(

or, using the usual coordinate A on N. , and setting F'(8) = 39,

B0 (m Fif) = 0 (m.&) & PO (fum£) = 6 (mif)

Since m: N — N is surjective, this is equivalent to saying that

i.e., that f is a contactomorphism.

Thus all we have to prove is that F' preserves f. Let T be a path on N, , and
consider the surface ¥(¢) obtained from I' by multiplying each covector on I' by
all numbers in the interval [, 1]. Since the boundary of ¥(e) tends to I' and two
integral lines of the Euler vector field E (where § vanishes), we get from Stokes’
theorem that

fo-1m [,

Now since F preserves & and commutes with multiplication by elements of R*,

it follows that

Jow?= 7

for arbitrary paths I', and thus F' indeed preserves 6.0

Definition 88 The symplectification of a contact vector field £ is the vector field
E generating the one-parameter group of symplectomorphisms &, which are the

symplectifications of the one-parameter group of contactomorphisms ®; generated

by €.
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At this point it is useful to recall

Proposition 89 Let (]\7 ,@) be a symplectic manifold and £ a vector field on N ;
then the one-parameter group of diffeomorphisms ®; generated by & is a group of

symplectomorphisms iff £ is locally Hamiltonian.

Proof: We have

.~ - d . -
(@t) W (@t) =W < % |t=0 ((I)t) w (@t) =0¢& £§w =0.

Now
£eio = d (€]&) + €)di = d (€)D)

as dw = 0, and thus

d(¢]@) =0 €] = —dH

for some local function H, i.e., £ is a locally Hamiltonian vector field.O

Theorem 90 The symplectification of a contact vector field is a globally Hamil-
tonian vector field. The Hamiltonian can be chosen to be homogeneous of degree

one with respect to the multiplicative action of R*:
H(Aa) = AH(a)

for all A > 0. Conversely, every globally Hamiltonian field on N having a Hamil-
tonian homogeneous of degree one with respect to the multiplicative action of RY

projects onto N as a contact vector field.
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Proof: If £ is the symplectification of a contact vector field, then the one-
parameter group of symplectomorphisms ®; generated by £ preserves the canonical

symplectic potential 8, and thus

* N -~ d . ~
(2)°0(®) = 0 o im0 (B)"0(P) =0 £ =0

& d(¢)0) +¢ldo=0%¢d=—dH
where H = fjé is clearly homogeneous of degree 1:
H(A\a) = da(m€) = AH (o).

The converse statement is a trivial consequence of theorem 87 once we have
proven that the elements of the one-parameter group of diffeomorphisms ®; gen-
erated by the symplectic vector field £ arising from a homogeneous of degree 1

Hamiltonian H commute with the action of R*, i.e., once we’ve proven that

[’E’ E] =0
where
0
E= Pia—pi

is the Euler vector field. Saying that H is homogeneous of degree 1 is the same as

saying that FH = H. Now

£5(€|5) = £5(—dH) = —d(EH) = —dH

whereas also

£p (§|©) = (£68)]& + €] (££0)
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and

Thus,
(££8))0 + €| = —dH & (£££) |0 =0
and consequently
L£g€=0

as we needed to show.O
We can state this relationship between contact vector fields on NV and globally
Hamiltonian vector fields on N with homogeneous degree 1 Hamiltonians in the

following

Theorem 91 Symplectification contact vector fields provides a isomorphism be-
tween the Lie algebra of all contact vector fields on N and the Lie algebra of

globally Hamiltonian vector fields on N with homogeneous degree 1 Hamiltonians.

Proof: This is obvious from the above and the fact that if £ is a contact vector

field and € its symplectification, then
£=mE
and thus if £, 7 are two contact vector fields then
€, 7 = [m€,m7f| =m. [E7].

Recall that if
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then
([6.7])@) = (£6)1 = £ (7)0)~71) £ = £ (~dK) = —d ({]dK) = —d ({K)

In our standard local coordinates

5 OHOK  OHOK
~ Oridp;  Op; O7

is easily seen to be homogeneous of degree 1; therefore the Lie bracket of two
Hamiltonian vector fields with Hamiltonian homogeneous of degree 1 is again a
Hamiltonian vector field with Hamiltonian homogeneous of degree 1, i.e., such

vector fields do form a Lie algebra.O

6.4 Legendrian submanifolds and Legendrian linking

Definition 92 Let (N, W) be a contact manifold and X C N a submanifold. Then

X is said to be an integral submanifold of W iff T, X C W, for ally € X.

If N is the manifold of light rays and X is the sky of a point z, it is easy to
see that X is an integral submanifold. This is most easily done by considering a
Cauchy surface ¥ through z: X is then a fibre of 7'S*% and is certainly an integral

submanifold of § = p;dzi.

Proposition 93 Let (N, W) be a contact manifold of dimension 2d—1 and X C N

an integral submanifold of W; then

dim(X) < d—1.
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Proof: Let 6 be a local contact 1-form and &, 1 two vector fields tangent to X.

Then [£,7] is also tangent to X. Now

and, since df is nondegenerate in W, for all y € X,

dim (W,) 2d—2
= =d-—1.0
2 g~ ¢

dim(X) = dim (T, X) <

Definition 94 Let (N, W) be a contact manifold with dim(N) =2d—1 and X C
N an integral submanifold of W. Then X is said to be a Legendrian submanifold

iff dim(X)=d— 1.

Thus the sky of a point is a Legendrian submanifold of the manifold of light

rays. In fact, it is a special kind of Legendrian submanifold:

Definition 95 Let (N, W) be a contact manifold with dim(N) =2d —1 and f :
591 — N an embedding such that X = f (Sd"l) is a Legendrian submanifold;

then X 1is called a Legendrian knot.

Definition 96 Let (N, W) be a contact manifold and X, Y Legendrian knots such

that X NY = 0; then X I1Y is called a Legendrian link.

Thus the disjoint union of the skies of two point which do not lie in the same

null geodesic is a Legendrian link.

Definition 97 Let (N,W) be a contact manifold. A contact isotopy is a one-
parameter family of contactomorphisms ®; : N x [0,1] — N such that ®q is the

identity map.
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Definition 98 Let (N,W) be a contact manifold. Two Legendrian links X, I1 X,
and Y111Y; are said to be equivalent if there exists a contact isotopy ®; : Nx[0,1] —

N such that @, (X;) =Y; fori=1,2.

We’ve seen that one-parameter groups of contactomorphisms are generated
by contact vector fields. However, the concept of Legendrian linking forces us
to consider contact isotopies, i.e., one-parameter families of contactomorphisms
through the identity map. In order to understand these we first consider one-

parameter families of symplectomorphisms through the identity map.

Definition 99 Let (N ,@) be a symplectic manifold. A symplectic isotopy is a
one-parameter family of symplectomorphisms ®; : N x [0,1] — N such that ®q is

the identity map.

Proposition 100 Let (N,©) be a symplectic manifold and &, : N x [0,1] = N a

symplectic isotopy. Then for each t € [0, 1] the vector field

d

:_q’s =
R

s a locally Hamiltonian vector field.

Proof: The proof is completely analogous to the case when &, is a one-

parameter group of symplectomorphisms:

d

0= —
ds

s=t (Ba)"@ (®s) = £,60 = d (§D) + &) dib = d (§]@) .0

Thus we have
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Theorem 101 Let (N, W) be a contact manifold and ®; : Nx[0,1] = N a contact

isotopy. Then for each t € [0,1] the vector field

d

ét = Eéa |s:t

18 a contact vector field.

Proof: One has but to notice that the symplectification of a contact isotopy is
a symplectic isotopy generated by a homogeneous of degree one Hamiltonian.O

This is a nice characterization of contact isotopies. However, an even nicer
characterization of Legendrian linking is provided by the so-called Legendrian iso-

topy extension theorem:

Theorem 102 Let (N,W) be a contact manifold and L a (not necessarily con-
nected) closed Legendrian submanifold of N. Let ¢ : L x [0,1] = N a smooth
injective map such that @y is the inclusion map and @;(L) is Legendrian. Then

there ezists a contact isotopy ®; : N x [0,1] = N such that ®; L= ¢:.

Proof: See [T].

One can think of this theorem as stating that Legendrian links are equivalent
iff one can find smooth motions of its components taking one link into the other in
such a way that the two components remain Legendrian submanifolds throughout

the motion (and never intersect). This allows us to prove the following

Proposition 103 Let (M, g) be a globally hyperbolic (d + 1)-spacetime (d = 2

or 3), and N its manifold of light rays. Then the Legendrian link consisting of
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the skies of two non-causally related points is equivalent to the Legendrian link

consisting of the skies of any other two non-causally related points.

Proof: The proof is completely analogous to that of proposition 64, as moving
through skies is a particular case of moving through Legendrian submanifolds.O

Again the following definition is seen to be a natural one:

Definition 104 Let (M, g) is a globally hyperbolic (d+ 1)-spacetime (d =2 or 3),
and N its manifold of light rays. Then the equivalence class of the Legendrian link
consisting of the skies of two non-causally related points is said to be the class of
trivial Legendrian links; any two Legendrian knots forming a link in this class are

said to be unlinked.

Legendrian linking provides us with a more restrictive concept of linking which
fits nicely with the natural contact structure of the manifold of light rays. An

illustration of this restrictiveness is given by the following theorem by Lisa Traynor:

Theorem 105 Let (M,g) be Minkowski (2+1)-spacetime and (N, W) the corre-
sponding (contact) manifold of light rays. Let z,y € M withy € I'*(z). Then

XY and Y II X are not equivalent Legendrian links.
Proof: See [T].0

Corollary 106 Let (M,g) be Minkowski (2+1)-spacetime and (N, W) the corre-
sponding (contact) manifold of light rays. Let z,y,z € M with y € I*(z) and

z¢ J (2)UJT(z). Then X1IY,YIIX and X 11 Z yield the different equivalence

classes of Legendrian links formed by pairs of skies.
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Proof: This is an immediate consequence of theorem 105 and the fact that any
two points on M not lying on the same null geodesic can be moved into z and y,
y and z or z and z in such a way that they never are on the same null geodesic.O0

Note that if y € I*(z) then X IIY and Y II X are clearly equivalent links on

N: one can always find coordinates on M such that on N = R? x S! we have

X = {(Rcosb,Rsinb,d):0<6<2r}

Y = {(Rcos(6 +),Rsin(f +),0):0<6 < 2n}
for some R > 0; thus we see that
o, (:1:1, z? 9) = (cos (wt) 2! — sin (7t) 22, sin (7t) £* + cos (nt) :v2,9)

is an isotopy which carries X ITY to YIIX. Thus there are only two distinct equiv-
alence classes of links formed by pairs of skies in Minkowski (2+1)-spacetime. This
is related to the fact that in the (2+1)-dimensional case link(X,Y") = link(Y, X).

