
Energy increase near black holes via the Penrose

process and the Oberth maneuver

Francisco Gonçalves

1 Introduction

The theory of rocket trajectories has been generalized to the general relativity setting in [5].

In this text, we apply this theory to the study of the Oberth maneuver [7], performed near black

holes. In Section 2, we follow [10] in a review of the Kerr metric, which describes the geometry

around rotating uncharged black holes, along with some properties of their structure, namely the

event horizons and the arise of a new surface that does not appear in the Schwarzschild metric, the

ergosphere. Next, in Section 3, we delve into the Penrose process, a way in which energy can be

extracted from a Kerr black hole that is made possible by the nature of the ergosphere. Through

some geometric arguments, we find the maximal energy per unit mass gain that one can obtain

from this process. For the remainder of the text, we focus on the study of maximal energy increase

a rocket can obtain by performing the Oberth maneuver in different scenarios. In Subsection 4.1,

we start by deriving the rocket equation in the context of Newton’s theory, to then, in Subsection

4.2 compute the energy increase obtained from the Oberth maneuver performed near a spherically

symmetric body. After this, in Subsection 4.3, we follow [5] to derive the rocket equation in the

context of general relativity, which we then use to study how efficient the Oberth maneuver near

black holes can be in order to increase the rockets energy per unit mass (in Subsection 4.4 the

maneuver is performed for the Schwarzschild metric, and in Subsection 4.5 for the Kerr metric). In

Subsection 4.6, following [5] and [6], we make a note on the optimality of the Oberth maneuver for

instantaneous acceleration. In Subsection 4.7, we show that, when performed inside the ergosphere

of a Kerr black hole, the Oberth maneuver can be seen as a Penrose process, as it allows the rocket

to return to infinity with more total energy than it initially had. Subsection 4.8 contains a note

on what can be regarded as an instantaneous acceleration, so that, in Subsection 4.9, we conclude

the study of the Oberth maneuver with some computations for the suppermassive black hole at the

center of the Milky Way, Sagittarius A*.

Throughout this text, we use geometrized units (in which the speed of light and Newton’s

gravitational constant are set equal to 1), except in the final Subsection, where the units used are

explicit.
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2 Kerr metric

We begin with a discussion of the metric that describes a rotating black hole, the Kerr metric.

Such a black hole is characterised by two parameters: its mass, M , and angular momentum, J . We

define a := J
M , which can be interpreted as the angular momentum per unit mass. In the coordinate

system (t, r, θ, φ), which are called Boyer–Lindquist coordinates, the Kerr metric is written

g = −∆− a2 sin2 θ

ρ2
dt⊗ dt− 2a

2Mr sin2 θ

ρ2
dt⊗ dφ

+
(r2 + a2)2 − a2∆sin2 θ

ρ2
sin2 θdφ⊗ dφ+

ρ2

∆
dr ⊗ dr + ρ2dθ ⊗ dθ,

(1)

where
∆ := r2 − 2Mr + a2,

ρ2 := r2 + a2 cos2 θ.
(2)

At this point, we might already notice a couple things. Firstly, as one would expect, the Schwarzschild

metric is a special case of the Kerr metric, obtained for a = 0. Secondly, the latter has an off-diagonal

term, gtφ, unlike the former, in which all non-vanishing terms are diagonal. The presence of this

term introduces some effects on the trajectories of particles. If we consider a curve c : I ⊂ R −→M

(here, M represents a differentiable manifold which we equip with Kerr’s metric), parametrized by

the proper time, τ , the four-velocity vector, U = ċ(τ) is given by

U =

(
dt

dτ
,
dr

dτ
,
dθ

dτ
,
dφ

dτ

)
=
(
ṫ, ṙ, θ̇, φ̇

)
. (3)

Since the contravariant components of this vector are given by Uµ = gµαUα, we have that{
Uφ = gφαUα = gφφUφ + gφtUt

U t = gtαUα = gttUt + gtφUφ
(4)

If we consider a zero-angular-momentum particle, Uφ = 0, then, from (4),

dφ

dt
=

dφ
dτ
dt
dτ

=
gφt

gtt
:= ω(r, θ), (5)

and we know ω is a function of r and θ, since the terms of the metric only depend on this variables.

By this definition, we interpret ω as the angular-velocity of a zero-angular-momentum particle.

Next, we consider two photons emitted in the equatorial plane (θ = π
2 ) at some given r, initially

going in the ±φ direction. Let the curve c : I ⊂ R −→ M represent the motion of such a photon,

parametrized by t. Since photons travel along null geodesics, we have that ⟨ċ(t), ċ(t)⟩ = 0. Moreover,
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because we are considering r and θ initially fixed, we have ċ(t) =
(
1, 0, 0, dφdt

)
, therefore

⟨ċ(t), ċ(t)⟩ = 0 ⇔ gtt + 2gtφ
dφ

dt
+ gφφ

(
dφ

dt

)2

= 0

⇔ dφ

dt
= − gtφ

gφφ
±

√(
gtφ
gφφ

)2

− gtt
gφφ

.

