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Abstract

This report is about Witten’s proof of the positive mass theorem and it was done in the context of a
one semester course on geometric analysis.

1 Introduction
Defining mass in general relativity (GR) is a very subtle issue. Roughly speaking, in Minkowski spacetime,
we say that the energy content is given by an integral of the energy density of all the fields being considered
over a constant t hypersurface. The problem is that in GR, while this construction can still be carried out
for matter fields, it fails for the gravitational field. This is because the gravitational field is now described
by the curvature of spacetime and there is no well-defined local concept of energy density in that setting.

This is where the concept of ADM mass comes into play. In 1961, while developing a Hamilto-
nian formulation of GR, Arnowitt-Deser-Misner [ADM60; ADM61] defined the notion of ADM energy-
momentum, a four vector in spacetime which can be associated to each spacelike hypersurface of an asymp-
totically flat (AF) spacetime (for a definition of AF spacetime manifold see Ch. 11 of [Wal84])1. The norm
of this four vector is called the ADM mass and it is easy to see that it exhibits some properties one would
expect from a definition of total mass of the spacetime: (i) it is independent of the choice of hypersurface
and (ii) in cases with more symmetry (like an everywhere timelike Killing vector field which allows for
a more “intuitive” definition of mass) it coincides with other methods for calculating the total mass in the
system. There is still one fundamental property of mass to recover – being positive!

Establishing the positivity of the ADM mass is of the utmost importance, namely because it is easy
to see that the ADM mass is identically zero for Minkowski spacetime. Thus the stability of Minkowski
spacetime as the ground state of GR (that is the only state with zero mass) would be dependent on the
positivity of the ADM mass and on Minkowski space being the only spacetime with zero mass. Thus,
the positive mass theorem is one of the most important results in mathematical relativity as it establishes
the positivity of the ADM mass under some global assumptions about the curvature/matter content of an
asymptotically flat spacetime. Throughout the 1960’s and 1970’s there were many attempts at proving what
was then called the positive mass conjecture, but the conditions were very restrictive on the spacetime being
considered. The first robust proof was put forward by Schoen and Yau [SY79; SY81] using minimal surface
theory. However, in this report I will be sketching the proof of the positive mass theorem outlined by Witten
in 1981 [Wit81] and rigorously completed by Parker and Taubes in 1982 [PT82].

The main reference for this work was Ch. 5 of Lee’s book “Geometric Relativity” [Lee19]. I also
consulted Natário’s lecture notes [Nat20] for the definition of ADM mass and the standard book “Spin
Geometry” by Lawson and Michelsohn [LM89] for the part of constructing spin structures. I also con-
sulted [GN14] for the sign conventions of the Riemann curvature tensor. This document is organized as
follows: in sec. 2 I will introduce the concept of ADM mass and give some motivation for the importance
of positive mass theorems; next in sec. 3 I will introduce the concept of spinors and spin manifolds, which
will lead us to introduce the Dirac operator in sec. 4 and then prove the important Schrodinger-Lichnerowicz
formula. Finally, in sec. 5 I will prove the positive mass theorem for spin manifolds.

1In broad terms, an asymptotically flat spacetime in GR is a description of an isolated gravitating system.
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Figure 1: Pictorial representation of an asymptotically flat manifold M with three ends M1, M2, M3 and
bounded region K, whose boundary is represented by the dotted lines.

2 The ADM mass
Definition 2.1 (Asymptotically flat Riemannian manifold). A Riemannian manifold (M, g) of dimension
n ≥ 3 is asymptotically flat if ∃K ⊂M bounded such that M \K is a finite union of ends M1, ...,Mℓ such
that for each end Mk there ∃ diffeomorphism (asymptotically flat coordinate chart)

Φk :Mk → Rn

p 7→ (x1(p), ..., xn(p)) ,

such that in (x1, ..., xn) coordinates, the metric on that end can be written as

gij = δij + o2(|x|−α) , α > q :=
n− 2

2
,

where |x| is the radial function in the asymptotically flat coordinate chart. Furthermore we require the
scalar curvature be integrable over the whole manifold, so on each end we must have

R is o0(|x|−n) .