It is instructive to see how the above isotopy fails to be a contact isotopy: it

is generated by the vector field

which does not preserve the contact structure:

£ (cos 6dz" + sin 0d:c2)
= £| (— sin 8df A dz' + cos6df A dmz) +d [5] (cos 0dz* + sin Hdatz)]
= (—71'3:2 sinf — 7! cos 6) di+d (—m:z cosf + wz!sin 9)

= 7sinfdz' — 7cosfdz?® # 0
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Thus Legendrian linking allows us to distinguish between past and future in
Minkowski (2+1)-spacetime, whereas ordinary linking does not. This hints that
it could be the concept of linking we are looking for to express causal relations in
the manifold of light rays for d = 3. Even for d = 2, the knowledge that skies are
Legendrian submanifolds of the manifold of light rays will be quite useful, as we

shall see.



CHAPTER 7

General spacetimes

7.1 Fermat’s principle

So far we’ve dealt with static spacetimes only. Although general spacetimes
are naturally more complicated, we shall see that the main points of importance to
us do not suffer any significant complication. In particular, a version of Fermat’s
principle still applies in these general spacetimes.

In what follows, (M, g) is a globally hyperbolic (d + 1)-spacetime with Cauchy
surface ¥ diffeomorphic to a subset of R?. Thus we can assume that ¥ possesses
global coordinates {x‘} As is well known, one can always choose a global time
function ¢ such that the hypersurfaces {dt = 0} are Cauchy surfaces. To build up
a coordinate system on our spacetime we choose an arbitrary timelike vector field
1® such that t*V,t = 1 and use its integral lines as the coordinate lines {d:z;i = O}.

Thus these coordinate lines are timelike.

Definition 107 A coordinate system as described above is said to be a standard
coordinate system, and the observers whose worldlines are the integral lines of t°

are said to be coordinate observers.

Theorem 108 Let O be an event, o a coordinate observer, v a future-directed null

curve joining O to o and t(vy) the time coordinate of the intersection of v with o.
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Then the light rays joining O to o are the stationary points of t(7y) (and one of
them 1is the global minimum).

Proof: The proof is surprisingly simple. Recall from the Hamiltonian reduction
theorem (see [A]) that the projections of the light rays on the Cauchy surface

parametrized by the coordinate time are the solutions of Hamilton’s equation for

the (time-dependent) Hamiltonian
K = —po
where pg = po (pi, t, wi) is obtained by solving the equation
g% (Po + g_:));pi)z + (g‘j - g—:i—o%(ﬁ> ppj=0&py==% ('Yijpipj)% - B'm

Here we've set

" 1 .. .
o= =g+ AP
Joo

and recall that

is the Riemannian metric induced on the Cauchy surface by orthogonally projecting
on the orthogonal complement of %. The two possible signs refer to past-oriented
or future-oriented null geodesics, which clearly yield the same projection as their
time orientation is irrelevant in the coordinate time parametrization. For conve-
nience, and to fix ideas, let us choose the sign corresponding to past-oriented null

geodesics; thus our Hamiltonian is

K= (’Yijpipj)% +6'pi
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and is, of course, strictly positive. At any given event the possible values of the

coordinate velocities for null geodesics are

. . .
,Ul_:aK: 7p.l _{_131

Opi  (ylip;p;)

=

and these are of course also the possible values of coordinate velocities for any null
curve.

One way to prove the stationary property of null geodesics is to set up the
following problem of optimal control theory (a so-called Mayer problem; see for
instance [La]): assume that the coordinates of O are (tp,z}) and that the space
coordinates of o are (zi). Regard the z! as state variables and the p; as the control
variables. It is clear that one can choose the p; to be defined on an interval [to, t1]

so that the z' determined by the Cauchy problem

z'(to) =
@ _ oK
dt N Bpi
satisfy
fEi (t1)=$l1

Optimal control theory then tells you that in order to find the choices of the

p; which yield stationary values of ¢; one must set up the Hamiltonian function

(where the A; are auxiliary momentum variables) and solve the minimum conditions

O0H

N
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dy 3 0H
dt Ozl
H(t;) =1

(see [Lal).
Now using only the facts that K is homogeneous of degree 1 in the momenta

and strictly positive it is easy to see that these equations are equivalent to

A= ap
dpp _ 0K
dt Ozt
0 — 1
K(t1)

(where @ > 0 is a constant; notice that it is important that the coordinate system
be a standard on in order to guarantee that K is always positive and that therefore
a can always be computed). In other words, the stationary points are the light
rays. Since we know that ¢; > tg must have a global minimum, it is clear that this
must be a light ray. (See [SEF] for a more direct proof).O

This is a generalization of theorem 18, and can be conceived as a Fermat’s
principle for the propagation of light on our Cauchy surface: a light ray will travel
between two points of the Cauchy surface (i.e., two coordinate observers) using
the path that allows it to do so in minimum (coordinate) time, the allowed speeds
of light at time ¢ being given at each point by

. iy, .
,Ul — fY p.l T + :Bl
(Yipips)?

which, of course, are just the solutions of

goo + 2goiv* + gijv'v = 0.
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Definition 109 Let £ € & be the point with coordinates £ and let T € R. The

wavefront originating at (7,&) at time ¢ is defined to be the set

i ..i_ aK S BH i _ i
o(r1,¢,t) = {a: (t) = o5, and D= 5l and z'(1) =¢ }

oriented by considering the right-handed orientation on T¢% of the initial condi-

tions.

Note that this wavefront is clearly the projection on ¥ of the sky of (7,¢). Note
also that if ¢ < 7 (¢t > 7) this is the intersection of the past (future) light cone of
(1,€) with .

Recall that if n® is the future-pointing normal unit vector to the Cauchy sur-
faces and t* a timelike vector field generating a standard coordinate system, then
one can always write t* = Nn®+ N¢, with N > 0 a smooth function and n*N, =0

(obviously N is tangent to the Cauchy surface).
Definition 110 N is called the lapse function and N® the shift vector.

Obviously one can always replace t* by Nn® and thus get coordinate observers

whose worldlines are orthogonal to the Cauchy surfaces.

Definition 111 A standard coordinate system whose coordinate observers’ world-
lines are orthogonal to the Cauchy surfaces is said to be a synchronized coordinate

system.

Synchronized coordinate systems are important to us because of the following
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Proposition 112 On a synchronized coordinate system the set of all light rays
emanating from point at a given time in our Cauchy surface is orthogonal to each
of the rays (with respect to the Riemannian metric induced in the Cauchy surface

by the spacetime metric).

Proof: Because this set is just the projection of the sky of the event consisting
of the point at the instant of emission on the Cauchy surface, which is a Legendrian

submanifold of the manifold of light rays, we know that
piti =0

for any vector tia—‘z; tangent to the set; but for a synchronized coordinate system

[N

pi= (’Yijpipj) Vv’
Thus we get
Yt =0
and the observation that -y; is clearly conformally related to the Riemannian metric
—gi; induced on X by the spacetime metric concludes the proof.0
As we shall see, this proposition teaches us how to reconstruct a sky from the
wavefront. Note that the sky itself does not depend on the particular choice of

coordinate observers we happen to make, and thus we can always assume to be

dealing with a synchronized coordinate system.

7.2  Wavefronts, skies and linking numbers

Proposition 113 Let z,y € M be given by x = (t1,€) and y = (t2,n), where

t1,to € R and €,n € ¥, and suppose that t; < ty and that =,y do not belong to the
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same null geodesic. Then the linking number of X and Y is given by the winding

number of ®(t1,&,t2) around n on X.

Proof: The proof is completely analogous to the static case.O

In particular, we see that the winding number of ®(¢1, £, t2) around 7 is equal
to (—1)? times the winding number of ®(ty,7,t;) around &. This is a by no means
trivial statement regarding the intersections of the light cones of z and y with

Cauchy surfaces through y and z.

Theorem 114 Let x € M be given by x = (t1,£), where t; € R and £ € .
Suppose that t; < t; € R and let = = t"1(¢;). Then the set of points on = causally

related to = is {t2} X tlsLtjstz d(t1,&,t).

Proof: Again this can be seen to be a consequence of Huygens’s principle (see
[A]).O

Thus we have now generalized the tools to compute the linking number of
the skies of two points, as well as to determine their causal relationship, to a
general (d + 1)-spacetime. In both cases this amounts to studying wavefronts on

the Cauchy surface.



CHAPTER 8

Skies in (2+41)-spacetimes

8.1 Legendrian links

We will attempt to prove Low’s conjecture. For this we will rely heavily on the
fact that skies are Legendrian knots, whose projections on ¥ have known kinds of
singularities. We thus start by taking a closer look at Legendrian knots and links.