(6)

If gtt = 0, the solutions of the previous equation are

dφ

dt
= 0 (7)

and
dφ

dt
= −2gtφ

gφφ
. (8)

Regarding the first solution, it means the photon sent in the −φ direction, opposite to the rotation

of the hole, does not move at all. Therefore, massive particles, which move slower than photons,

will be forced to rotate with the black hole regardless of how large their angular momentum is in

the opposite direction. From (1), we can find where the term gtt is zero

gtt = 0 ⇔ ∆ = a2 sin2 θ

⇔ r2 − 2Mr + a2 = a2 sin2 θ

⇔ r2 − 2Mr + a2 cos2 θ = 0

⇔ r =M ±
√
M2 − a2 cos2 θ.

(9)

The surface with radius r0 =M+
√
M2 − a2 cos2 θ is called the ergosphere. If r < r0, then gtt > 0,

which means ∂
∂t is spacelike inside the ergosphere. Hence, inside this surface, all massive particles

and photons must rotate with the hole.

The horizon for the Kerr metric is found where grr = ∞, i.e., where ∆ = 0. Solving this, we

get

∆ = 0 ⇔ r2 − 2Mr + a2 = 0

⇔ r =M ±
√
M2 − a2.

(10)

Since we get two surfaces where grr = ∞, a Kerr black hole admits two event horizons. The

submanifold r+ =M +
√
M2 − a2 is the outer horizon and the submanifold r− =M −

√
M2 − a2

the inner horizon (since r+ > r−). Notice that the ergosphere lies outside the outer horizon,

except at the poles (where θ = 0 or θ = π), where it is tangent to it, and we shall refer to the region

between the two as the ergoregion.
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r+

Rotation axis

θ = π
2

Figure 1: Illustration of a Kerr black hole, where the grey area corresponds to the ergoregion.

Being axisymmetric and stationary, the Kerr metric admits the following Killing vector fields

X =
∂

∂t
and Y =

∂

∂φ
. (11)

As a consequence, there are two conserved quantities associated to the motion of test particles,

which we can find from the Euler-Lagrange equations. Firstly, the Lagrangian is given by

L =
1

2
gµν ẋ

µẋν =
1

2

(
gttṫ

2 + 2gtφṫφ̇+ grr ṙ
2 + gθθ θ̇

2 + gφφφ̇
2
)
. (12)

Therefore, the Euler-Lagrange equation for ∂
∂t is

d

dτ

(
∂L
∂ṫ

)
− ∂L
∂t

= 0 (13)

Since
∂gµν
∂t = 0, then we conclude d

dt

(
∂L
∂ṫ

)
= 0, meaning the quantity ∂L

∂ṫ
is preserved. By (12),

∂L
∂ṫ

= gttṫ+ gtφφ̇

= gttU
t + gtφU

φ

= gtµU
µ

= Ut.

(14)

We call E := −Ut the energy. Similarly, for ∂
∂φ , we get

d

dτ

(
∂L
∂φ̇

)
− ∂L
∂φ

= 0 (15)
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and since
∂gµν
∂φ = 0, then d

dτ

(
∂L
∂φ̇

)
= 0, and so ∂L

∂φ̇ is also preserved. Moreover,

∂L
∂φ̇

= gφφφ̇+ gtφṫ

= gφφU
φ + gtφU

t

= gφµU
µ

= Uφ,

(16)

and we call L := Uφ the angular momentum per unit mass (for massive particles).

3 Penrose process

Consider a unit rest mass particle in a trajectory from infinity towards a rotating black hole

(at first, we shall consider the possibility that the particle is accelerating towards the hole). Let U

represent the particle’s 4-velocity vector and E = −
〈
U, ∂∂t

〉
its energy. Once inside the ergosphere,

the particle breaks up in two particles, with 4-momenta p and q (for simplicity, we shall refer to

these particles as P and Q, respectively). Since the breakup event must conserve the energy and

momentum, we have

U = p+ q. (17)

Moreover, let {E0, E1, E2, E3} be an orthonormal frame at the breakup event such that E0 is future-

pointing and E1 is a negative multiple of ∂
∂t . Hence, recall from Section 2 that E1 is spacelike inside

the ergoregion. It is possible that one of the particles (say, P ) escapes the black hole, while the

other falls towards the outer horizon (Q).

Figure 2: Illustration of the Penrose process. The black circle represents the region inside the outer
horizon, while the grey area corresponds to the ergoregion. The black curve represents the trajectory
of the incoming particle, the grey curve corresponds to the trajectory of particle P , which escapes
the black hole, and the white curve to the trajectory of Q, the particle that heads towards the outer
horizon.
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We are interested in maximizing the energy of the outgoing particle P , which we denote by EP .

For that, we must maximize p1, since

EP = −
〈
p,
∂

∂t

〉
=

〈
p,

∣∣∣∣ ∂∂t
∣∣∣∣E1

〉
=

∣∣∣∣ ∂∂t
∣∣∣∣ p1.

(18)

Notice that we are subject to some constraints:

• Firstly, as mentioned above, we must have U = p+ q;

• Secondly, p and q must be timelike or null, otherwise, they could not be the 4-momenta of

particles. Therefore, we shall impose ⟨p, p⟩ ≤ 0 and ⟨q, q⟩ ≤ 0;

• Thirdly, p0 ≥ 0 and q0 ≥ 0, so that p and q are future-pointing.