A function f :M → R is said to be op(|x|−α) if

p∑
i=0

|x|i|∂if | < ϵ|x|−α , ∀ ϵ > 0 ,

where ∂ refers to derivatives with respect to the asymptotically flat coordinates. An example of an asymp-
totically flat manifold is represented pictorially in figure 1.

Definition 2.2 (ADM mass). Given an asymptotically flat manifold (M, g) of dimension n with ends
M1, ...,Mℓ, we say that the ADM mass of the end Mk is

mADM (Mk, g) = lim
ρ→∞

1

2(n− 1)ωn−1

ˆ
Sρ

n∑
i,j=1

(
∂gij
∂xi

− ∂gii
∂xj

)
xj

|x|
dµ̄Sρ

,

where Sρ is a n − 1 coordinate sphere of radius ρ in the asymptotic chart on Mk, dµ̄Sρ
is the volume

element induced by the Euclidean metric and ωn−1 is the volume of the n− 1 unit sphere.

Remark. Despite having been defined in 1961, it was only in 1986 that a rigorous proof was given by
Bartnik showing that the ADM mass does not depend on the choice of asymptotic coordinate chart [Bar86].
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3 Spin structures on Riemannian manifolds
We now focus on the topic of constructing a spin structure on our Riemannian manifold (M, g). From now
on we always assume n ≥ 3.

Definition 3.1 (Oriented orthonormal frame bundle). Given an oriented n-dimensional manifold (M, g)
we define the oriented orthonormal frame bundle as the principal SO(n)-bundle over M consisting of all
oriented orthonormal frames (e1, ..., en) of the tangent space TpM for all p ∈M , that is

FSO =
⋃
p∈M

{(e1, ..., en) ∈ TpM : g(ei, ej) = δij ∀i, j = 1, ..., n and (e1, ..., en) is positive} .

Since SO(n) is not simply connected (in fact its fundamental group is π1(SO(n)) = Z2) we can
construct its simply connected double cover – this will be the Lie group Spin(n). Before that though, we
need to define the Clifford algebra of Rn.

Definition 3.2 (Clifford algebra of Rn). The Clifford algebra of Rn is defined as

Cl(n) =

( ∞⊕
r=0

Rn ⊗ ...⊗ Rn

)/
I ,

where we have r copies of Rn and I is the ideal generated by the relation

v ⊗ v = −|v|2 , ∀ v ∈ Rn .

Given an o.n. basis (e1, ..., en) of Rn this relation can be obtained for all vectors by imposing it on the
basis vectors, that is,

eiej + ejei = −2δij , ∀ i, j = 1, ..., n

(the operation induced by ⊗ is called the Clifford product, and the tensor product sign is usually ommited).

Definition 3.3 (Spin(n)). The Lie group Spin(n) ⊂ Cl(n) is the set of all products of the form

(v1w1)...(vkwk) ∈ Cl(n) , vi, wi ∈ Rn , |vi| = |wi| = 1 , ∀ i = 1, ..., k .

The group operation is just the Clifford product. It can be shown that ∃ surjective, 2 7→ 1 group homo-
morphism h : Spin(n) → SO(n) which establishes Spin(n) to be the simply connected double cover of
SO(n).

In general it is not easy to define this group homomorphism, and it is also not central for this work, but
to give an idea of what is happening we will look at the particular case of n = 3. To do so consider the real
vector space generated by the four matrices in M2×2(C)

1 =

(
1 0
0 1

)
ux =

(
i 0
0 −i

)
uy =

(
0 1
−1 0

)
uz =

(
0 i
i 0

)
.