Let (M, g) be a globally hyperbolic (2+1)-dimensional spacetime with Cauchy
surface ¥ diffeomorphic to a subset of R%, and N its manifold of light rays. Let
(t,z,y) be a synchronized coordinate system on M with (z,y) global coordinates
on . Recall that by identifying ¥ with the level surface t~1(7) one has on ¥ the
Riemannian metric h = h(7) induced by (minus) the spacetime metric for each
t € R. This metric has the particularity that, as is easily seen in the proof of

proposition 112, the velocity of the light ray determined by (p;, z) is

V=

hip;
(hipip;)®
Since one can clearly identify N with the submanifold of 7*¥ defined by the
1
2

condition (hijpipj) = 1, we see that

Proposition 115 The Riemannian metric h provides a diffeomorphism between
N and TS(X) carrying fibres to fibres. The sky of a point is carried by this diffeo-

morphism to the set of all unit normal vectors on its projection on ¥ pointing in

the direction of propagation of the light ray.
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Proof: This is an immediate consequence of proposition 112.00
Thus we may as well think of N as T'S(X) (with respect to h). To introduce

coordinates in N we notice that any vector 'Uia_if € T'S(X) is completely determined

by the angle ¢ it forms with, say, %. For such a vector, one has
b cos
= Cosp
(he)’?
and
B (v,)* + 2h Vv vy, + AV (v,)? = 1
yielding

R (v,)? + 2RV (hm)% cos vy + h*®hgg cos® o — 1 = 0.
Remembering that
iy — 'Y -1 e
(1) = (b = L
(h = det (hy)), and that consequently
hzz = hhYY,

one gets, after some algebra,

W=

cosp (hyy)% sin
hyy

—hTY
I (2

the two signs corresponding to the two possible orientations. We choose the positive
one, corresponding to the plus sign.
Proposition 116 A contact 1-form 6 for N can be written in the coordinates

(z,y,9) as

(ST

(R¥) 7 sin o — Ao (hyy)
hyy

W

Cos ¢
dy

0 = vpdz + vydy = (hg)? cos pdz +
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or better yet as

sing  h®¥cos <p> a

6 = cos pdz + <h%hyy e

Proof: This obviously follows from the previous remarks and the fact that a
contact 1-form is always defined up to multiplication by a nonvanishing smooth
function.O

It is a consequence of the generalized Riemann map theorem that one can
always choose global coordinates for ¥ ~ R? in which hij = Q26ij; in this case one
obviously gets

§ = cos pdz + sin pdy

which is the standard contact 1-form for 7'S* (R?). This 1-form can also be written

as

6 = d(zcosp+ysing)+ (zsing —ycosy) dp

= dg— pdyp

with the new coordinates (p, g) given by the (volume-preserving) coordinate trans-

formation

p —singp cosy T

q Ccosy singp Y

In particular we've proved the following

Proposition 117 The I1-jet manifold J* (S?) is a contact manifold contactomor-

phic to T'S* (R?).
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Definition 118 Let 7 : N — ¥ be the natural projection map and L C N a Leg-
endrian link. Then ® = n(L) C X is called a wavefront. If L has an orientation,
given by a tangent vector v, its wavefront has the orientation given by m,v. If L is

a sky, we shall call its wavefront also a sky.

Notice that obviously wavefronts are defined up to orientation-preserving dif-
feomorphisms of ¥ (corresponding to our freedom to change coordinates on the

Cauchy surface). We have

Theorem 119 Wavefronts are formed by piecewise immersions of S* on ¥ whose

generic singularities are (a finite number of ) cusps.

Proof: See [EN].O

We only need to consider generic (or stable) singularities of skies as we can
always move the Cauchy surface slightly so as to remove non-generic singularities.

In general, a wavefront defines several Legendrian links, corresponding to the
two possible orientations of its unit normal vector field in each component; the fact
that a wavefront is the projection of a Legendrian link means that either of these
unit normal vector fields vary continuously along the wavefront (with respect to a

parametrization coming from the Legendrian link).

Definition 120 A coorientation on a wavefront is simply a choice of a unit nor-

mal vector field.

From this point on we will tend to not distinguish between Legendrian links

and cooriented wavefronts.
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A wavefront is reminiscent of another kind of plane curve:

Definition 121 A link diagram is formed by immersions of S' on R? with only
simple or double points allowed and an indication of over-and-under at each double

point.

A link diagram defines a link in R3. In figure 8.1 we show a link diagram for
a link with just one component (i.e., a knot). The particular knot defined by this

diagram is known as the trefoil knot.

Figure 8.1: Knot diagram

Similarly, a wavefront with a coorientation defines a Legendrian link, as shown
in figure 8.2 (again for a one component Legendrian link, i.e., a Legendrian knot).
To avoid unnecessary complications, assume from this point on that ¥ ~ R2.
It is then clear that any link diagram can be reinterpreted as a wavefront. If

one chooses a coorientation, it will then define a Legendrian link L C N. Notice
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Figure 8.2: Cooriented wavefront and its associated Legendrian knot

that for knots, the two possible choices of Legendrian knots are isotopic (but not
necessarily Legendrian isotopic), the isotopy being generated by % (clearly the
transformation ¢ — ¢ 4 7 carries one into the other; recall, however, that this
particular isotopy is not a Legendrian isotopy, as we showed in the comments
following theorem 105). Since N is diffeomorphic to the standard torus, L can be
seen as a link in R®. However, as is clear from figure 8.3 (where one sees that the
Legendrian knot corresponding to the trefoil knot diagram is really an unknot), it

is not the link corresponding to the link diagram we started with.

With relation to this, we have the following

Theorem 122 Any knot in R? x S has a Legendrian representative; however, its

wavefront may not be immersed in ¥ ~ R? (because of cusps).
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Figure 8.3: Legendrian knot and wavefront for the trefoil

Proof: See [A1].0
In figure 8.3 we show the four-cusped wavefront for the Legendrian represen-

tative of the trefoil knot.

8.2 Evolvability

When discussing linking or Legendrian linking one is interested in isotopies or
Legendrian isotopies. Two links are considered equivalent if there exists an isotopy
of the appropriate kind deforming one of the links into the other. Because of the
isotopy extension theorems, one only has to worry about deforming the link itself
(making sure it remains a link of the appropriate kind throughout the deforma-
tion). In the case of Legendrian links, one can easily see which deformations of

the wavefront are allowed: these are exactly the ones which deform wavefronts
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into other wavefronts so that whenever there exists a tangency the coorientation
of the tangent curves is opposite (this is called a safe tangency; a tangency where
the tangent curves have the same coorientation is called a dangerous tangency and
is obviously forbidden as it corresponds to an intersection of the corresponding
Legendrians. This applies to any links, including knots; in this case all tangencies
are self-tangencies).

We now wish to discuss a different relation between Legendrian links (which,
unlike isotopy or Legendrian isotopy is not an equivalence relation). First, though,
we introduce another equivalence relation following up on the fact wavefronts are
defined up to orientation-preserving diffeomorphisms of ¥ (corresponding to our

freedom to change coordinates on the Cauchy surface).

Definition 123 Let L C N be a Legendrian link with wavefront ® = w(L). We
say that the Legendrian link K C N 1is equivalent to L if there exists an orientation-

preserving diffeomorphism f : & — ¥ such that m(K) = f(®).

By abuse of language we shall also speak of equivalent wavefronts. From this
point on we shall consider all equivalent wavefronts to be basically the same wave-
front (i.e., we shall deal with equivalence classes of wavefronts instead of the wave-

fronts themselves). That we are justified in doing so is shown in the following

Theorem 124 If two Legendrian links are equivalent, then they are Legendrian

1sotopic.

Proof: It is well known that the set of orientation-preserving diffeomorphisms
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of R* (n € N) is pathwise connected (see [HM]). We can easily use a path con-

necting the identity map to f to generate a Legendrian isotopy carrying L to K.O

Definition 125 Let L, Ly be two Legendrian links. We say that L, is evolvable
into Ly, and write Ly < Lo, if there ezists a Lorentzian metric in which (a link
equivalent to) Ly is carried to (a link equivalent to) Ly by the Legendrian isotopy
generated by the homogeneous degree one Hamiltonian corresponding to the null

geodesic equations.

Again we will also say that a wavefront @, is evolvable to a wavefront ®, if
the corresponding Legendrians L; and Ls satisfy L; < L. We then see that a
wavefront is evolvable into another if there exists a spacetime (globally hyperbolic,
with Cauchy surface ¥ diffeomorphic to R?, equipped with a synchronized coordi-
nate system) such that light rays on ¥ through the first wavefront (moving in the
normal direction specified by the coorientation) form the second wavefront after a
certain (non-negative) amount of coordinate time (all this modulo equivalence of
wavefronts).

At this point, it is convenient to make the following

Definition 126 The wavefront corresponding to o single point (and the corre-

sponding Legendrian knot) is called the canonical circle (CC).

The projection map « : CC C N — ¥ is singular at all points. This is
a good example of an unstable singularity: moving the Cauchy surface slightly
(i.e., evolving the CC slightly) one removes the singularity. The wavefronts thus

obtained also receive names:
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Definition 127 The wavefront corresponding to a circle with the outward coorien-
tation (and the corresponding Legendrian knot) is called the future canonical circle
(FCC); the wavefront corresponding to a circle with the inward coorientation (and

the corresponding Legendrian knot) is called the past canonical circle (PCC).

Proposition 128 FEwvolvability is a partial order but not an equivalence relation,

i.e., is reflexive and transitive but not symmetric.

Proof: It is clear that one can evolve a wavefront into itself by doing so in
zero coordinate time; hence evolvability is a reflexive relation. Also, it is clearly
transitive. However, it is not symmetric: because of Huygens’s principle (which
stems directly from Fermat’s principle), it should be clear that while we can evolve
a PCC into a FCC, it is impossible to evolve a FCC into a PCC.O

This immediately suggests the following

Definition 129 If ® is a cooriented wavefront, we shall define —® to be the same

wavefront with the opposite coorientation.

Proposition 130 Let ® be a cooriented wavefront corresponding to a Legendrian
knot, ®;, &, be general wavefronts. Then (i) & = —® iff & = CC; (it) PCC =

—FCC,’ (’LZZ) @1 S @2 iff —@g S —@1,

Proof: (i) Clearly the canonical circle is the only wavefront corresponding to a
Legendrian knot which does not require a coorientation; (ii) obvious; (iii) to evolve
—&, into —®; simply consider the spacetime used to evolve ®; into ®, but with

the time direction reversed.O
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Definition 131 A past sky is any cooriented wavefront ® satifying ® < CC. A
future sky is any cooriented wavefront ® satifying CC < ®. A sky is either a past

or a future sky.