Taking p as the independent variable, the constraints become

• ⟨p, p⟩ ≤ 0;

• ⟨U − p, U − p⟩ ≤ 0;

• 0 ≤ p0 ≤ U0.

Geometrically, we see that these constraints define a compact set which is the intersection of the

past-cone of U (which we represent by J−(U)) and the future-cone of 0 (J+(0)), that is

C = J−(U) ∩ J+(0), (19)

as represented in Figure 3.
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J−(U)

J+(0) U

E1

E0

E2

Figure 3: Representation of the compact set defined by the constraints for p.

Since p1 does not have critical points (because dp1 = (0, 1, 0, 0) = E1), its maximum must

be on the boundary ∂C. Moreover, in one of the vertices, we would have p = 0, while on the

other p = U , both of which cannot correspond to a breakup event. Now, if the maximum were on

∂J+(0) \ ∂J−(U), then, by the Lagrange multiplier method, we would have

d
(
p1 + µ1⟨p, p⟩

)
= 0 ⇔ E1 + 2µ1p = 0. (20)

However, this cannot be the case, since E1 is spacelike and p must be timelike or null. Similarly, if

the maximum were on ∂J−(U) \ ∂J+(0), we would have

d
(
p1 + µ2⟨U − p, U − p⟩

)
= 0 ⇔ E1 − 2µ2(U − p) = 0, (21)

but, once again, E1 is spacelike and U−p must be timelike or null. Hence, we conclude the maximum

of p1 must be on ∂J−(U) ∩ ∂J+(0), where ⟨p, p⟩ = ⟨U − p, U − p⟩ = 0, and so

d
(
p1 + µ1⟨p, p⟩+ µ2⟨U − p, U − p⟩

)
= 0 ⇔ E1 + 2µ1p− 2µ2(U − p) = 0. (22)

Because the maximum is on this intersection, p must be a null vector, and, from the previous

expression, we also know it must be a linear combination of U and ∂
∂t (since E1 is a multiple of ∂

∂t ).

Furthermore, since q = U − p, then q must also be a null vector and a linear combination of U and
∂
∂t . This means that, in order for p1 to be maximal, P and Q must both be photons. To simplify

our computations, we start by writing the linear combination U + β ∂
∂t and want to determine for
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which values of β it is a null vector. Hence, we have〈
U + β

∂

∂t
, U + β

∂

∂t

〉
= 0 ⇔ ⟨U,U⟩+ 2

〈
U, β

∂

∂t

〉
+

〈
β
∂

∂t
, β

∂

∂t

〉
= 0

⇔ −1− 2βE + gttβ
2 = 0

⇔ β = β± =
E ±

√
E2 + gtt
gtt

,

(23)

Notice that since we are considering the breakup event inside the ergoregion, then we have gtt =〈
∂
∂t ,

∂
∂t

〉
> 0, i.e., ∂

∂t is spacelike. Thus, β+ > 0 and β− < 0. Writing p and q as

p = α

(
U + β−

∂

∂t

)
, q = (1− α)

(
U + β+

∂

∂t

)
, (24)

and, using the constraint U = p+ q, we must have

αβ− + (1− α)β+ = 0, (25)

so we find that

α =
β+

β+ − β−
=
E +

√
E2 + gtt

2
√
E2 + gtt

. (26)

Consequently, EP is given by

EP = −
〈
p,
∂

∂t

〉
= −

〈
α

(
U + β−

∂

∂t

)
,
∂

∂t

〉
= α (E − β−gtt)

=
1

2

(
E +

√
E2 + gtt

)
.

(27)

The efficency of this process is then

η =
EP
E

=
1

2

(
1 +

√
1 +

gtt
E2

)
. (28)

From the previous expression, in order to maximize the efficency we must maximize gtt and minimize

E. For the latter, we should consider the case in which the incoming particle is simply dropped

from rest at infinity, giving E = 1. Now, we must find the point inside the ergoregion where gtt

has a maximum (since the Kerr metric is axisymmetric, this is equivalent to finding r and θ that

maximize gtt in this region). For this, we recall that

gtt = −∆− a2 sin2 θ

ρ2
= −1 +

2Mr

r2 + a2 cos2 θ
, (29)

so we must choose θ = π
2 to maximize gtt. Differentiating the previous expression with respect to r,
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we get
∂gtt
∂r

= −
2M

(
r2 − a2 cos2 θ

)
(r2 + a2 cos2 θ)

2 . (30)

Because we are inside the ergoregion, we have r ≥ r+. From the expression for the outer horizon, it

is clear that r+ ≥M , and, since M ≥ a, we have r ≥ a. With this, we conclude that ∂gtt
∂r < 0 in the

ergoregion, and so we maximize g00 by choosing r = r+.

For an arbitrary black hole, we find the maximum efficiency to be

ηmax =
1

2

(
1 +

√
2M

r+

)
=

1

2

(
1 +

√
2M

M +
√
M2 − a2

)
. (31)

Depending on the parameters M and a, this maximum efficiency takes different values, and it is

maximal when M = a, that is, for an extremal black hole. In that case, we have

ηextremal
max =

1 +
√
2

2
≈ 1.207, (32)

which means that, for an extremal black hole, if the breakup event occurs at r = r+ and θ = π
2 , the

outgoing particle will leave the ergoregion with, approximately, 20.7% more energy per unit mass

than the initial incoming particle.