It is easy to check that u2k = uxuyux = −1 , ∀ k = 1, 2, 3 . Thus elements of this vector space

U = a1+ bux + cuy + duz , a, b, c, d ∈ R ,

are in one to one correspondence with quaternions z = a + bi + cj + dk. More importantly, restricting to
the case |a|2 + |b|2 + |c|2 + |d|2 = 1 we get an identification of matrices in SU(2) with unit quaternions.
Indeed, it is easy to see that any matrix in SU(2) can be written in this form. Note further that we have

uiuj + ujui = −2δij1 ,

which means that by identifying vectors of R3 like v =
∑

i v
iei, where (e1, e2, e3) is an o.n. basis of R3,

with matrices Uv =
∑

i v
iui we get a realization of Cl(3) where the Clifford product is just the usual

matrix product.
Now take a unit vector n ∈ R3, |n| = 1 and an angle θ ∈ [0, 2π). Then any matrix in SU(2) can be

written as
(n, θ) 7→ U = enθ/2 = cos(θ/2)1+ sin(θ/2)Un ,

so (n, θ) is a parameterization of SU(2). We can define an action of SU(2) on vectors of R3 as follows:

A : SU(2)× R3 → R3

((n, θ), v) 7→ enθ/2Uve
−nθ/2 = Rθ

nv
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where in the last equality we claim that this action is the same as acting on v with Rθ
n ∈ SO(3), the matrix

describing a rotation by an angle θ around the direction defined by n (this claim is easy to prove). Since
any rotation can be written in such a way we can construct the map

h : SU(2) → SO(3)

(n, θ) 7→ Rθ
n.

Such a map is clearly a group homomorphism (because of the way it was constructed from the action
of SU(2) on vectors of R3), it is also surjective (for the reasons we pointed out above) and a 2 7→ 1
correspondence because Rθ

n = R2π−θ
−n . This is concludes a sketch of the proof that Spin(3) = SU(2).

Definition 3.4 (Spin manifold). An oriented (M, g) is said to be spin if FSO can be lifted to FSpin, a
principal Spin(n)-bundle over M .

The idea is that all the transition functions of FSO, which are in SO(n), can be lifted to Spin(n) in a
consistent way that fits together, thus allowing to construct FSpin.

Remark. This is a purely topological condition and is equivalent to the vanishing of the second Stiefel-
Whitney class.

We give some examples below.

• All compact and oriented smooth manifolds with n ≤ 3 are spin.

• Sn are all spin.

• CP2n−1 are all spin.

• CP2n are all not spin.

Since Spin(n) is the simply connected double cover of SO(n) it will have representations which do not
descend to SO(n). Elements of a vector space S where one such representation exists are called spinors,
as opposed to vectors. Now take such a vector space S, and assume that the representation of Spin(n) ⊂
Cl(n) can be extended to a representation of all of Cl(n), thus endowing S with the structure of a real
module over Cl(n). This means we can define a product · of elements of Cl(n) on spinors,

v1...vk · s , vi ∈ Rn , s ∈ S .

Such a product can be used to define a hermitian structure in S such that unit vectors of Rn ⊂ Cl(n) act
orthogonally on S.

∃⟨ , ⟩S such that ⟨v · s1, v · s2⟩S = ⟨s1, s2⟩S , ∀v ∈ Rn with |v| = 1 , ∀ s1, s2 ∈ S .

Definition 3.5 (Spinor bundle). Given a spin manifold (M, g) and a representation of Spin(n) on a vector
space S which carries the structure of a real module over Cl(n), the spinor bundle S(M) over M is the
associated vector bundle constructed from S and the principal Spin(n)-bundle FSpin.

Remark. Using the natural action of SO(n) on Cl(n) we can define the Clifford bundle Cl(M) as the
associated bundle constructed from Cl(TpM) ∼= Cl(n) and the principal SO(n)-bundle FSO. The fibers
of Cl(M) act on the fibers of S(M) with the product · in the same way that Cl(n) acts on S.

