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[...] omnia quapropter debent per inane quietum aeque

ponderibus non aequis concita ferri.

[...] wherefore all [bodies], with equal speed, though equal

not in weight, must rush, borne downward through the

still inane.

Lucretius, De Rerum Natura, book II

(translation by William Ellery Leonard)
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Abstract

This thesis is concerned with the problem of global uniqueness of solutions to the initial value problem

for the Einstein equations. The statement of global uniqueness is encoded in the Strong Cosmic Censor-

ship Conjecture (SCCC), whose negative resolution implies a violation of classical determinism in General

Relativity. The present work provides rigorous results that suggest the failure of certain formulations of

the SCCC in the case of spacetime solutions given by cosmological black holes.

The mathematical framework is the following: we investigate the interior of a dynamical black hole

as described by the Einstein-Maxwell-charged-Klein-Gordon system of equations with a cosmological

constant, under spherical symmetry. In particular, we consider a characteristic initial value problem

where, on the outgoing initial hypersurface, interpreted as the event horizon H+ of a dynamical black

hole, we prescribe: a) initial data asymptotically approaching a fixed sub-extremal Reissner-Nordström-de

Sitter solution; b) an exponential Price law upper bound for the charged scalar field.

After showing local well-posedness for the corresponding first-order system of partial differential equa-

tions, we establish the existence of a Cauchy horizon CH+ for the evolved spacetime, extending the boot-

strap methods used in the case Λ = 0 by Van de Moortel [79]. In this context, we show the existence

of C0 spacetime extensions beyond CH+. Moreover, if the scalar field decays at a sufficiently fast rate

along H+, we show that the renormalized Hawking mass remains bounded for a large set of initial data.

With respect to the analogous model concerning an uncharged and massless scalar field, we are able to

extend the known range of parameters for which mass inflation is prevented, up to the optimal threshold

suggested by the linear analyses by Costa-Franzen [18] and Hintz-Vasy [60].

In this no-mass-inflation scenario, which includes near-extremal solutions, we further prove that the

spacetime can be extended across the Cauchy horizon with continuous metric, Christoffel symbols in L2
loc

and scalar field in H1
loc.

By generalizing the work by Costa-Girão-Natário-Silva [22] to the case of a charged and massive scalar

field, our results reveal a potential failure of the Christodoulou-Chruściel version of the strong cosmic

censorship under spherical symmetry.

Keywords: Black holes, strong cosmic censorship, stability, Cauchy horizon, blueshift instability
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Resumo

A presente tese trata do problema da unicidade global de soluções para o problema de valor inicial

das equações de Einstein. A afirmação da unicidade global está codificada na Censura Cósmica Forte

(CCF), cuja resolução negativa implica uma violação do determinismo clássico da Relatividade Geral. O

presente trabalho fornece resultados rigorosos que sugerem uma violação de certas formulações da CCF

no caso de soluções das equações de Einstein que modelam buracos negros cosmológicos.

O enquadramento matemático é o seguinte: investigamos o interior de um buraco negro dinâmico

descrito pelo sistema de equações de Einstein com uma constante cosmológica, acoplado às equações de

Maxwell e Klein-Gordon para um campo escalar carregado, em simetria esférica. Em particular, consid-

eramos um problema de valor inicial carateŕıstico em que, numa das hipersuperf́ıcies iniciais, interpretada

como o horizonte de eventos H+ de um buraco negro dinâmico, prescrevemos: a) dados iniciais que se

aproximam assintoticamente de uma solução não extrema de Reissner-Nordström-de Sitter; b) um limite

superior para o campo escalar carregado dado por uma lei de Price exponencial.