As for particle Q, its energy is given by

EQ = −
〈
q,
∂

∂t

〉
= −

〈
(1− α)

(
U + β+

∂

∂t

)
,
∂

∂t

〉
= (1− α)

(〈
U,

∂

∂t

〉
+

〈
∂

∂t
,
∂

∂t

〉)
=

1

2

(
E −

√
E2 + gtt

)
.

(33)

Since gtt > 0, the term
√
E2 + gtt > E, hence EQ < 0.

4 The Oberth maneuver in General Relativity

In this Section, we explore some aspects of rocket trajectories in general relativity, with the

ultimate goal of applying the Oberth maneuver near a Kerr black hole and compare the energy gain

to the Schwarzschild case. Firstly, we look at the motion of rockets according to Newton’s theory,

deriving the rocket equation and then performing the Oberth maneuver. After that, we write the

generalization of the rocket equation to general relativity, and apply the Oberth maneuver in the

presence of a gravitational field generated by the aforementioned black holes.
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4.1 Rocket equation in Newton’s theory

Consider a rocket at rest in empty space. From time t0 to time t1, the rocket will exhaust some

of its mass in order to gain velocity. The mass of the rocket will, therefore, be a function of time,

m : [t0, t1] ⊂ R −→ R+. We assume the velocity of the exhaust particles is constant and given by

u ∈ R+. Fixing an instant t ∈ [t0, t1], and an interval of time ∆t, the change in velocity of the

rocket will be given by ∆v = v(t+∆t)− v(t), and the change in mass by ∆m = m(t+∆t)−m(t),

with the former being positive, since the velocity increases, and the latter negative, because the

mass decreases as some of it is lost to exhaustion. By the conservation of momentum, the following

equality holds

m(t)v(t) = m(t+∆t)v(t+∆t) + (−∆m)(v(t)− u)

= (m(t) + ∆m)(v(t) + ∆v) + (−∆m)(v(t)− u).
(34)

The left hand side of the previous equation is just the momentum at time t, while the right hand

side corresponds to the momentum at t + ∆t, where the first term accounts for the momentum of

the rocket, and the second for the momentum of the exhaust particles. After canceling some terms,

equation (34) becomes

m(t) + ∆m+
∆m

∆v
u = 0. (35)

In the limit ∆t→ 0, we get ∆m→ 0 and ∆m
∆v → dm

dv , and the previous equation becomes

m(t) +
dm

dv
u = 0 ⇔ − 1

u
dv =

1

m(t)
dm. (36)

Integrating over the time interval [t0, t1], we arrive at the classical rocket equation

v1 − v0 = u log

(
m0

m1

)
, (37)

or, equivalently,

m1 = m0 exp

(
−v1 − v0

u

)
, (38)

which establishes a relation between the final mass m1 := m(t1) and the initial mass m0 := m(t0),

with v1 := v(t1) and v0 := v(t0). Thus, this equation implies that the velocity increase is fixed by

the mass of exhaust available. In terms of the energy, if E0 and E1 denote the energy per unit mass

of the rocket before and after the acceleration, respectively, then E0 = 0 and E1 = 1
2 (v1 − v0)

2.

4.2 Oberth maneuver in Newton’s theory

We now take a look at the Oberth maneuver, which allows for an additional energy gain when

compared to accelerating from rest in empty space. The idea consists of letting the rocket fall in

a gravitational field, hence obtaining some velocity without resorting to exhaustion, and only after

this will it accelerate.
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Assume the rocket is at rest at infinity, so its initial mechanical energy is E0 = 0. It then falls

in the direction of a spherical body (for example, an idealized planet), with mass M , only by the

effect of gravity. At a distance r = r0 relative to the center of the body, its mechanical energy per

unit mass will be given by
1

2
v2 − M

r0
, (39)

where v is the norm of its velocity vector. Since the mechanical energy is conserved, we can find the

velocity the rocket has once it gets to r0

1

2
v2 − M

r0
= 0 ⇔ v =

√
2M

r0
. (40)

As we saw from the rocket equation, if the rocket accelerates, its velocity can increase by an amount

∆v, which is fixed by the available mass of exhaust. If the rocket accelerates at r0, then its mechanical

energy per unit mass will become

E1 =
1

2
(v +∆v)

2 − M

r0
=

1

2
v2 − M

r0
+

1

2
(∆v)

2
+ v∆v

=
1

2
(∆v)

2
+ v∆v,

(41)

where we used equation (40) to cancel some terms. Comparing with the previous case, in which the

velocity prior to acceleration was v = 0, there is an extra gain of v∆v in the mechanical energy per

unit mass. From (40), in order to maximize this quantity, r0 must be as small as possible, that is,

the radius of maximal approximation of the rocket to the center of the gravitational field.

r0

∆v

Figure 4: Illustration of a rocket performing the Oberth maneuver.

4.3 Rocket equation in General Relativity

We now move on to the general relativity setting. Consider a rocket moving along a curve

c : [τ0, τ1] ⊂ R −→ M , parametrized by the proper time τ , implying that ⟨ċ, ċ⟩ = −1. During the
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interval [τ0, τ1], the rocket will be accelerating by exhausting particles. Therefore, the rest mass of

the rocket will be a nonincreasing function of the proper time, i.e., m : [τ0, τ1] ⊂ R −→ R+ and,

consequently, the 4-momentum vector of the rocket, given by mċ, will not be constant along c, that

is

∇ċ (mċ) ̸= 0.