The last ingredient we need before we start doing some analysis is the notion of parallel transport on
S(M). From now on, we will always work with a local trivialization of all the bundles we are considering
and this is done by choosing an o.n. frame (e1, ..., en) on U ⊂M . Then we will have for p ∈ U :

FSO ∋ x = (p, g) , p = π(x) , g ∈ SO(n) : x = g(e1, ..., en)p ,

FSpin ∋ x̃ = (p, g̃) , g̃ ∈ Spin(n) ,

S(M) ∋ ψ = (p, s) , s ∈ S ,

where g̃ is the lift of g. Note also that in this trivialization we would have (e1, ..., en)p = (p,1SO(n)).

Definition 3.6 (Constant spinor). A spinor ψ ∈ Γ (S(M)) is said to be constant with respect to a local
frame (e1, ..., en) if, in the trivialization associated to it we have

ψ(p) = (p, s) , ∀ p ∈ U ,

for some constant s ∈ S.
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The idea now to define parallel transport is as follows: we use the notion of parallel transport on TM
with the Levi-Civita connection, lift that to FSO, lift again to FSpin, and then use that and the action of
Spin(n) on S to define parallel transport on S(M). We will not make this calculation here, but in the
end, the covariant derivative of a spinor ψ ∈ Γ (S(M)) that is constant with respect to the given frame
(e1, ..., en) is

∇ψ = −1

4

n∑
i,j=1

ωi
jeiej · ψ ∈ T ∗M ⊗ Γ (S(M)) , (1)

where ωi
j ∈ T ∗M are the connection 1-forms associated to (e1, ..., en). It is a straightforward exercise to

show that a connection on S(M) can be defined from this expression and the requirement that it obeys the
Leibniz rule, and that moreover this connection is compatible with the Clifford product of vector fields by
spinors and also with the hermitian metric defined on S(M) by the hermitian inner product ⟨ , ⟩S on the
fibers. We leave this exercise for the reader.

4 The Dirac operator
Definition 4.1 (Dirac operator). The Dirac operator is a differential operator D : Γ (S(M)) → Γ (S(M))
and in a local frame (e1, ..., en) it can be written as

Dψ =

n∑
i=1

ei · ∇iψ , ∀ψ ∈ Γ (S(M)) ,

where ∇i ≡ ∇ei . It is straightforward to show that the Dirac operator is well defined in the sense that
it does not depend on the choice of local frame and that it is formally self adjoint. Spinors solving the
equation Dψ = 0 are called harmonic spinors.

The Dirac operator will be central in proving the positive mass theorem because we can relate it to
the scalar curvature of the manifold through the Schrödinger-Lichnerowicz formula which we prove below.
This result and the corollary that follows it were originally found by Lichnerowicz in 1963 [Lic63].

Theorem 4.1 (Schrödinger-Lichnerowicz formula). Let (M, g) be a Riemannian spin manifold. Then for
any ψ ∈ Γ (S(M)) we have

D2ψ = ∇∗∇ψ +
1

4
Rψ,

where ∇∗ is the formal adjoint of the covariant derivative ∇ on S(M), and R is the scalar curvature.

Proof. Take a local frame (e1, ..., en) on U ⊂ M such that at p ∈ U we have ∇iej = 0 ∀i, j = 1, ..., n.
Then

D2ψ =

n∑
i,j=1

ei · ∇i (ej · ∇jψ)

=

n∑
i,j=1

eiej · (∇i∇jψ)

= −
n∑

i=1

∇i∇iψ +

n∑
i<j=1

eiej · (∇i∇j −∇j∇i)ψ

= ∇∗∇ψ +

n∑
i<j=1

eiej ·RS(ei, ej)ψ

where RS(ei, ej) ∈ End (Γ (S(M))) is the curvature of the spinor bundle. This is a zeroth order operator
on Γ (S(M)), just as the Riemann curvature tensor is on TM . Thus the result is the same if ψ is constant
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or not w.r.t. the given frame. We have

RS(ei, ej)ψ = (∇i∇j −∇j∇i)ψ

= ∇i

−1

4

n∑
k,ℓ=1

ωk
ℓ (ej)ekeℓ · ψ

− (i↔ j)

=

−1

4

n∑
k,ℓ=1

(
∇iω

k
ℓ (ej)