Depois de mostrarmos existência local e unicidade para o sistema relevante de equações diferenciais

parciais de primeira ordem, estabelecemos a existência de um horizonte de Cauchy CH+ para o espaço-

tempo, estendendo os métodos de bootstrap usados no caso Λ = 0 por Van de Moortel [79]. Neste

contexto, mostramos a existência de extensões C0 do espaço-tempo para além de CH+. Além disso,

se o campo escalar decair suficientemente rápido ao longo de H+, mostramos que a massa de Hawking

renormalizada permanece limitada para um conjunto aberto de dados iniciais. No que diz respeito ao

modelo análogo relativo a um campo escalar sem carga e sem massa, alargamos a gama conhecida de

parâmetros para os quais a divergência da massa de Hawking é evitada, até ao limiar ótimo sugerido

pelas análises lineares de Costa-Franzen [18] e Hintz-Vasy [60].

Neste cenário sem divergência de massa, que inclui soluções quase extremas, provamos ainda que o

espaço-tempo pode ser estendido através do horizonte de Cauchy com métrica cont́ınua, śımbolos de

Christoffel em L2
loc e campo escalar em H1

loc.

Generalizando o trabalho de Costa-Girão-Natário-Silva [22] para o caso de um campo escalar carregado

e massivo, os nossos resultados revelam uma potencial falha da versão de Christodoulou-Chruściel da CCF

em simetria esférica.

Palavras-chave: Buracos negros, conjectura de censura cósmica forte, estabilidade, horizonte

de Cauchy, desvio para o azul
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• F. Rossetti, Strong Cosmic Censorship for the Spherically Symmetric Einstein–Maxwell-Charged-

Klein–Gordon System with Positive Λ: Stability of the Cauchy Horizon and H1 Extensions. Ann.
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Chapter 1

Black holes: an introduction

1.1 Black hole solutions in general relativity

Approximately 150 millions of kilometres away from us, thermonuclear reactions are occurring inside

the core of our nearest star, the Sun. Fast-forward 5 billion years, these inner nuclear fusions will cease

due to the exhaustion of hydrogen. Such a shortage will allow the Sun to become a red giant, its size

extending beyond the current location of the Earth. After this stage, the red giant will keep expelling

gas while its inner core will become denser under the effect of gravity. What will be left from this process

is a faint remaining of the star core, i.e. a white dwarf, surrounded by gas in the form of a planetary

nebula [42, 43].

For masses larger than about 10 times the solar mass, a similar mechanism leads to the formation of

red supergiants. They are ultimately destined to explode through a supernova blast. If the remaining

core, after the explosion, is about at least three times more massive than our Sun, gravity induces further

shrinking until, ultimately, reaching the state in which not even light can escape from the surrounding

area. This final state is called a stellar black hole. Some black holes can be millions of times more massive

than the Sun: these are denoted supermassive and their genesis is thought to be more convoluted than

that of their stellar counterparts.

A supermassive black hole exists in our galaxy [1] and actually is thought to exist in most galaxies

of our universe. Objects with infinite escape velocities have been theorized at least since Laplace [55],

however such astrophysical objects have gained more interest since their striking prediction given by the

theory of general relativity at the beginning of the 20th century. From the 1960s onwards, black holes

have been studied systematically both in the mathematics and physics literature. The present work will

focus on black hole spacetimes from a mathematical point of view.

In Einstein’s theory of relativity, whose remarkable accuracy has been verified in a plethora of exper-

iments [83, 56, 94], black hole regions are mathematically described in a way that embodies the layman

notion of “being unable to escape to infinity”. In particular, a solution to the Einstein equations

Ric(g)− 1

2
Rg + Λg = 8πT,

1



is said to contain a non-trivial black hole region if J−(I +), i.e. the causal past of future null infinity,

has a non-empty complement, whenever such a quantity is well-defined.1

When the cosmological constant Λ is set equal to zero, the Kerr-Newman black holes are the unique2

real-analytic, stationary, asymptotically flat solutions to the Einstein-Maxwell equations. They are

parametrized in terms of a black hole mass M , a charge Q and angular momentum a. Subsets of

this family are given by the Reissner-Nordström (a = 0), the Kerr (Q = 0) and Schwarzschild (Q = 0,

a = 0) black holes. Analogous definitions hold in the case Λ > 0 (Kerr-Newman-de Sitter family) and

Λ < 0 (Kerr-Newman-Anti de Sitter family).