Instead, we write

∇ċ (mċ) +K = 0 ⇔ ṁċ+m∇ċċ+K = 0 ⇔ K = −ṁċ−m∇ċċ, (42)

where K is a vector field along c, representing the instantaneous rate, with respect to the proper

time, at which energy-momentum is being carried away by the exhaust. Now, we must impose

that K is timelike, otherwise, the rocket would be releasing particles faster than light, and future-

pointing. Since the covariant acceleration ∇ċ (mċ) is orthogonal to ċ and ċ is timelike, then ∇ċ (mċ)

is spacelike. Therefore, in order for K to be timelike, ṁċ must be timelike. For it to be future-

pointing, it is necessary that −ṁċ is future-pointing, so we must have ṁ ≤ 0 (which agrees with the

fact that the rocket is ejecting some of its mass).

ċK

Figure 5: Rocket accelerating.

Notice that, if ṁ = 0, then K must also be 0, which happens if no particles are being ejected

(if this were not the case, K would be spacelike whenever ṁ = 0). Hence, factoring out ṁ, we get

K = −ṁ (ċ+ V ) , (43)

where V is a spacelike vector orthogonal to ċ. The constraint that K must be timelike also implies

that
⟨K,K⟩ ≤ 0 ⇔ ṁ2 (⟨ċ, V ⟩+ ⟨ċ, ċ⟩+ ⟨V, V ⟩) ≤ 0

⇔ ṁ2 (−1 + ⟨V, V ⟩) ≤ 0

⇒ ⟨V, V ⟩ ≤ 1.

(44)

Comparing (42) and (43), we get

m∇ċċ = ṁV ⇒ ṁ|V | = −m|∇ċċ|,
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where the minus sign comes from the fact that ṁ ≤ 0, and we can interpret |V | as the instantaneous
speed of exhaust particles measured by the rocket.

Consider the case in which the exhaust particles have constant speed, that is, |V | = u, with

0 < u ≤ 1. In the extreme case, u = 1, we have ⟨K,K⟩ = 0, which corresponds to the exhaust

particles being photons. Integrating, we obtain the rocket equation for a relativist rocket, which

relates the final rest mass m1 := m(τ1) with the initial rest mass m0 := m(τ0)

1

u

∫ τ1

τ0

|∇ċċ|dτ = −
∫ τ1

τ0

ṁ

m
dτ

⇔ 1

u

∫ τ1

τ0

|∇ċċ|dτ = − logm
∣∣∣τ1
τ0

⇔ m1 = m0 exp

(
− 1

u

∫ τ1

τ0

|∇ċċ|dτ
)

⇔ m1 = m0e
−ψ
u ,

(45)

where ψ is the hyperbolic angle between the initial and final 4-velocity vectors. This equation leads

to the conclusion that for certain values of initial and final rest masses, there is a unique value of

the integral of the covariant acceleration with respect to the proper time.

4.4 Oberth maneuver in Schwarzschild metric

In this section, we will apply the Oberth maneuver in the context of general relativity, as studied

in [8]. For that, we shall consider a non-rotating black hole generating a gravitational field which is

described by the Schwarzschild metric

g = −
(
1− 2M

r

)
dt⊗ dt+

(
1− 2M

r

)−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdφ⊗ dφ. (46)

Our aim is to find the energy gain by performing this maneuver and compare it to accelerating from

rest in flat spacetime.

Consider a rocket with unit rest mass, approaching a non-rotating black hole with mass M ,

described by the metric above, starting from rest at infinity. For simplicity, we shall consider the

motion in the equatorial plane, θ = π
2 . At the radius of closest approximation, which we shall denote

as r0, the rocket accelerates instantaneously and tangentially to its motion (in Subsection 4.6 we

make a note on why this is the optimal direction for an instantaneous acceleration, and in Subsection

4.8 we will give an idea of what can be regarded as a good approximation for such an acceleration).

Just before accelerating, the rocket’s 4-velocity vector is given by

U0 = U t0
∂

∂t
+ Uφ0

∂

∂φ
, (47)
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a linear combination of ∂
∂t and

∂
∂φ , since U

r
0 = ṙ|r=r0 = 0. Dropping the rocket from rest at infinity

implies that, before accelerating, its energy is

E0 = −
〈
U0,

∂

∂t

〉
= 1, (48)

from which we get

U t0 =

(
1− 2M

r0

)−1

. (49)

To simplify the computations, let us define f :=
(
1− 2M

r0

)
, and so U t0 = f−1 (notice also that

gtt = −f at r = r0). Moreover, the 4-velocity satisfies the condition

⟨U0, U0⟩ = −1

⇔ gtt
(
U t0
)2

+ gφφ (U
φ
0 )

2
= −1

⇔ Uφ0 = ± 1

r0

√
−1 + f−1.