)
ekeℓ · ψ +

1

16

n∑
k,ℓ,p,q=1

ωk
ℓ (ej)ω

p
q (ei)ekeℓepeq · ψ

− (i↔ j)

= −1

4

n∑
k,ℓ=1

dωk
ℓ (ei, ej)ekeℓ · ψ ,

where (i ↔ j) means the same expression as the previous term but swapping i for j and we used the fact
that the frame (e1, ..., en) is parallel at p so ωi

j = 0 ∀ i, j = 1, ..., n. Replacing this result in the expression
for RS we get

RS(·, ·) = −1

4

n∑
k,ℓ=1

dωk
ℓ ekeℓ = −1

4

n∑
k,ℓ=1

Ωk
ℓ ekeℓ =

1

4

n∑
k,ℓ=1

Riem(·, ·, ek, eℓ)ekeℓ ,

where Ωk
ℓ are the curvature forms and Riem is the curvature tensor and where we are using the convention

of [GN14]. Plugging this back into the expression for D2ψ we find

D2ψ = ∇∗∇ψ +
1

8

n∑
i,j,k,l=1

Rijkleiejekel · ψ = ∇∗∇ψ +
1

4
Rψ ,

where Rijkl are just the components of the curvature tensor in the given basis and we just have to use the
symmetries of curvature tensor and the Clifford algebra to obtain the scalar curvature R.

Corollary 4.1. If (M, g) is a compact spin manifold and R ≥ 0 everywhere and nonzero somewhere then
there are no harmonic spinors.

Proof. Take the inner product of the Schrödinger-Lichnerwicz formula with ψ and integrate over M :
ˆ
M

(
⟨D2ψ,ψ⟩ − ⟨∇∗∇ψ,ψ⟩ − 1

4
R|ψ|2

)
dµM = 0 ⇐⇒

ˆ
M

(
|Dψ|2 − |∇ψ|2

)
dµM ≥ 0 ,

where we use the the fact that the Dirac operator is formally self-adjoint. If ψ is a harmonic spinor this
implies that ψ is parallel, which leads to a clear contradiction.

Remark. Just like with the Bochner theorem for 1-forms we saw in class this gives us some topological in-
formation about the manifold. Indeed, the non-existence of harmonic spinors is equivalent to the vanishing
of the Hirzebruch Â genus [24a].

5 The positive mass theorem for spin manifolds
Theorem 5.1 (Positive mass theorem for spin manifolds). Let (M, g) be a complete, asymptotically flat
spin manifold with nonnegative scalar curvature. Then:

1. The ADM mass of each end is nonnegative.

2. If the ADM mass of any end is zero, then (M,g) is Euclidean space.

The second result is called a rigidity result, and it is fundamental in establishing the stability of Minkowski
space, as discussed in Sec. 1

Before proving the main theorem stated above, we will need four propositions which we state and prove
below.
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Proposition 5.1. Take Ω ⊂ M a bounded subset of the spin manifold M with ∂Ω smooth. Then for any
ψ ∈ Γ (S(M))

ˆ
Ω

(
|∇ψ|2 − |Dψ|2 + 1

4
R|ψ|2

)
dµM =

ˆ
∂Ω

n∑
i=1

⟨ψ,Liψ⟩νjdµ∂Ω ,

where Li =
∑

j(δij + eiej) · ∇j , νj is the unit outward pointing normal to ∂Ω and dµ∂Ω is the volume
element induced on ∂Ω by the Riemannian volume element on M .

Proof. Assuming again that the frame (e1, ..., en) is parallel at p ∈M , we have

−|Dψ|2 =

n∑
i,j=1

⟨−ei · ∇iψ, ej · ∇jψ⟩

=

n∑
i,j=1

⟨∇iψ, eiej · ∇jψ⟩

=

n∑
i,j=1

∇i⟨ψ, eiej · ∇jψ⟩ − ⟨ψ,D2ψ⟩ ,

and

|∇ψ|2 =

n∑
i=1

⟨∇iψ,∇iψ⟩

=

n∑
i=1

(∇i⟨ψ,∇iψ⟩ − ⟨ψ,∇i∇iψ⟩)

=

n∑
i=1

∇i⟨ψ,∇iψ⟩+ ⟨ψ,∇∗∇ψ⟩ .