We would like to be able to characterize skies. Clearly any sky is Legendrian
isotopic (and hence isotopic) to a CC, the evolution providing the Legendrian
isotopy; however, not all wavefronts corresponding to Legendrian knots Legendrian

isotopic to the C'C are skies. To see this, we start by making the following

Definition 132 Let ® be a given a wavefront. The set E (®) defined as the un-
bounded pathwise connected component of X\ ® is called the absolute exterior of @,

and B (®) = OF (®) is called the outer boundary of ®.

Proposition 133 Let ® be a sky; then the coorientation of ® must point either
towards or away from E (®) along the outer boundary (depending on wether ® is

a future or past sky).

Proof: Suppose ® is a future sky; then ® is the intersection of the future
light cone of some point £ € M with a Cauchy surface ¥. It should be clear that
B(®) C ® C J*(z) and that E(®) N J*(z) = 0. Thus B(®) C J*(z)\I*(z),
and all null geodesics through B (®) must be moving towards E (®), i.e., the
coorientation must point towards E (®). If ® is a past sky, then —® is a future
sky and hence the opposite coorientation to that of ® must point towards E (®).O

Proposition 133 is enough to show that the wavefront in figure 8.4 is not a sky

(though it is clearly Legendrian isotopic to the CC).
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Figure 8.4: Wavefront Legendrian isotopic to the CC but not a sky

If @ is, say, a future sky, there will exist a region I (®) which is the intersection
of the causal future of some spacetime point with the Cauchy surface X. Clearly
B(®) C 9I(®) C @, and the same argument used in the proof of proposition 133

implies that the coorientation must point away from I ($) along 01 (®).

Definition 134 We shall call the above condition the P condition.

Given an arbitrary wavefront, it is not clear how one should identify I (®) (if
it is a sky). Proposition 133 gives us a necessary (but not sufficient) condition for
the P condition to hold, but the P condition itself is in general difficult to check.
It is none-the-less a condition which all skies must satisfy. Similar comments (with

obvious changes) apply when @ is a past sky.
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8.3 Reidemeister moves

The Reidemeister moves are 3 kinds of local changes in ordinary link diagrams
(usually referred to as Qs, 5 and 3 - see [PS]), not allowed by plane isotopies,

which preserve the corresponding links. They are listed in figure 8.5.

Figure 8.5: Reidemeister moves

As is well known we have the following

Theorem 135 Two link diagrams correspond to isotopic links iff one can be ob-

tained from the other by a finite sequence of Reidemeister moves and plane iso-

topies.

Proof: See, for instance, [PS].O
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Interestingly, the same theorem holds true for Legendrian links, as long as we
redefine the allowed Reidemeister moves of the wavefronts (see [CG]): in fact, we
must take into account that not only are the allowed deformations of Legendrian
links more restrictive, but also wavefronts may have cusps. Hence we have the
following changes:

2;: Here two cusps must appear in order to keep the winding number constant
(see next section);

Q,: Here dangerous self-tangencies are obviously forbidden;

{23: These are basically the same as the corresponding ordinary moves;

24: This new set of moves arises due to the existence of cusps; it can be seen
as a limiting case of (25.

The Legendrian Reidemeister moves are listed in figure 8.6.

Of these moves, only some actually occur when one evolves a wavefront, those
which we’ve signaled in the figure with an ’E’. About the allowed £}, {24 moves in

evolution, it is useful to bear in mind the following

Proposition 136 In a wavefront being evolved, cusps move at the speed of light

(in the direction specified by the coorientation).

Proof: Let ¢ be the parameter describing the initial Legendrian knot. As one
evolves the wavefront, one therefore has a set of functions z* = z' (¢, ), with ¢
being the coordinate time of the spacetime where we’re carrying out the evolution

and each value of ¢ yielding a different light ray. Whenever a cusp develops it is
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Figure 8.6: Legendrian Reidemeister moves

characterized by the condition

ozt
B (tip) =0 (8.1)

which locally yields ¢ = p(t). The velocity of the cusp across ¥ is then given by

Fl )] = G ol + G (tul) 2
= % ()

(where we've used 8.1), which is exactly the velocity of the light ray through the

cusp at that instant.O

It is initially a bit puzzling to realize that although the velocity of the cusp is

exactly the same as the velocity of the light ray through it, it is not a light ray: it
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has only contact of order 1 with the light ray (i.e., it has only the same velocity,
not the same acceleration); the light ray through the cusp keeps changing. This,
of course, is only possible due to 8.1.

Proposition 136 combined with Huygens’s principle and the fact that an evolv-
ing wavefront always moves in the direction defined by its coorientation easily ex-
plain why some of the Legendrian Reidemeister moves do not occur in the course

of evolution.

8.4 Legendrian invariants of Legendrian knots

Given that skies are Legendrian knots, it is important to consider Legendrian
invariants of knots in order to identify which Legendrian knots are skies.

An obvious invariant can be obtained by counting the number of times the
coorienting normal vector winds around itself as one transverses the knot (see
[A1]). Notice that in order for this to work it is important to have an orientation
defined on the knot (recall that for skies this is the usual orientation defined by
the right-handed orientation of the circle of initial velocities on the Cauchy surface
containing the point). More formally, let L C N be an oriented Legendrian knot.
Then L defines an equivalence class [L] € w1 (N). Since N is diffeomorphic to the
standard torus, m; (N) =~ Z. Clearly [CC] is a generator of m (N). Thus there
exists an integer ¢ = (L) such that [L] = i [CC], which for topological reasons

alone must be a Legendrian invariant.

Definition 137 The invariant i(L) is called the winding number of L.
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Notice that i(CC) = 1.

A not so obvious invariant can be obtained by counting the cusps of the knot’s

wavefront with appropriate signs.

Definition 138 A cusp is called positive if the inner product of the orienting and
coorienting vectors is positive in a neighbourhood of the cusp (at which the orienting
vector vanishes); cusp is called negative if the inner product of the orienting and

coorienting vectors is negative in a neighbourhood of the cusp (see figure 8.7).

POSITIVLE:

AN
N
N

Figure 8.7: Positive and negative cusps

Notice that the inner product of the orienting and coorienting vectors in a
neighbourhood of a cusp is just the value of the contact 1-form on the knot’s
orienting vector in a neighbourhood of the cusp’s inverse image under the natural
projection (see [Al]). Let pi (L) be the number of positive cusps of L’s wavefront,

and p_(L) the number of negative cusps.
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Definition 139 The invariant u(L) = p (L) — p-(L) is called the Maslov index

of the oriented Legendrian knot L.

It is easy to see that the Maslov index is indeed an invariant: the only Leg-
endrian Reidemeister move in which cusps are created or destroyed is 2;, and
clearly the cusps occurring in this move are of opposite signs. Also, note that
each cusp rotates the coorienting vector by m. Since it must rotate 2i(L)m, it fol-
lows that the total number of cusps p (L) + p— (L) must be even; thus, so must
u(L) = p4(L) + p—(L) — 2u—(L).

Notice that u(CC) = u(FCC) = 0.

Definition 140 A dangerous self-tangency is said to be positive if the orientation
of both tangent branches coincides, and negative otherwise. A positive crossing
occurs when after a positive dangerous self-tangency the number of double points
increases or after a negative dangerous self-tangency the number of double points

decreases. Obviously, a negative crossing occurs when the inverse happens.

Definition 141 The standard wavefronts ®;; are the wavefronts with winding
number xj and Maslov indezx +k (depending on the choice of orientation an coori-

entation) described in figure 8.8 for j, k € Ny.

Definition 142 The so-called Arnold J* invariant is defined as follows: (i) For
alli,k € Ng, J* (®ox) = =k, J* (Piy16) = —2i — k; (ii) J* increases by 2 in any

positive crossing (and thus decreases by 2 in any negative crossing).
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Figure 8.8: Standard wavefronts and Arnold’s invariant
Theorem 143 The Arnold J* invariant is a Legendrian invariant of Legendrian
knots which does not depend either on the orientation or on the coorientation of

the corresponding wavefront.

Proof: See [A1].0

Thus J+(CC) = J*(FCC) = 0.

Definition 144 If ® is an oriented cooriented wavefront, ® is the same wavefront

with the same coorientation but opposite orientation.
Proposition 145 If ® is an oriented cooriented wavefront, then (i) i(—®) =

1(2); (i) (%) = —i(®); (i) p(-®) = —p(®); () u(F) = —u(@); ()

JH(=®) = J*+(®); (vi) J* (&) = J* (®).
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Proof: All of these are trivial consequences of the definitions.OI

Definition 146 If ®,, ®, are oriented cooriented wavefronts, we define their con-
nected sum ®,#®, in the same way as is done for ordinary knot diagrams, making

sure the orientations and coorientations coincide at the junctions (see figure 8.9).

Figure 8.9: Connected sum of wavefronts

Theorem 147 Let &, ®, be oriented cooriented wavefronts; then (i) i (21#®,) =
i (01)+1(®2) =15 (i9) p (P1#P2) = p (B1) + 1 (D2); (ii1) T (21#®2) = J* (21) +

T+ (®,).

Proof: (i) and (ii) are obvious; for the proof of (iii), see [A1].O
In addition to these integer invariants, it is also possible to define polynomial
invariants, namely the Kauffman polynomial K and the HOMFLY polynomial P.

These are actually defined for any Legendrian link, and their definitions are quite
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similar, the main difference being that the Kauffman polynomial does not depend

on the wavefront’s orientation, whereas the HOMFLY polynomial does.

Definition 148 The wavefront Z; (i € Z\ {0}) is the wavefront with 2 |i| —2 cusps
and winding number i # 0 shown in figure 8.10. (Its winding number depends on

its orientation).

Definition 149 The Kauffman polynomial is the polynomial in the variables =, y*?, 21, 29, ...
defined by the following rules: (i) If ®1, ®5 are wavefronts corresponding to un-
linked Legendrian knots, K (®1 11 &5) = K (®1) K (®3); (i) K (Z;) = 2, (44i) The

local rules shown in figure 8.10.
Thus K(CC) = 2.