(50)

Let us choose the component Uφ0 > 0. Next, we find a unit spacelike vector F0 = F t0
∂
∂t + Fφ0

∂
∂φ ,

orthogonal to U0, by solving the system {
⟨U0, F0⟩ = 0

⟨F0, F0⟩ = 1
(51)

This gives

F t0 = ±
√
(f−1 − 1) f−1, Fφ0 = ± 1

r0

√
f−1 (52)

and we choose the positive components (this is done so that the rocket is accelerating in the direction

of its motion, otherwise, it would be decelerating). After the acceleration, the 4-velocity will be given

by

U1 = cosh(ψ)U0 + sinh(ψ)F0, (53)

where ψ is the hyperbolic angle between U0 and U1, and the final energy will therefore be

E1 = −
〈
U1,

∂

∂t

〉
= − cosh(ψ)

〈
U0,

∂

∂t

〉
− sinh(ψ)

〈
F0,

∂

∂t

〉
= cosh(ψ) + sinh(ψ)f

√
(f−1 − 1) f−1

= cosh(ψ) + sinh(ψ)

√
2M

r0
.

(54)
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ψ

U0

F0

U1

Figure 6: Frame with the initial 4-velocity of the rocket U0, the orthonormal vector to it F0, the
final 4-velocity U1 and the hyperbolic angle ψ.

If the acceleration had been performed away from any gravitational field (in flat spacetime),

the energy gain would simply be cosh(ψ). However, performing this maneuver near a blackhole is

more efficient, as it allows for an additional gain of sinh(ψ)
√

2M
r0

. The efficiency is then

η =
E1

E0
= cosh(ψ) + sinh(ψ)

√
2M

r0
. (55)

The gain is higher for smaller values of the radius. In the limit, the maximum energy will happen for

the radius defining the event horizon, which, for this metric, is the Schwarzschild radius rS := 2M .

In this case, we have

Emax
1 = cosh(ψ) + sinh(ψ). (56)

and so

ηmax =
Emax

1

E0
= cosh(ψ) + sinh(ψ). (57)

We end this Subsection with a generalization of equation (54). If, instead of considering the

particle dropped from rest at infinity, we had considered it with some initial energy per unit mass

Γ > 1, the final energy per unit mass would be given by

E1 = Γcosh(ψ) + sinh(ψ)f

√
Γf−1 − 1

f − Γ + Γ2
. (58)

4.5 Oberth maneuver in Kerr metric

Having studied the Oberth maneuver in the Schwarzschild metric, we now move on to the

application of such a maneuver in the Kerr metric, that is, we consider that the body generating
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the gravitational field is a rotating black hole. Again, let M be the mass of the black hole, and let

a denote its angular momentum per unit mass. The setting is analogous to the previous one: we

consider a rocket with unit rest mass falling towards the black hole, starting from rest at infinity,

with the motion restricted to the equatorial plane θ = π
2 . In this case, the components of the metric

(cf. section 2) simplify to

gtt = −
(
1− 2M

r

)
,

gtφ = gφt = −2M

r
a,

gφφ = r2 + a2 +
2M

r
a2.

(59)

Furthermore, we are particularly interested in performing the acceleration inside the ergoregion.

Once again, if U0 denotes the initial 4-velocity of the rocket, its initial energy must satisfy

E0 = −
〈
U0,

∂

∂t

〉
= 1

⇔ −gttU t0 − gφtU
φ
0 = 1.

(60)

Moreover, the 4-velocity must satisfy

⟨U0, U0⟩ = −1

⇔gtt
(
U t0
)2

+ 2gtφU
t
0U

φ
0 + gφφ (U

φ
0 )

2
= −1.

(61)

Solving the system of equations (60) and (61), one finds that

Uφ0 = ±
√

2M

r0∆

U t0 = ±f−1

(
1− 2Ma

r0

√
2M

r0∆

)
.

(62)

As we saw in Section 2, inside the ergoregion the rocket is forced to rotate in the same direction as

the black hole. Therefore, we must choose Uφ0 > 0. With this choice, we also have

U t0 = f−1

(
1− 2Ma

r0

√
2M

r0∆

)
, (63)

hence,

U0 = f−1

(
1− 2Ma

r0

√
2M

r0∆

)
∂

∂t
+

√
2M

r0∆

∂

∂φ
. (64)

Now, we complement U0 with a unit vector F0 orthogonal to it. This vector can be written as

F0 = F t0
∂

∂t
+ Fφ0

∂

∂φ
, (65)
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and it must satisfy the following conditions{
⟨U0, F0⟩ = 0

⟨F0, F0⟩ = 1
⇔

{
gttU

t
0F

t
0 + gtφ (F

t
0U

φ
0 + U t0F

φ
0 ) + gφφF

φ
0 U

φ
0 = 0

gtt (F
t
0)

2
+ 2gtφF

t
0F

φ
0 + gφφ (F

φ
0 )

2
= 1

. (66)

Solving this system, after some algebra, we get

F t0 = ±f−1

(√
2M

r0
− 2Ma

r0
√
∆

)

Fφ0 = ±
√

1

∆
.