Substituting this into the left-hand side of the expression in the statement of the proposition and then using
the Schrödinger-Lichnerowicz formula and the divergence theorem yields the desired result.

Proposition 5.2. Let (M, g) be an asymptotically flat spin manifold and take (e1, ..., en) to be an o.n. frame
on one of the ends, Mk. Now take ψ0 ∈ Γ (S(M)) to be constant with respect to the given frame on Mk.
Then

lim
ρ→∞

ˆ
Sρ

n∑
i=1

⟨ψ0, Liψ0⟩νidµSρ
=

1

2
(n− 1)ωn−1|ψ0|2mADM (Mk, g) ,

where Sρ is a coordinate sphere in Mk.

Proof. We can construct the o.n. frame (e1, ..., en) by using Gram-Schmidt on the standard basis induced
by the asymptotically flat coordinate chart (∂1, ..., ∂n). Recalling the decay properties of the metric from
the definition of asymptotically flat manifold we easily find

ei = ∂i −
1

2

n∑
j=1

hij∂j + o1(|x|−2q) ,

where q = n−2
2 . Using this result, a straightforward calculation yields

ωi
j(ek) =

1

2
(∂jgik − ∂igjk) + o(|x|−2q−1) .
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Thus, we find

n∑
i=1

⟨ψ,Liψ⟩νi = −1

4

∑
i ̸=j
k ̸=ℓ

ωk
ℓ (ej)⟨ψ0, eiejekeℓψ0⟩νi

= −1

4

∑
i ̸=j
k ̸=ℓ

ωk
ℓ (ej)⟨ψ0, ψ0⟩ (δiℓδjk − δikδjℓ) ν

i + o(|x|−2q−1)

=
1

4
|ψ0|2

∑
i̸=j

(
ωi
j(ej)− ωj

i (ej)
)
νi + o(|x|−2q−1)

=
1

8
|ψ0|2

∑
i̸=j

(∂jgij − ∂igjj − ∂igjj + ∂jgij) ν
i + o(|x|−2q−1)

=
1

4
|ψ0|2

∑
i̸=j

(∂jgij − ∂igjj) ν
i + o(|x|−2q−1) .

From the first to the second line the Clifford algebra relations together with the symmetries of the expression
for ωi

j(ek) under index swapping are used. Replacing this result in the integral above the lower order terms
all go to zero when the limit is taken. Cmparing with the expression for the ADM mass given in 2.2 and
noting νi = xi/|x| completes the proof.

Definition 5.1 (Weighted function spaces). Take (M, g) to be a complete, asymptotically flat n-dimensional
spin manifold. Choose r ∈ C∞(M) such that r > 0 everywhere on M and r = |x| in the asymptotic
coordinate chart on each end Mk. Then, for u ∈ Γ (S(M)) we define:

• Weighted Lp
s(S(M)) norm:

∥u∥Lp
s(S(M)) :=

(ˆ
M

|u|pr−sp−ndµM

)1/p

.

• Weighted W k,p
s (S(M)) norm:

∥u∥Wk,p
s (S(M))

:=

k∑
i=0

∥∇iu∥Lp
s−i(S(M)) .

We can now state a result which will leave us very close to proving the positive mass theorem.

Proposition 5.3. Let (M, g) be a complete, asymptotically flat spin manifold and take (e1, ..., en) to be
an o.n. basis on some end Mk. Now take ψ0 ∈ Γ (S(M)) to be a spinor that is constant with respect to
the given frame in Mk and identically zero in all other ends. Take also a spinor ψ ∈ Γ (S(M)) such that
ψ − ψ0 ∈W 1,2

−q (Γ (S(M))). Then

ˆ
M

(
|∇ψ|2 − |Dψ|2 + 1

4
R|ψ|2

)
dµM =

1

2
(n− 1)ωn−1|ψ0|2mADM (Mk, g) .