The main features of black hole spacetimes are best understood when the Einstein equations are posed

as an initial value problem (IVP). This setting comes naturally as a consequence of the hyperbolic nature

of the Einstein equations. However, due to the geometric character of the PDE system (the unknown

quantity being the ambient metric itself), such a formulation requires caution. A rigorous framework for

the IVP was first advanced by Choquet–Bruhat [46] and then Choquet–Bruhat–Geroch [12]. In particular,

a Riemannian manifold (R, h) and a symmetric 2-tensor field K on R satisfying the constraint equations

R̄ +
(
Ki

i

)2
+KijK

ij − 2Λ = 16πT00,

∇̄iK
j
j − ∇̄jK

j
i = −8πT0i,

with R̄ the Ricci scalar of R, uniquely determine (up to isometries) a globally hyperbolic Lorentzian

manifold (M, g) that satisfies the Einstein equations. A posteriori, h can be seen to be the restriction of

the Lorentzian metric g to R and K can be seen to be the second fundamental form of R. Analogous

IVPs in terms of characteristic initial hypersurfaces are common in general relativity [90] and allow to

exploit the null structure of the Einstein equations.

1.2 The uniqueness problem and strong cosmic censorship

A natural question when analysing an initial value problem for a system of differential equations is

whether it is well-posed in the sense of Hadamard. Existence and uniqueness for solutions to the Einstein

equations have non-trivial implications of physical relevance. In the following, we focus on the uniqueness

problem, which is the central topic of this thesis and is related to notable black hole solutions (see also

section 1.4 for a discussion of the existence problem and weak cosmic censorship).

Let us consider a black hole interior as in Fig. 1.1. If starting from an initial value problem, such a

diagram can be drawn a posteriori, since the spacetime is constructed during the dynamics. Since the

event horizon H+ is a null hypersurface, it is natural to prescribe initial data on it (and on an additional

null hypersurface) and obtain such a spacetime from a characteristic IVP. One of the main points of this

construction is that H+ is a future-inextendible null hypersurface, i.e. future timelike infinity i+ plays a

physical role in this conformal diagram.
1The notion of causal past, here, is defined with respect to a larger manifold with boundary in which the original

spacetime is conformally embedded. In particular, future null infinity (which is not necessarily a null hypersurface, for
instance when Λ > 0) is contained in the boundary of the extended spacetime.

2In a suitable sense [17].
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Figure 1.1: A local region of the interior of a Reissner-Nordström(-de Sitter) black hole. For each point
in this conformal diagram, it is possible to distinguish between the causal future and the causal past of
such a point. The curve γ describes the motion of an observer entering the black hole region. At the
moment of crossing the exterior boundary H+ of the black hole (the event horizon), the causal future
of the observer is contained in the black hole interior. For visualization purposes, the causal cones are
drawn in three dimensions.

Notable black hole solutions, like those belonging to the Reissner-Nordström(-de Sitter) and, more

generally, to the Kerr-Newman(-de Sitter) family can be constructed via a characteristic IVP of this sort.

For such solutions3, the metric is regular along the boundary of the domain of dependence of the initial

hypersurfaces (i.e. the Cauchy horizon CH+) and can be smoothly extended to the future (in infinitely

many ways) beyond it (see Fig. 1.2). This is a paradigmatic example of the failure of uniqueness (without

loss of regularity) in the IVP for the Einstein equations.

Figure 1.2: For Kerr-Newman(-de Sitter) black holes with non-trivial charge or non-trivial angular mo-
mentum, the spacetime metric can be smoothly extended in infinite ways beyond the domain of depen-
dence of the initial hypersurfaces.