(67)

Once again, there are two possible vectors, and we choose the one such that Fφ0 > 0, so that the

acceleration has the same direction as the rocket’s motion. Accelerating the rocket at r0 would

change the 4-velocity from U0 to

U1 = cosh(ψ)U0 + sinh(ψ)F0. (68)

Hence, the energy after acceleration is given by

E1 = −
〈
U1,

∂

∂t

〉
= − cosh(ψ)

〈
U0,

∂

∂t

〉
− sinh(ψ)

〈
F0,

∂

∂t

〉
= cosh(ψ)− sinh(ψ)

(
gttF

t
0 + gtφF

φ
0

)
= cosh(ψ)− sinh(ψ)

(
−ff−1

(√
2M

r0
− 2Ma

r0
√
∆

)
− 2Ma

r0

√
1

∆

)

= cosh(ψ) + sinh(ψ)

√
2M

r0
.

(69)

We now note some things about this result, namely, we want to compare it to the previous result

for the Schwarzschil metric, hence, we fix M as the mass of both black holes. Firstly, one would

expect that taking a = 0 would reduce the previous expression to the Schwarzschild case. It turns

out that the expression for the energy per unit mass after acceleration is exactly the same in both

cases (cf. 54) and so is the efficiency, regardless of taking a = 0. The maximum energy, however, is

where the dependence in the rotation parameter a appears. Recall that the maximum energy for the

Schwarzschild black hole happens, in the limit, for acceleration in the Schwarzschild radius, since

that is the smallest radius the rocket can escape from. For the Kerr black hole, the smallest radius

corresponds to the outer horizon

r+ =M +
√
M2 − a2, (70)
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which is smaller than 2M , hence, r+ < rS. The maximum energy in Kerr would, therefore, be

Emax
1 = cosh(ψ) + sinh(ψ)

√
2M

M +
√
M2 − a2

= cosh(ψ) + sinh(ψ)

√√√√ 2

1 +

√
1−

(
a
M

)2 . (71)

Furthermore, the energy takes different values depending on the quotient a
M . Thus, the biggest

value for Emax
1 happens for an extremal black hole, a =M , giving

Emax, extremal
1 = cosh(ψ) + sinh(ψ)

√
2. (72)

To summarize, the rotation of the black hole does not explicitly affect the general expression

for the final energy after performing the Oberth maneuver. However, its effect is implicit in the fact

that it gives the black hole a different structure, which then allows the rocket to get closer to the

center of the black hole, hence obtaining a bigger energy gain.

There is also another interesting effect that can arise performing this maneuver inside the

ergoregion. Recall that, as mentioned in Section 3, the particle that falls into the outer horizon

in the Penrose process has negative energy. Similarly, performing the Oberth maneuver in the

ergoregion allows the exhaust to have negative energy. Let u denote the velocity of the exhaust

relative to the rocket. The 4-velocity of the exhaust is then

W = U0 − uF0 (73)

and its energy will, therefore, be given by

Eexhaust = −
〈
W,

∂

∂t

〉
= −

〈
U0,

∂

∂t

〉
+ u

〈
F0,

∂

∂t

〉
= 1− u

√
2M

r0
. (74)

For this value to be negative, we must have

1− u

√
2M

r0
< 0

⇔ 1

u2
<

2M

r0

⇔ r0 < 2Mu2.

(75)

Recall that, throughout this section, we are only considering motions restricted to the plane θ = π
2 .

Moreover, the acceleration must occur outside the outer horizon, otherwise the rocket could not

escape from the black hole, so we impose r0 > r+. Now, for fixed u, condition (75) defines circles

in the equatorial plane with radius 2Mu2. For this circles to lie outside the outer horizon, we must
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have
r+ < 2Mu2

⇔M +
√
M2 − a2 < 2Mu2

⇔ u > 1 +

√
1−

( a
M

)2
.

(76)

Therefore, provided u satisfies this condition, there is an annular region where acceleration can be

performed so that exhaust is ejected with negative energy, defined by

r+ < r0 < 2Mu2. (77)

Notice that, for u = 1 (exhaust composed of photons), accelerating inside the ergoregion always

results in exhaust with negative energy, since we get the condition

r+ < r0 < 2M, (78)

which defines the ergoregion for θ = π
2 .

4.6 Optimality of the Oberth maneuver

In our study of the Oberth maneuver, we always considered the direction of the acceleration to

be tangent to the motion of the rocket, and performed at the radius of closest approximation to the

body generating the gravitational field. It turns out that these are, in fact, the optimal direction and

place to accelerate, as it was studied in [6]. There, it was shown that the final energy is maximized

when the instantaneous acceleration has the direction of the vector field P , the primer, given by

Pµ = −Tµ − ⟨T,U⟩Uµ, (79)

where T is the Killing vector field ∂
∂t (both a Killing vector field of the Schwarzschild and Kerr

metrics), and performed when the primer’s magnitude, ρ, is maximal. The rocket’s energy per unit

mass is then E = −⟨U, T ⟩. In our case, we have

ρ2 = ⟨P, P ⟩

= ⟨−T + U,−T + U⟩

= ⟨T, T ⟩ − 2 ⟨U, T ⟩+ ⟨U,U⟩

= gtt + 2− 1

= gtt + 1

(80)

and since gtt = −
(
1− 2M

r

)
(for both metrics, since we restrict the motion to the plane θ = π

2 ), we

simply get

ρ2 =
2M

r
, (81)
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so the energy is maximized for the smallest radius. Moreover, since for the smallest radius we have

ṙ = 0, the 4-velocity at that point is simply a linear combination of ∂
∂t and

∂
∂φ . Therefore, by (79),

P is also a linear combination of ∂
∂t and

∂
∂φ , so we write

P = P t
∂

∂t
+ Pφ

∂

∂φ
, (82)

and conclude that the optimal acceleration is tangent to the rocket’s motion.