Proof. The proof is straightforward, so we will only sketch it here. First one has to prove that Proposi-
tion 5.2 still holds for a spinor ψ like that described above. This is not hard to do because the fact that
ψ − ψ0 ∈ W 1,2

−q means we have control of the derivatives of ψ − ψ0 in the asymptotic region where the
integral is taken. Thus we can show that the only non-zero term gives the same as for a constant spinor.

Then we consider the result of Proposition 5.1 with this spinor ψ and taking the region Ω to be the
bounded region K appearing in the definition of asymptotically flat manifold. Now start expanding Ω into
the asymptotic regions and deform the boundaries so that they coincide with coordinate spheres. Finally
take the limit where the radii of these sphere goes to infinity. Thus the result of Proposition 5.2 will be valid
for all the ends, yielding the ADM mass multiplied by some constants in Mk and zero in all other ends.
Meanwhile on the left hand side of the equation Ω →M , thus yielding the desired result.

Now the idea is very simple: if we can find a harmonic spinor which satisfies the conditions of the
previous proposition we are done. To establish the existence of such a spinor we need one more result.
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Proposition 5.4. Let (M, g) be a complete, asymptotically flat spin manifold with R ≥ 0 and let q = n−2
2 .

Then
D :W 1,2

−q (S(M)) → L2
−q−1(S(M)) ≡ L2(S(M))

is an isomorphism.

Proof. To prove the statement above we must show that D : W 1,2
−q → L2 is a linear, bounded and bijective

operator.
The linearity is inherited from the covariant derivative. The boundedness is obtained from Proposi-

tion 5.3: taking ψ0 = 0 we get for any φ ∈W 1,2
−q (S(M))

ˆ
M

(
|∇φ|2 − |Dφ|2 + 1

4
R|φ|2

)
dµM = 0

⇐⇒
ˆ
M

|Dφ|2dµM =

ˆ
M

(
|∇φ|2 + 1

4
R|φ|2

)
dµM

⇐⇒ ∥Dφ∥2L2 ≤ ∥∇φ∥2L2 + ∥φ∥2L2
−q

⇐⇒ ∥Dφ∥L2 ≤ ∥φ∥W 1,2
−q
,

where we used the fact that the scalar curvature decays much faster than the weight function r in all ends
(see 2.1 and 5.1). This proves that the Dirac operator acting on W 1,2

−q (S(M)) is bounded.
Now we have to prove it is injective. It follows directly from Proposition 5.3 that

∥∇φ∥L2 ≤ ∥Dφ∥L2 .

Then we have to use a weighted Poincaré inequality, which is proved in [Lee19], and which states ∃C > 0
for which the following holds:

∥φ∥L2
−q

≤ C∥∇φ∥L2 . (2)

Putting these two results together we get

∥φ∥W 1,2
−q

= ∥φ∥L2
−q

+ ∥∇φ∥L2

≤ (C + 1)∥∇φ∥L2

≤ (C + 1)∥Dφ∥L2 .

This is enough to prove injectivity.
Finally, we must prove that the operator is also surjective, that is, that ∀ η ∈ L2, ∃ ξ ∈ W 1,2

−q such that
Dξ = η. We start by considering the case where η ∈ Γ0(S(M)) ⊂ L2 is compactly supported.

Take ϕ, ω ∈ W 1,2
−q . We showed ∥Dφ∥L2 ≤ ∥φ∥W 1,2

−q
≤ (C + 1)∥Dφ∥L2 , implying that the W 1,2

−q inner

product on the Hilbert space H of spinors φ ∈W 1,2
−q is equivalent to the pairing

⟨ω, φ⟩H := ⟨Dω,Dφ⟩L2 .