The strong cosmic censorship conjecture (SCCC) states that such extensions are unstable

under perturbations. The instability statement is often meant as follows: for a (generic) set of initial

data posed on a Cauchy hypersurface, a unique (up to isometries) spacetime solution exists and, for such

a solution, no extensions (belonging to a certain regularity class) can be constructed. The genericity
3Provided that either the charge Q or the angular momentum a is non-zero. In the case a = 0, Q = 0 (Schwarzschild

spacetime) no Cauchy horizon forms.
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assumptions on the initial data and the dependence on the regularity of solutions are crucial points that

will be explored in the thesis.

The present work shows that, starting from a characteristic IVP describing spherically symmetric

charged black holes with a positive cosmological constant, geometric extensions beyond the domain of

dependence can be built for near-extremal4 initial data. In particular, such metric extensions belong to

H1 in a neighbourhood of the Cauchy horizon and solve the Einstein equations in a weak sense. This

construction suggests a violation of the H1 formulation of the SCCC in the case of a positive cosmological

constant. In the following, we explain why this result is expected for this family of black holes.

1.3 The blueshift mechanism and the case Λ > 0

In the 1960s, Penrose suggested that Cauchy horizons of black hole spacetimes, such as that of a

Reissner-Nordström spacetime, should suffer from an instability mechanism due to the blueshift effect,

that forbids observers from crossing the inner horizon of such black hole interiors (in the spirit of the

SCCC, see already Fig. 2.1). In the following, we will see that, when the cosmological constant Λ is

positive, this phenomenon might fail to render geometric extensions unstable.

A formal description of the blueshift mechanism can be given as follows (see also [54]). Let ϕ be a

solution of the linear wave equation

□gϕ = 0,

where g is a Reissner-Nordström (interior) background. As it will be clear from the next steps, this

construction (in fact, the blueshift mechanism) does not depend on the sign of the cosmological constant.

In a suitable geometric optics approximation, we can think of ϕ as modelling some radiation propagating

in the black hole interior. In double null (u, v) coordinates, the metric g becomes

g = −f(r)dt2 + 1

f(r)
dr2 + r2σS2 = 4f(r(u, v))dudv + r2σS2 ,

where

f(r) = 1− 2M

r
+
e2

r2
=

(r+ − r)(r − r−)

r2
,

σS2 is the standard metric on the unit round 2-sphere and r± =M ±
√
M2 − e2. Here, we used that

u = r∗−t
2 ,

v = r∗+t
2 ,

with r∗ such that dr∗ = f(r)−1dr. Notice that the above Eddington-Finkelstein coordinates are such

that u ∈ (−∞,+∞) and v ∈ (−∞,+∞).

Let X = Xu∂u + Xv∂v be the 4-velocity of a family of (radially) free-falling observers in the black

hole interior, reaching the (right) Cauchy horizon (see also Fig. 1.1). The geodesic motion gives the

4The near-extremality condition can be interpreted as requiring very charged black holes. In the uncharged and rotating
case, which is only briefly discussed in this work, near-extremality corresponds to rapidly-spinning solutions.
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condition g(X,X) = −1 and thus

Xu = − 1

4f(r)Xv
,

whenever the above coefficients are non-zero. On the other hand, since K := ∂u+∂v is a Killing vector for

g, we have the additional condition g(K,X) = E = const. We can set E = 1 by choosing suitable initial

condition (for instance, using (v, r, θ, ϕ) coordinates, we can set dr
dλ (r+) = 1 along the event horizon,

where λ is the affine parameter of the timelike geodesic). It follows that:

Xv =
1 +

√
1− 4f(r)

4f(r)
(1.1)

and thus

Xu =
1−

√
1− 4f(r)

4f(r)
. (1.2)

Since the right Cauchy horizon is formally identified with the set {v = +∞}, it is useful to understand

the asymptotic behaviour of r∗. From the definitions of f and of r∗, the latter satisfies

r∗ = − 1

2K−
log |r − r−|+O(1), as r → r−,

where K± = r+−r−
2r2±

= 1
2 |f

′(r±)| are the (absolute values of) the surface gravities of the event horizon

and of the Cauchy horizon, respectively. In particular:

r − r− = Ce−2(v+u)K− as r → r−. (1.3)

Now, the energy-momentum tensor of ϕ is

Tµν [ϕ] = ∂µϕ∂νϕ− 1

2
gµν∂αϕ∂

αϕ.