Definition 150 The HOMFLY polynomial is the polynomial in the variables T, y*!, z41, 242,
defined by the following rules: (i) If ®;, ®, are wavefronts corresponding to un-
linked Legendrian knots, P (®1 Il &3) = P (®,) P (®s); (ii) P(Z;) = z; (iii) The

local rules shown in figure 8.10.

Hence P(CC) = z.

It can be proved that these polynomials are well-defined and are Legendrian
invariants (see [CG]). It is not known whether they suffice to distinguish all Leg-
endrian knots, but they certainly don’t distinguish all Legendrian links, as we shall
see.

Thus we see that a sky must satisfy (4, 4, J*) = (1,0, 0) plus the P condition.

In figure 8.11 we present a list of examples of wavefronts showing that all these
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Figure 8.10: Definition of the Kauffman and the HOMFLY polynomials

conditions are independent. In each of them we have indicated which condition is
not satisfied (if any).

However, these invariants plus the P condition are not enough to completely
characterize a sky: in figure 8.12 we show a wavefront with all the right invariants
satisfying the P condition which is not a sky (as we will show in theorem 152).
Worse still, the invariants are not enough to characterize wavefronts which are
Legendrian isotopic to skies: in the same figure 8.12 we present a wavefront @
satisfying i(®) = 1, u(®) = 0, J* (®) = 0 but whose Kauffman and HOMFLY

polynomials are respectively

K(®) =z (:1:2 + x2y2) + 23 (wy — y2) — yz12o
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Figure 8.11: Examples of wavefronts

and

P ((p) =2 (5122 + .’1323/2) + yz129

instead of z; (and therefore is not Legendrian isotopic to a sky).

A better way to proceed is then to analyze carefully the formation of skies.

8.5 Formation of skies

As we have seen previously, the problem of deciding whether a given wave-
front is a sky is highly nontrivial. Instead of dwelling on this problem, let us
assume that we are given a sky, i.e., a wavefront which has evolved from the CC
in some Lorentzian metric (here we consider only future skies without any loss of

generality). Let us then consider in detail how this happens. Aside from moving
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(i,p)3) =(1,0,0); (£,497) =(1,0,0);
SATISFIES P CONDITION ; NOT LEGENDRIAN 1SOTOPIC
NOT A SKY. TO A SKY.

Figure 8.12: Counterexamples

(eventually crossing itself), the only other change the evolving wavefront can go
through is the Legendrian Reidemeister move €, of which evolution allows only
two kinds (indicated in figure 8.6), corresponding either to the creation or the

destruction of two cusps.

Definition 151 The segment of wavefront occurring in the Legendrian Reidemeis-
ter move () allowed by evolution which creates two cusps will be called a left twist;

the segment in the move which destroys two cusps will be called a right twist.

The reason for these names is shown in figure 8.13: these segments of wavefront
are the projections of left or right twists of the corresponding Legendrian knots.
We emphasize the point that only two of the four possible Legendrian Reide-

meister moves ); actually occur through evolution in the following
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Figure 8.13: Left and right twists

Theorem 152 The only Legendrian Reidemeister moves 0y occurring in evolution

are creation of left twists and destruction of right twists.

Proof: Huygens’s principle clearly implies that right twists cannot be created
on the portions of a future sky which are part of the boundary of the causal future
of the point corresponding to the sky. Because the creation of a right twist is
a local issue, we can always assume that the segment of wavefront where it is
created is actually part of such a boundary. Thus evolution cannot create right
twists. Because a right twist is minus a left twist, this is equivalent to saying that
evolution cannot destroy left twists.O

A generic future sky is a circle (the outer boundary) with a finite number of
double points. Each double point is the projection of two points in the sky, which

split the sky into two subsets, one of them containing the outer boundary.
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Definition 153 We shall call the subset of a future sky arising from a double
point in the outer boundary in this way and not containing the outer boundary a

pendant.

The two basic mechanisms for forming pendants are overlaps (e.g., as in Schwarzschild
(2+1)-spacetime) and growing cusps (e.g., the optical (2+1)-spacetime correspond-
ing to a thickening sphere). Clearly pendants are never in the absolute exterior of
the sky. Whenever a cusp forms, both sides of it are in the causal future of the
spacetime point; whenever an overlap forms a region not in the causal future will
appear inside the outer boundary. Obviously one can use the same reasoning to
divide a pendant into subpendants; in that respect a pendant is like a tree. See

figure 8.14 for an example.

Figure 8.14: Example of a sky as a tree of pendants



CHAPTER 9

Results for (2+1)-spacetimes

9.1 Low’s conjecture revisited

Recall that Low’s conjecture states that if (M, g) is a globally hyperbolic (2+1)-
spacetime with Cauchy surface diffeomorphic to a subset of R2, and N is its man-
ifold of light rays, then two spacetime points z and y are causally related in M iff
their skies X and Y either intersect or are linked in .

We already know that if X and Y either intersect or are linked in N then z
and y must be causally related. Suppose that z and y are causally related and that
their skies do not intersect. Then one has, say, t(z) < t(y). Let ¥ be a Cauchy
surface through y so that X projects to & as a future sky (which we will also call
X) and Y as a point {n} = CC. Then 7 lies inside the outer boundary of X.
If it does not lie in any pendant, the winding number of X around 7 is 1, and
X and Y are linked. Suppose that 7 lies in one or more pendants, and consider
how such pendants were formed. If all pendants arose from the wavefront crossing
itself, then it is easy to see that the winding number of X around 7 is n, where n
is the number of times that n was hit by the wavefront evolving from a C'C into
X (and thus by hypothesis n > 1). Thus X and Y can only be unlinked if some
of the pendants were generated by creating left twists or destroying right twists.

Notice that both these operations involve left twisting; never in the formation of
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any pendant is one allowed to do right twisting. It is because of this that one

suspects that Low’s conjecture must be true.

9.2 Results using the Kauffman polynomial

Unfortunately, it is not easy to turn this insight into the relationship between
left twisting and Low’s conjecture into a proof of the latter. However it can be

used to prove Low’s conjecture for a large class of examples.

Definition 154 Let ny1, ..., M1k, 721, <oy M2kyy - Pornly ooy Mk, € N. Let z,y € M

withy € I™(z). Then (X,Y) is said to be a pair of skies of type

i N921 o1

N1k, N2ky - Mk,

if XITY admits a link diagram as shown if figure 9.1 (when embedded in R3 through

the standard diffeomorphism).

It is easy to see how such skies may form, each double point of X corre-
sponding to two cusps in its projection on a Cauchy surface ¥ through y. Thus
for instance the pair of skies with linking number 0 we considered in the optical
(2+1)-dimensional spacetime containing two thickening spheres is a pair of skies
of type (2).

We now prove that such skies are always linked. In order to do this we must

recall the following



125

Figure 9.1: Skies of a given type

Definition 155 The bracket polynomial < A > of a link diagram A is the poly-

nomial in the variables a*' defined by the rules shown in figure 9.2.

Notice that the bracket polynomial does not depend on the orientations of the
link, a fact that we will use to our advantage. The bracket polynomial is not a
link invariant, but can be used to build a link invariant. In order to do so we must

define

Definition 156 A crossing in a link diagram is said to be positive or negative
according to whether the branch going rightward goes over or under the branch
going leftward (right and left being defined with respect to the orientations of the

branches; see figure 9.3).
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0 XD D> OO
(ii) </\ 1 O> = _(a‘+a'2)</\>

(ii1) £ O > =1
Figure 9.2: Definition of the bracket polynomial

Definition 157 The writhe number w(A) of a link diagram A is the sum of the
signs of all crossings (where the sign of a crossing is +1 according to whether it is

positive or negative).

Definition 158 The Kauffman polynomial of a link L is
K(L)=(—a)*®W <A >

where A is any link diagram for L.

Theorem 159 The Kauffman polynomial is a link invariant.

Proof: See [PS].

The Kauffman polynomial is related to the Jones polynomial in one variable

_1
4,

through the variable change a = g
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NEGATIVE:

Figure 9.3: Positive and negative crossings

To prove that skies of the type we are considering are always linked we compute
certain invariants obtained from the Kauffman polynomial. In order to do so we

shall need the following
Theorem 160 Let A,,, Ay, A_1 be as in figure 9.4. Then

(Ay) =a™ (A_;) — (a4 + a—4) i(_l)—S(n—i)a—3n+4i—2 (Ao) -

i=1

Proof: We prove this result by induction. For n = 1 all there is to prove is
(A]_) =a (A_1> - (a4 + a’4) a"l (A()) .

This is a simple application of the rules defining the bracket polynomial and
is done in figure 9.5.

As for the inductive step, our formula yields

(An) = aa™ (As) = (at+ a7) S (-1) S 0amsmri? ()

1=2
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0?
)
g

Figure 9.4: Basic link diagrams

_ (a4 + a—4) (_1)—3(n—1)a—3n+2 (Ag)
n—1
= ala™? (A—l) _ (a4 + a—4) Z(_1)—3(n—1—j)a—3(n—1)+4j—2 <Ao)
j=1

s (a4 + a—4) (__a)—3(n—1) (A())

= a(An) —a7! (a* +a7™) (—a) 3D (A)
and hence all that must be proved is
(M) = a (A1) — a7 (a* +a7) (—a) 3D (A) .

This can be done much as the n = 1 case; we do so in figure 9.6. The last step

in the proof is justified in lemma 161.0

Lemma 161 Let K, be the link diagram shown in figure 9.7. Then (K,) =

(=a)™"™ (Ko)-
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A = <.ﬁi’:_§_... > - a<.’."%§;,> s (CHD
<_O_> - a<J(>_> ' o <\9_> - & < JOL>

< [ca (e va- @) [Lmym - (@) ()

Figure 9.5: Proof forn =1

Proof: Choose any orientation on K,, (and hence on Kj). Clearly w (K,,) =
w (Ko) — m. Since K,, and Kj are link diagrams for the same link (going from
one to the other involves only Reidemeister moves §2;), they must have the same

Kauffman polynomial, and hence

K(Kn) = K(Ko) & (—a)™) (Kp) = (—a) 1) (Kq)
o (_a)—3w(Ko)+3m (Km> _ (_a)-—3w(Ko) (Ko)
& (Km) = (=)™ (Ko).O
Notice that it is in this lemma that the left twisting comes into the proof.