Thus take the function

f :W 1,2
−q → C
φ 7→ ⟨η, φ⟩L2 ,

which is easily seen to be linear and bounded from the previous calculations. Then, we can apply the Riesz
representation theorem [24b], which tells us that ∃ω ∈W 1,2

−q such that

f(φ) = ⟨ω, φ⟩H ⇐⇒ ⟨η, φ⟩L2 = ⟨Dω,Dφ⟩L2

Now we claim that ξ = Dω is the desired solution. However we only know that ξ ∈ L2 which is not
enough. That being the case, consider a sequence {ξj}∈W 1,2

−q
⇀ ξ converging weakly to ξ in L2. Then

∀φ ∈W 1,2
−q we have

lim
j→∞

⟨Dξj , φ⟩L2 = lim
j→∞

⟨ξj ,Dφ⟩L2 = ⟨ξ,Dφ⟩L2 ≡ ⟨η, φ⟩L2

which allows us to say {Dξj}∈L2 → η. Then by the injectivity we proved before we conclude that we must
have {ξj}∈W 1,2

−q
→ ξ. So we get that ξ ∈W 1,2

−q and it satisfies

⟨η, φ⟩L2 = ⟨Dξ, φ⟩L2 , ∀φ ∈W 1,2
−q .

So it is a solution of Dξ = η in W 1,2
−q , which proves that there always is a solution for compactly supported

spinors η. By a density argument, the result can be extended to include all η ∈ L2, thus completing the
proof.
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Putting all these pieces together, we can finally formalize the proof of the positive mass theorem for
spin manifolds.

Proof. (Positive mass theorem for spin manifolds – Theorem 5.1)

We will start by proving the first statement, and we do it by steps:

• Take an end Mk and an o.n. frame (e1, ..., en) on that end. Now choose ψ0 ∈ Γ (S(M)) such that ψ0

is constant with |ψ0| = 1 in Mk and ψ0 = 0 in all other ends.

• Take η = −Dψ0 which is easily seen to be in L2.

• By Proposition 5.4, ∃ ξ ∈W 1,2
−q such that Dξ = η.

• Then the spinor ψ = ψ0 + ξ satisfies ψ − ψ0 ∈W 1,2
−q and it also has Dψ = 0.

• Then by Proposition 5.3 we get
mADM (Mk, g) ≥ 0 .

To prove the second statement we have to make a slightly more complicated construction. Assuming
that mADM (Mk, g) = 0, we immediately get that ∇ψ = 0 everywhere by Proposition 5.3. But now
note that any other choice of constant spinor ψ0 in Mk will yield a different spinor ψ satisfying ∇ψ = 0.
Concretely, for i = 1, ..., n, we can choose define ψi to be the harmonic spinor which asymptotes to ei · ψ0

and has ∇ψi = 0. Now we define the vector fields Vi such that

⟨Vi, w⟩TM = ⟨w · ψ,ψi⟩S(M) ,

for any w ∈ TpM and ∀ p ∈M . This vector field asymptotes to ei:

⟨Vi, w⟩ = ⟨w · ψ,ψi⟩
∼ ⟨w · ψ0, ei · ψ0⟩

=
1

2

(
⟨w · ψ0, ei · ψ0⟩+ ⟨w · ψ0, ei · ψ0⟩

)
=

1

2
(⟨w · ψ0, ei · ψ0⟩+ ⟨ei · ψ0, w · ψ0⟩)

= −1

2
⟨(wei + eie) · ψ0, ψ0⟩

= ⟨ei, w⟩|ψ0|2

= ⟨ei, w⟩ ,

where we used the fact that we know ⟨Vi, w⟩ ∈ R. Moreover it satisfies ∇Vi = 0 everywhere :

⟨∇Vi, w⟩ = ∇⟨Vi, w⟩ − ⟨Vi,∇w⟩
= ∇⟨w · ψ,ψi⟩ − ⟨∇w · ψ,ψi⟩
= 0 ,

since ∇ψ = ∇ψi = 0. This means that (V1, ..., Vn) is a global frame of parallel vector fields, so (M, g)
must be flat. Since it is also asymptotically flat, we conclude from the Killing-Hopf theorem that it must be
the Euclidean space.
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