The energy current with respect to the Killing vector field K = ∂u + ∂v is

JK
µ [ϕ] = Tµν [ϕ]K

ν = |∂uϕ|2δuµ + |∂vϕ|2δvµ.

For every fixed u ∈ (−∞,+∞), we have (see (1.1), (1.2) and (1.3)):

g(J,X) = |∂uϕ|2Xu + |∂vϕ|2Xv ∼ c|∂uϕ|2 + e2K−v|∂vϕ|2, (1.4)

as v → +∞, for a constant c > 0. The above is the energy density of ϕ as measured by the family of

observers crossing the (right) Cauchy horizon and reveals the exponential growth related to the blueshift

instability. We stress that the intensity of the instability depends on the surface gravity of the Cauchy

horizon. On the other hand, the above energy density is bounded if

|∂vϕ|(u, v) ≤ Ce−K−v (1.5)
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near the Cauchy horizon. In other words, the blueshift mechanism does not produce any instability in

the energy if the decay of the solution ϕ is sufficiently rapid.

Thus, in order to understand the consequences of blueshift, it is necessary to investigate the dispersive

properties of waves in the black hole spacetime (including the exterior region). These depend on the sign

of the cosmological constant. In fact, solutions to the wave equation decay at an exponential rate when

Λ > 0 (see already chapter 2). Such an exponential rate is faster than e−K−v (see (1.5)) in the case of

extremal black holes (for which K− = 0). Similarly, it is expected that (1.5) holds in the near-extremal

regime.

In this thesis we prove rigorous results for a non-linear toy model describing perturbations of Reissner-

Nordström-de Sitter spacetimes. Such results show that, roughly speaking, the above intuition on the

failure of blueshift as an instability mechanism is correct.

The motivation behind this work is to understand the limits of general relativity as a mathematical

theory that describes our universe and is expected to adhere to the principles of classical determinism.

Even though our results suggest that, in some contexts, determinism may fail, we stress that further

investigations are necessary to settle the problem definitely. In particular:

• The results that we obtain are expected to hold for near-extremal charged black holes, which are

considered somehow exotic in the astrophysical literature,

• These results assume sufficiently regular (smooth) initial data. By considering rough initial data,

numerical evidence and rigorous works at the linear level (see also chapter 2) show that instability

is retrieved at the level of the energy of solutions. Notice that working in a lower regularity setting

is sometimes motivated by quantum theories of gravity.

1.4 Singularities and the global existence problem

From the point of view of the initial value problem, strong cosmic censorship is an assertion of

uniqueness for metric solutions to the Einstein equations. A closely related problem is that of global

existence. This is measured in terms of the completeness of future null infinity. When such a hypersurface

is incomplete, it is said that the spacetime contains a naked singularity. The weak cosmic censorship

conjecture (WCCC) posits that spacetimes with naked singularities should be unstable, in a suitable

sense [13]. Historically [85], the word strong was assigned to those versions of cosmic censorship that

were phrased without any reference to the observers at infinity. However, despite the nomenclature, there

is no causal relation between the PDE formulations of the SCCC and those of the WCCC: there exist

spacetimes for which the SCCC fails but the WCCC holds and vice versa.