We will be only interested in the terms of higher and lower order of bracket

polynomials. It is therefore useful to keep in mind the slightly simpler (if less
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3+ A5 TS+ oS

- a </\-n-1> _ a.1<a4+a_'«) <\§ > _
s

e —

s

-3 (h-1)
= q</\.n_,> - a (CL4+ a-‘*) (-a) <Ao>

Figure 9.6: Proof for the inductive step

accurate) formula given in theorem 160:

(An) = a™ (A_y) + @™ (Ag) £ ... £ a~*""2 (A) (9.1)

Definition 162 Let 11, ..., kg, M21, oy M2kyy oy Toanly ooy Nemk, € N. We shall de-

note by

Mk, N2k, ... Nk,

the standard link diagram for the link of such type (depicted in figure 9.1). Also,

we shall also allow n;,, to assume the values 0,-1 with the meaning described in

figure 9.4.
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Figure 9.7: Definition of K,
Theorem 163 Let ny1, ..., M1k, , M1,y -y M2kyy -oy Pernly -vy Pomky, € N Then

ni1 N9y NMm1

< > — :i:CLN+2k+4:t L+ a—3N—2k—4

Tk, T2ky -+ Mk,

where

m ki
N=3> nj

i=1j=1

is the total number of double points and

is the total number of subpendants of the knot diagram of X.

Proof: It should be clear that (0) is a link diagram for the Hopf link and (—1)

is a link diagram for the unlink, and hence

(0) = —(a*+a™);
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Consequently formula 9.1 yields

((n) = a™((=1)) £a""((0)) £ ... £a7"7*((0))

= "0+ .. +q3 8

and the theorem’s conclusion holds in this case.

Next, we notice that

m

(™)) = co™

= —(—a)™™ (a4 + a_4>

:tal—3’n.1+4 :*: a—3n1—4

Consequently, one can ignore the corresponding term in formula 9.1,

n
< 1 > — :Ean1+n2+8 + . ia—3n1—3’n2—8.

g

and again the theorem’s conclusion holds. In general, one has

m
ni
MNE—1
Nk-1
0
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and consequently
n

< > _ :tan1+...+'n,k_1+2k+2 :t :t a—3n1—...—3nk_1—2k—2

NE—1

From lemma 161, on the other hand, one gets

ni
131

(| )= o] )

Ng—1
Ng—2

. ian1+...+nk_2—3nk_1+2lc + .. :*:a—3’n.1—...—3’n.k_.1—2k

and again one can ignore the corresponding term in formula 9.1, thus getting

n

< > = :tan1+"'+nk+2k+4:t :ta—3n1—...—3nk—2k—4.

Ng—1

This proves the theorem for m = 1. For m > 1 the proof easily follows (by

using the exact same reasoning) from the observation that

i1 .. TNmi 0 11 ... Nm1 —1 ny1 ... Nm1

N1k, -« Tink, Nk, -« MNmk,, N1k, -« Nmk,

and that consequently one can go on ignoring the first term in formula 9.1.0
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Theorem 164 Let Ny, ..., iky s 21y vy M2kyy ooy By -0, Bk, € N, and (X,Y) be

of type
nina N21 ... 7Nma
Nk, 7’L2k2 veo Nk,
Then
K(XHY) — :}:a4N+2k—61+4 + . :i:a—2k—61—4
where

| = link(X,Y).

Proof: We just have to compute the writhe number of the standard link dia-
gram for the link X ITY (depicted in figure 9.1). There are two kinds of crossings
in this link diagram: those involving only the knot diagram of X (NN of them, all
corresponding to negative crossings) and those involving the two knot diagrams.
It is a well known fact that the sum of the signs of the latter crossings is equal to

twice the linking number of X and Y. Consequently, the writhe number is

w=—-N+42]
and hence
mi1 N N'm1
kny) = o (| Lo |)
Nk, Noky - Tmkn,

_ (_a)SN—Gl (:taN+2k+4 L+ a—3N—2k—4)

:ta4N+2k_6l+4 + .+ a—2k—6!—4.D
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Corollary 165 Let 111, ..., Wik, T21, coey M2kg s ooy Tomly ooy Pk, € N, and (X,Y) be

of type

nlkl n2k2 ’I’Lmkm

Then X and Y are linked.
Proof: If | # 0 then obviously X and Y are linked. If [ = 0 then
KXTY)=da* N2+ 4 £a724 £ g2 — g2

and consequently X I1Y is not the unlink.O
Since both link(X,Y’) and the exponents of the terms of higher and lower order

of K (X 1Y) are clearly invariants of X I1Y, one can in fact conclude that

Corollary 166 Let n11, ..., M1ky, 21,y -y M2kyy oy Bemly -y Pk, € N, and (X,Y) be

of type
n1 N2 Mm1
nlkl n2k2 oee nmkm
Then
m kg
N=3) > n
i=1 j=1
and
m
k=Y k
=1

are invariants of X I1Y .
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Thus not only are all skies of the type we have considered linked, but also pairs
of skies with different values of N and & form non-equivalent links. See figure 9.8

for some examples with zero linking number.

5 (N=2) ) 8 (N=4)
@J [@]

D Mi [? Doy,

Figure 9.8: Pairs of skies with zero linking number forming non-equivalent links

OO

@

This method can be successfully employed in some generalizations of the skies
we have considered. For instance, it can handle multiple subpendants and a pen-
dant overlapping itself. Unfortunately, it is hard to see how it can handle generic
skies.

As we said, the bracket polynomial (and hence the Kauffman polynomial when
calculated through it) is especially amenable to the kind of computations we have
to do, because it is local and orientation-independent. Using the usual definitions

of the Kauffman (or other) polynomial in terms of skein relations turns out to be
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less fruitful, as one must continuously worry about related knots and orientations.

See [L] for such computations using the Conway polynomial.

9.3 Results for static spacetimes

Let (M, g) be a globally hyperbolic (2+1)-dimensional spacetime with manifold
of light rays N and =z € M. Part of the problem one encounters when trying to
prove Low’s conjecture is how to identify the intersection of the causal future of
x, say, with a Cauchy surface ¥. As with so many other properties of skies, there
doesn’t seem to be any way to do this just by examining X (or its projection on
%, i.e., the intersection of the null cone of z with X); one has to take into account
the formation of the sky. In the static case and subject to a single simplifying
assumption it is then possible to make progress, as we shall see in theorem ?7?.

Let {t, xi} be a standard coordinate system such that ¢(z) = 0 and & = ¢~ (0).
Let X, be the (Cauchy) level surface {t = 7}, and let us employ our standard trick
of using the integral lines of % to identify all such surfaces (hence obtaining a
projection function p : M — X). If ®. is the intersection of the null cone of z with
Y., define ¥, = p(®,). Each curve ¥, C ¥ defines (and can be thought of as) a

(Legendrian) curve on the manifold of light rays.

Definition 167 The causality surface of z with respect to this standard coordinate

system s the set

0<7<1

Notice that this surface is really a (in general self-intersecting) band, whose
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boundary are two closed curves. One of them is ¥y = p(z), which is an integral
line of %; the other one is ¥; = X. It is interesting to see that this surface is
much like a blow-up of the portion of the future null cone of = to the past of X.
Indeed, any null geodesic through x defines a point in each of the curves ¥, and
hence defines a curve on C(z). This curve is simply the lift to N of the projection
of the null geodesic on ¥.

The importance of the causality surface lies in the following
Proposition 168 Lety € &; theny € J* (z) if Y NC(z) # 0.

Proof: This is an immediate consequence of our definitions and the fact that
we used a standard coordinate system.O

Thus the causality surface provides us with a geometric structure on N which
allows us to tell whether points on ¥ are causally related to z. However, this is
not without its problems: first of all, it depends quite strongly on the standard
coordinate system used to construct it (although the conclusion of proposition
168 is itself coordinate-independent); and secondly it is in general a complicated
surface, with self-intersections (which generally depend on the choice of standard
coordinates).

Interestingly, both these problems are avoided when one considers static space-
times only. Indeed, such spacetimes clearly have a canonical system of standard

coordinates, namely the one in which % is the timelike Killing vector field.

Definition 169 If (M, g) is a static (2+1)-dimensional spacetime, then the causal-

ity surfaces constructed using this canonical standard coordinate system will be
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called canonical causality surfaces.

These canonical causality surfaces turn out to have quite nice properties:

Proposition 170 Canonical causality surfaces can only self-intersect along spa-

tially closed null geodesics.

Proof: 1t is easily seen that a self-intersection of any causality surface C(z)
arises from two null geodesics through z whose projections on ¥ are tangent at
some point. But for static spacetimes in the canonical standard coordinate system,
the projections of null geodesics on ¥ are geodesics of the light metric on ¥, and
hence projections of different null geodesics cannot be tangent. Notice however
that the projection of the same null geodesic can be tangent to itself at different
points, corresponding to a closed geodesic of the light metric. These are the only
kind of allowed self-intersections of canonical causality surfaces.O

For instance, in the Schwarzschild static (2+1)-dimensional spacetimes the
canonical causality surfaces of points in the surface {r = 3M} all develop self-
intersections if sufficiently extended. In fact, only the canonical causality surfaces
of these points do develop self-intersections, as they are the only points on a spa-

tially closed null geodesic.

Definition 171 A static (2+1)-dimensional spacetime such that its light metric
admits only a finite number of closed geodesics will be called a regular static space-

time.
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Proposition 172 Let (M, g) be a regular static (2+1)-dimensional spacetime, and
z,y € M such thaty € J* (z) and X NY = 0. Then if the canonical causality
surface C(z) has self-intersections there exists a point z € M such thaty € J* (2),

ZNY =0, ZUY is equivalent to X 1Y and C(z) has no self-intersections.