4.7 Is the Oberth maneuver a Penrose process?

From our study of the Oberth maneuver performed near a Schwarzschild or a Kerr black hole,

we have seen that, in both cases, we can increase the energy per unit mass, that is, E1 > 1. One

might ask the question whether or not the total final energy can also be bigger that the initial energy.

In other words, is it possible that m1E1 > m0? To answer this, recall that, from the rocket equation

(45), there is a relation between the initial and final rest masses of the rocket, which we can write

as
m1

m0
= e−

ψ
u . (83)

Hence, the goal is to analyse if it is possible that m1

m0
E1 > 1. Considering u = 1 (photon rocket), the

left-hand side accounts for

m1

m0
E1 = e−ψ

(
coshψ + sinhψ

√
2M

r0

)

=
1

2

(
1 + e−2ψ +

(
1− e−2ψ

)√2M

r0

)

=
1

2

(
1 +

√
2M

r0
+ e−2ψ

(
1−

√
2M

r0

))
.

(84)

For r0 < 2M , we have
√

2M
r0

= 1 + ε, for some ε > 0. Therefore, (84) becomes

m1

m0
E1 =

1

2

[
1 + (1 + ε) + e−2ψ (1− (1 + ε))

]
= 1 +

1

2
ε
(
1− e−2ψ

)
. (85)

Since e−2ψ < 1, we get m1

m0
E1 > 1 and so the total final energy is, indeed, bigger than the initial

one. Notice that this is impossible for the Schwarzschild balck hole, since in that case the rocket is

not allowed to go beyond r0 = 2M .

4.8 Note on instantaneous acceleration

In this Subsection, we make notice of what can be regarded as an instantaneous acceleration.

Let ∆τ denote the proper time interval of acceleration (the one measured inside the rocket). A good
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approximation of an instantaneous acceleration corresponds to values of ∆τ for which the variation

of the angle φ is much smaller than the variation of φ after an entire circular orbit around the

black hole, i.e., 2π. This can be written as φ̇∆τ ≪ 2π. As computed above, at the point of closest

approximation, we have, for the Kerr metric

φ̇ = Uφ0 =

√
2M

r0∆
=

√
2M

r0 (r20 − 2Mr0 + a2)
, (86)

therefore, we look for values of ∆τ such that

∆τ ≪ 2π

√
r0 (r20 − 2Mr0 + a2)

2M
. (87)

For instance, if the radius of closest approximation is r0 = 3M and the black hole is extremal, we

get

∆τ ≪ 2
√
6πM, (88)

and so a good approximation of an instantaneous acceleration would be one that lasted for much

less than 2
√
6πM seconds.

4.9 Example: Oberth maneuver close to Sagittarius A*

In this final section, we apply the previous results to a known black hole to better understand

how impactful the Oberth maneuver really is in maximizing the velocity a rocket is able to reach for

a fixed amount of exhaust. For that, we will consider the black hole at the center of the Milky Way,

Sagittarius A*. Its mass is, approximately, M = 4×106 M⊙. According to [3], a = (0.90± 0.06)M ,

thus, we make the approximation of considering this black hole as extremal. Taking M⊙ = 1.5 km,

we get M = 6 × 106 km = 6×106

3×105 s = 20 s. By equation (88), if the radius of closest approximation

is r = 3M , then the value for ∆τ must be such that ∆τ ≪ 308 s =: ∆τ . Hence, let us consider

∆τ = ∆τ
10 s, and that the acceleration the rocket is capable of reaching is 10g. For this choice of

parameters, if the rocket accelerates in flat spacetime, the velocity increase is simply

∆v = ∆τ × 10g = ∆τg ≈ 3 km/s. (89)

Now, we will see how the Oberth maneuver significantly improves this value. Consider that the

rocket accelerates at the distance of closest approximation to the center of the black hole r = 3M .

Since ∆v = tanh (ψ) is small, we can take the approximation

ψ ≈ ∆v =
3

3× 105
≈ 10−5. (90)
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We can also consider the approximations cosh (ψ) ≈ 1 and sinh (ψ) ≈ ψ, which, substituting in

equation (69), gives

E1 ≈ 1 +

√
2

2
ψ = 1 +

√
2

2
× 10−5. (91)

To find the velocity v the rocket reaches after acceleration, we use the fact that, in geometrized

units, the energy per unit mass is simply

E1 = γ =
1√

1− v2
≈ 1 +

v2

2
, (92)

where γ is the Lorentz factor and the last approximation is due to the fact that v is much smaller

than the speed of light. Thus, the velocity after acceleration is

v =
√
2(E1 − 1) =

√√
2× 10−5 ≈ 3.8× 10−3, (93)

which corresponds to v ≈ 1140 km/s. Notice that this value is much bigger than the 3 km/s one

would get after accelerating in flat spacetime (380 times bigger!), and the acceleration was still

performed at a large distance from the outter horizon.
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