Proof: Notice that any closed geodesic of the light metric on ¥ is necessarily
compact. Since only a finite number of such geodesics exist, it is clear that for
any € > 0 there will exist points on B, (p(z)) which do not belong to any such
geodesic. Thus we can always choose a point z with (say) ¢t (z) = ¢(z) and such
that p(z) € B (p(z)) does not belong to any closed geodesic of the light metric.
Clearly for € > 0 sufficiently small z satisfies the requirements listed above, and
since p (z) does not belong to any closed geodesic of the light metric C(z) has no
self-intersections.O

Thus we shall assume from this point on that canonical causality surfaces do
not self-intersect. In other words we are restricting ourselves to regular static
(2+1)-dimensional spacetimes. Specifically, for the remainder of this section,
(M,g) will be a regular static (2+1)-dimensional spacetime, z,y € M will be
such that such that y € J* (z) and X NY = ( and the canonical causality surface
C(z) has no self-intersections.

Recall that

cw) = U v,

0<7<1

where the curves W, are lifts to N of curves on ¥ which in general self-intersect

and contain cusps. It is perhaps puzzling then that a canonical causality surface
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manages not to develop self-intersections. To see how this happens in a simple
case consider an ellipse with the coorientation pointing inwards and evolve it in
Minkowski spacetime. As is well known, the resulting curves at a given evolution
time will develop self-intersections and cusps; however, because each light ray
corresponds to a single direction (which remains constant throughout evolution),
these will never meet on N and the union of the lifts to N of all these curves will
never intersect.

Because C(z) is ruled by the lifts of geodesics of the light metric, we can
parametrize it through g : [0,27) % [0,1] — N, g (yo,t) meaning the endpoint of
the lift of the geodesic of the light metric with initial conditions (p(z), o) and
evolved for a time ¢. Indeed, if 7 : N — % is the canonical projection, then , g*%
is the (unit) tangent vector to the corresponding geodesic of the light metric, and
hence g*% cannot vanish; on the other hand, w*g*% is clearly a Jacobi field and
although it can vanish at conjugate points g*a% certainly cannot, as this would
correspond to infinitesimally close geodesics of the light metric becoming tangent
(i.e., to the derivative of the Jacobi field vanishing at a zero of the Jacobi field).

Since g*% and g*g% are clearly globally defined, one has
Proposition 173 C(z) is an embedded oriented submanifold of N with boundary.

Consequently C(z) is two-sided. Notice that there exists a neighbourhood of

Uy on C(z) such that a—‘?; is only tangent to C(z) on that neighborhood at ¥,.

Definition 174 The side of C(z) through which the flow of % is positive in that

neighbourhood is said to be the positive side of C(z). The other side of C(z) said
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to be the negative side of C(z).

Remember that because y € J* (z), Y intersects C(z). It is easy to see that ¥V’
can only be tangent to C(z) at a conjugate point of the geodesic of the light metric
through that intersection, and one can easily exclude that case by moving y slightly
on Y. Because Y has an orientation, one can then decide at each intersection

whether Y crosses C(z) from the negative to the positive side or vice-versa.

Definition 175 An intersection of Y and C(z) is said to be positive if Y crosses
C(z) from the negative to the positive side, and negative if Y crosses C(z) from

the positive to the negative side.

Recall that we can always assume that N C R® by using the standard diffeo-

morphism.

Proposition 176 The sum of the signs of the crossings of C(z) by Y equals

link(X,Y).

Proof: This is obvious from the fact that C(z) can easily be turned into a (self-
intersecting) surface with boundary X by adding disk with boundary ¥, which does
not intersect Y.O

We want to prove that X and Y are linked. If link(X,Y) # 0 we know this
to be true, so we assume from this point on that link(X,Y) = 0. It follows from
proposition 176 that Y intersects C(z) in 2n points (n € N), n of the crossings
being positive and n negative. Each of these crossings is connected to ¥y by a (lift

of a) geodesic.
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Definition 177 The positive/negative push-off of a (non-self-intersecting) curve
on C(x) is the curve obtained moving each point of the curve a small distance

transversely to C(x) in the positive/negative side.

We now deform X IIY as follows: first we deform Y into a curve ¥ obtained
deleting the intersections of Y with a neighbourhood of the crossings, joining it
with the positive and negative push-offs of the corresponding geodesics and joining
these in a neighbourhood of ¥y in such a way that ¥ does not intersect C(z). Then
one reverses the evolution to deform X back into ¥o = X. (See figure 9.9).

This has the advantage that to understand our link we basically only have
to consider two integral lines of % and 2n geodesics. Let us then consider the
behaviour of the geodesics on C(z) in more detail.

The natural projection 7 : N — X obviously restricts to a projection 7 :
C(z) — X. If one uses the coordinates (¢p,t) on C(z), then as we have discussed
7!'*% is the (unit) tangent vector to the corresponding geodesic, and 7"*5%5 is clearly
the Jacobi field associated with the congruence of geodesics through z. Hence the
singular points of the projection 7 : C(z) — ¥ are the conjugate points of all these
geodesics. Since (m%, ﬂ'*%) clearly reverses orientation at a conjugate point, it
is easy to see that the curves formed by conjugate points on C(z) correspond to
folds of this surface with respect to the projection. In other words, these are the

points at which a% is tangent to C(z), and therefore the positive and negative sides

of C(z) reverse orientations with respect to %.

Definition 178 The set of all conjugate points of the geodesics in ¥ are said to
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Figure 9.9: Deformation of X IIY into X II Y.

be the caustics of the congruence.

Hence the folds of C(z) project down to caustics on ¥. Consequently, when a
geodesic in C(z) goes through a conjugate point its projection on ¥ hits a caustic
but does not cross it. Because the geodesic has an orientation, we can decide if the
caustic is to its right or to its left at the conjugate point. If it is to its right, then
the geodesic must curve to the left with respect to the caustic, and therefore its
lift goes from the under to the upper part of the fold (as its ¢ coordinate increases
more rapidly than that of the fold); if it is to its left, then the geodesic must curve
to the right with respect to the caustic, and therefore its lift goes from the upper
to the lower part of the fold. (Here upper and lower are taken with respect to the

"vertical” defined by %). Notice that in both cases the push-offs of the geodesic
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Figure 9.10: Geodesics through y in the 2 thickening spheres optical (2+1)-

spacetime

twist through 7 in the negative direction with respect to the orientation of the

geodesic.

Thus we have proved

Proposition 179 The link XIIY ~ X I1Y can be obtained as follows: thicken
each geodesic going from x to y slightly along the % direction and extend it slightly
past z; add as many half-twists to the ribbon thus obtained as there are conjugate
points on the geodesic, in the negative direction with respect to the orientation of
the geodesic; twist the ribbon slightly in the same direction at X so that they become

transverse; join the boundary of the ribbon to Y and delete their intersection.
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¢

Figure 9.11: Link diagram for X IT Y.

As an example, we draw the link diagram for the skies with zero linking number
in the (2+1)-dimensional optical spacetime for two thickening spheres. To do so, we
must first obtain the set of geodesics going through y; we have done so numerically,
and show a sketch of them in figure 9.10 (it turns out that there are four geodesics
through y, two going through one conjugate point and two with no conjugate
points). Next we simply follow the procedure of theorem. We do so in figure 9.11

and show it to be in fact a link diagram for the Whitehead link.

We can use these ideas to prove the following

Proposition 180 Suppose that the geodesics going from = to y are such that their

lifts are contained in a set of the form {po < @ < o+ 27} C N. Then the link
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XY ~ X11Y is not the unlink.

Proof: Notice that ¥ spans a fairly obvious disk D, comprising the ribbons
and a disk spanned by Y. If X I1 Y were the unlink, then X would span a disk
C which Y would not intersect. However, since X does intersect D, the two disks
would intersect.

Clearly the linking number of X11Y is the sum of the signs of the intersections
of X with D, where we give D an orientation compatible with the orientation of
Y. Thus if X I1Y were the unlink there would be an even number of geodesics
connecting z and y, half with an even number of conjugate points and half with
an odd number of conjugate points. On the other hand, it is clear C N D would be
formed by disjoint curves connecting one positive and one negative intersections
of X with D (because of the relative orientations).

Now consider the push-off of one of these intersections curves a from D along,
say, C (which is transverse to D along the intersection), in the direction of the
side of D connected by X in the region {py < ¢ < @g + 27} (see figure 9.12). Now
o plus the segment of X joining its ends is a closed curve f3; so is the push-off
of a plus the same segment of X slightly displaced along C, . Because 7 spans
a surface which is not intersected by S (part of C), their linking number should
be zero. However, since § must follow the two ribbons, it is easy to see that
link(B,v) = —3 (n+1) < —1, where n is the total number of conjugate points
along the two geodesics generating the ribbons. Thus the assumption that X1y

is the unlink leads to clear contradiction.O
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Figure 9.12: Definitions of 8 and ~

The condition in proposition 180 is useful in the proof, but looks rather un-
natural. It is therefore not surprising that it can be removed. The reason is as
follows: the argument in the proof of proposition 180 depends basically on the
fact that the twisting of the ribbons arises solely due to the conjugate points of
the corresponding geodesics. One might think that the ribbon of a geodesic not
contained in a region {yp < ¢ < o+ 27} C N would pick up positive twisting
as the geodesic’s tangent vector rotates through 27. In fact it does, but this is
exactly canceled by the negative twisting arising from the ”belt trick” (see figure
9.13). Consequently the net twisting of the ribbon is the twisting arising from the
conjugate points, and the argument in the proof of proposition 180 applies to all

geodesics. Thus we have proved
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D
X
b

Figure 9.13: Cancelling of twisting

Theorem 181 Let (M,g) be a regular static (2+1)-dimensional spacetime with
Cauchy surface diffeomorphic to R?, and let N be its manifold of light rays. Then
two spacetime points are causally related in M iff their skies either intersect or are

linked in N.

In fact we have proven the slightly stronger assertion that we got linking in R3

under the standard diffeomorphism.

9.4 Legendrian link invariants

Obviously, Low’s conjecture implies in particular that two spacetime points
z and y are causally related in M iff their skies X and Y either intersect or are

Legendrian linked in NV (because we know that the skies of two non-causally related
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spacetime points are always Legendrian unlinked). One could think of trying to

prove this result directly using Legendrian link invariants.

Definition 182 Arnold’s J* invariant can be extended to include links by setting

JY(LUK)=Jt(L)+ J* (K) for any two unlinked Legendrian links L and K.
Proposition 183 If X andY are nonintersecting skies, J* (X 1Y) = 2link (X,Y).

Proof: By a judicious choice of the Cauchy surface ¥ one can always assume
that Y is a CC, which can be deformed either into a small FCC or a small PCC
as required. Notice that both the FCC and the PCC have the same (counter-
clockwise) orientation. One can imagine unlinking X and Y by taking the CC
along a path out to infinity. Each time the path crosses the wavefront ® = 7 (X)
a dangerous tangency will occur. At each such tangency we deform the C'C either
into a small FCC or a small PCC in such a way that the dangerous tangency
occurs as the circle first touches the wavefront. Then the crossing will be positive
if the orientation of the wavefront is to the left of the path, and negative if it
is to the right. If n, is the number of positive crossings and n_ the number of
negative crossings, we'll have J* (X II1Y) = 2n, — 2n_; but on the other hand
clearly n, — n_ is the winding number of ® about the path’s endpoint.O

Thus Arnold’s J* invariant is not enough to conclude that causally related
points yield Legendrian linked skies. The Kauffman and HOMFLY polynomial
invariants do distinguish between the Whitehead which arises in the 2 thickening
sphere (2+1)-spacetime from the trivial link, but only after a very long calcula-

tion, and do not appear to be usable in the general case. They certainly do not
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distinguish all links, as they are symmetric in their components, whereas we know
from theorem 105 that this is not always the case.

One might wonder why is it that for (2+1)-dimensional spacetimes causality
appears to correspond to topological linking whereas in the (3+1)-dimensional case
it appears to correspond to Legendrian linking. In this regard, it is interesting
to note that it is possible to prove that two Legendrian knots in ST (R?) are
Legendrian linked iff they are topologically linked as long as one of them as index
i = 0 (E. Ferrand, private communication). It is not known if this extends to the
case when both the knots are skies and hence both have index 7 = 1. Notice that
we have reasons to believe that in the (34-1)-dimensional case this is not so, as we
expect Legendrian linking to correspond to causality and we can produce skies of
causally related points which are nonetheless unlinked.

An immediate consequence of either Low’s conjecture or its (possibly weaker)

Legendrian version would be the following

Corollary 184 Let ® be a future sky corresponding to the spacetime pointx € M;
then ® uniquely determines the points in the Cauchy surface ¥ O ® which are in

the causal future of x.



CHAPTER 10

Results for (3+1)-spacetimes

10.1 An example

Definition 185 The Legendrian isotopy ®; : [0,1] x N — N is said to undo the
Legendrian link X Y if n (@1 (X)) and 7 (@1 (Y)) are separated by a plane on
¥~ R3.

Proposition 186 The Legendrian link X 1Y can be undone iff it is the unlink.

Proof: If X I1'Y is the unlink then by definition there exists a Legendrian
isotopy @, : [0,1] x N — N such that 7 (@, (X)) and 7 (P4 (Y)) are two distinct
points of 3, and hence it can be undone; on the other hand, if XITY can be undone
then because both X and Y can be separately deformed through a Legendrian
isotopy into fibres of ¥ x S$? & N it is not hard to construct a Legendrian isotopy
®,; :[0,1] Xx N — N such that 7 (®; (X)) and 7 (®, (Y)) are two distinct points of

3.0

Proposition 187 If the Legendrian link X I1Y is the unlink then it can be undone
by a Legendrian isotopy ®; : [0,1] X N — N such that 7 (®; (Y)) = 7 (Y) (i.e,

which fizes Y ).0O

Proof: Take any Legendrian isotopy ®; : [0,1] x N — N which undoes X IIY,

and consider the set

A= | &(Y).

te[0,1]
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Clearly A (and hence 7 (A)) is compact. Now extend & simply by moving
7 (®; (X)) away from 7 (A) in such away that 7 (@, (X)) and 7 (A) are separated

by a plane. Call this new isotopy (suitably reparametrized) ¥. Then ¥ undoes

XIIY and

U (X)NT,(Y)=0

for all t € [0, 1]. Finally, use the Legendrian isotopy extension theorem to construct

a Legendrian isotopy Z; : [0,1] X N — N satisfying

Z (T (Y) = T, (Y);

2 (0 (X)) = T (X).

Then =,_; o ¥, undoes X I1'Y and fixes Y.O

We now return to the skies of the points z and y of the optical (3+1)-dimensional
spacetime containing one thickening sphere. Recall that these satisfy y € J* (z)
and yet X and Y do not intersect nor are linked. Recall also that there exists
a Cauchy surface ¥ such that the projections 7 (X) and « (Y') are the revolution
surfaces about the z-axis generated by the curves shown on figure 5.1 (7 : N - &
is the natural projection). Our objective is to prove that X and Y are Legendrian

linked.

The two following propositions are almost immediate:

Proposition 188 The Legendrian link X I1'Y cannot be undone in such a way

that m (X) and m (Y) remain revolution surfaces about the z-azis.
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Proof: This is immediate from the observation that any Legendrian deforma-
tion such that = (X) and 7 (Y') remain revolution surfaces about the z-axis can
be thought of as a Legendrian deformation of the lifts of 7 (X) N {z = 0} and
7 (Y)N{z = 0} to ST*R?. But we know that this Legendrian link in ST*R? is not

the trivial link: in fact, the linking number is not even zero.O

Proposition 189 The Legendrian link X I1'Y cannot be undone in such a way

that m (X)) and m (Y') remain smooth surfaces.

Proof: Recall that any smooth isotopy of ¥ yields a Legendrian isotopy on N.
In particular if the Legendrian link X ITY could be undone in such a way that
7 (X) and 7 (Y) remained smooth surfaces, one could, through composition with
a suitable smooth isotopy, find a Legendrian isotopy such that 7 (X) remained a
smooth surface and 7 (V') remained a spherical surface ({r = 1}, say). Now let X;
(t € [0,1]) be the Legendrian deformation of X corresponding to such an undoing.

Because 7 (X;) is compact we can define
p(t) = min{r (§) : £ € w (X;)}

and it is clear that p(0) < 1, p(1) > 1. Since p is clearly continuous, there
must exist t* € (0,1) such that p(¢*) = 1. Take the compact manifold 7 (X;.);
the restriction to it of the radial distance function r : R® — R is clearly C*, as
r > 1 on the submanifold. Let £ be the point of 7 (X;+) at which the minimum is

attained; then clearly the outward pointing normal vector n to 7 (X;+) at £ satisfies

n=-Vr
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and since —Vr is exactly the coorientation of 7 (Y') we see that X;+ and Y intersect.
(Notice that because we are assuming that m (X;) remains a smooth manifold its
coorientation must always be the outward pointing normal).O

Notice that initially 7 (X) and 7 (Y) are spheres, and their intersection are two
circles which divide 7 (Y') in three connected components. Call the component
further away from 7 (X) the far component of n (Y) (and similarly for the far

component of 7 (Y)). Then a not so obvious result is

Proposition 190 Let ®;: [0,1] x N = N be a Legendrian isotopy which fizes Y
and such that (i) there exists a point € € w (Y') on the far component which is not
on (P, (X)) for all t € [0,1], and (i) 7 (2, (X)) N7 (Y) is either two disjoint

circles, one single circle, or the empty set. Then ® does not undo X I1'Y.

Proof: Under the conditions above we can think of 7 (Y) as a plane (the point
at infinity being ). For definitiveness let this plane be the {z = 0} plane, and let
the far component of 7 (X) be contained in {z > 0}. Then the coorientation of
7 (Y) is simply —£. In general, the surface 7 (®; (X)) N {z < 0} will be homeo-
morphic to an immersed annulus. Thus at each ¢t € [0, 1] the coorientation defines
a map from the annulus to $? C R3, to which we shall refer to as the Gauss map.
Notice that because ®; (X) is a Legendrian manifold all the Gauss maps must be
continuous. The condition that X and Y should not intersect is then the condition
that the Gauss map should not map any point on the boundary to —;% (points on
the interior can obviously be mapped to any point of $2). For instance, initially

the Gauss map maps the boundary of the annulus to lines of constant latitude
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on S?, and each radial line of the annulus to a segment of a meridian through
_a% joining these two lines. Hence an infinite number of points in the annulus is
mapped to —% by the Gauss map, and it is easy to see that these points form a
circle parallel to the boundary (it is the circle where the function z : 7 (X) - R
attains its minimum).

It is easily seen that we can assume that the two circle forming the boundary
of the annulus are mapped to the equator, say. Now under our assumptions the
only way of undoing the link would be to somehow 7 (®; (X)) N7 (Y') collapse to
a circle on {z < 0}. This would mean that the original Gauss map would have to
be homotopic to a map mapping the annulus to the equator (in the class of maps
from the annulus to .S? mapping the boundary to the equator). But these maps
are clearly non-homotopic (for instance, if they were one could easily construct a
homotopy showing that 2 = 0 on 7, (5?) = Z).O

Thus we have some reasons to believe that X I1Y is indeed Legendrian linked.
Unfortunately, a complete proof could not been obtained. However, the fact that
the initial Gauss map above is not homotopic to the equator seems to indicate that

a fundamental obstruction to the undoing of the link does indeed exist.

10.2 A conjecture

The example of the previous section naturally leads us to the following

Conjecture 191 Let (M, g) be a globally hyperbolic (8+1)-spacetime with Cauchy

surface diffeomorphic to a subset of R3, and let N be its manifold of light rays.
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Then two spacetime points are causally related in M iff their skies either intersect

or are Legendrian linked in N.

This is a natural extension of Low’s conjecture for (2+1)-dimensional space-
times, and appears to be true for at least some cases. However, a proof appears to

require new methods of contact topology.
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