Both conjectures deal with the term singularity. In a seminal paper [88], the Schwarzschild solution

was described to have a singularity in correspondence of the spheres of radius r = 2M , M being the

black hole mass and (t, r, θ, ϕ) being the Schwarzschild chart, even though the degeneracy of quantities at

r = 2M depends on the coordinate choice. In modern conventions, the term singularity is used to denote

coordinate-independent “degenerate behaviours” occurring in black hole regions. This is, on purpose,
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a loose definition due to the wide variety of phenomena that solutions to the Einstein equations can

describe [50, 41]. The singularity theorems of Hawking and Penrose [55], for instance, reserve this name

to describe geodesic incompleteness and guarantee the existence of such a degeneracy in terms of open

conditions.
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Chapter 2

The interior of spherically symmetric

charged black holes with Λ > 0

2.1 An overview of the model

The present work concerns the system of equations describing a spherically symmetric Einstein-

Maxwell-charged-Klein-Gordon model with positive cosmological constant Λ, namely:


Ric(g)− 1

2R(g) g + Λg = 2
(
TEM + Tϕ

)
, (Einstein’s equations)

dF = 0, d ⋆ F = ⋆J, (Maxwell’s equations)(
DµD

µ −m2
)
ϕ = 0, (Klein-Gordon equation)

(2.1)

where

TEM
µν = gαβFαµFβν − 1

4
gµνF

αβFαβ

is the energy-momentum tensor of the electromagnetic field,

Tϕ
µν = Re

(
DµϕDνϕ

)
− 1

2
gµν
(
DαϕDαϕ+m2|ϕ|2

)
is the energy-momentum tensor of the charged scalar field and

Jµ = − iq
2

(
ϕDµϕ− ϕDµϕ

)
is the current appearing in Maxwell’s equations. The above system will be presented in full detail in

chapter 3.

The main objective of our work is to study the evolution problem associated to the partial differential

equations (PDEs) (2.1), with respect to initial data prescribed on two transversal characteristic hypersur-

faces. Along one of these hypersurfaces, the initial data are specified to mimic the expected behaviour of
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a charged, spherically symmetric black hole, approaching1 a sub-extremal Reissner-Nordström-de Sitter

solution and interacting with a charged and (possibly) massive scalar field. This scenario is essentially

encoded in the requirement of an exponential decay for such a scalar field along the event horizon in

terms of an Eddington-Finkelstein type of coordinate, i.e. an exponential Price law upper bound. The

evolved data then describe the interior of a dynamical black hole. A key point of our study regards the

existence of a Cauchy horizon and of metric extensions beyond it, in different classes of regularity and

most notably in H1
loc. An overview of our results is given in section 2.2.

This problem arises naturally as a consequence of a decades-long debate on the mathematical treat-

ment of black hole spacetimes. Already in the case Λ = 0, it was observed that the celebrated Kerr and

Reissner-Nordström solutions to the Einstein equations share a daunting property: the future domain of

dependence2 of complete, regular, asymptotically flat, spacelike hypersurfaces is future-extendible in a

smooth way. This translates into a failure of classical determinism3 which is in sharp contrast with the

Schwarzschild case, where analogous extensions are forbidden even in the continuous class [93]. On the

other hand, observers crossing a Cauchy horizon4 are generally expected to experience a blueshift instabil-

ity [84, 97], leading to the blow-up of dynamical quantities and thus rescuing the deterministic principle.

The instability is related to an unbounded amount of energy associated to test waves propagating in such

a universe, as measured along the Cauchy horizon.5

This led to the first formulation of the strong cosmic censorship conjecture (SCCC), which, roughly

speaking, forbids the existence of metric extensions beyond the Cauchy horizon of black hole spacetimes,

at least in some regularity class.

In fact, the regularity of such extensions measures to which extent the SCCC fails. Although the

Einstein equations are PDEs in the second derivative of the metric tensor, the H1
loc (Christodoulou-

Chruściel) regularity is actually the minimal requirement to make sense of the extensions as weak solutions

to the Einstein equations (see also [22, 34, 14, 15]), even though local well–posedness is not known to

hold in this case [68]. Weaker formulations can also be considered [89].

Being related to an exponential blow-up of the energy, the linear instability associated to blueshift

concerns the first derivatives of scalar perturbations. Such effect becomes weaker in the near-extremal

limit, for which the surface gravity of the Cauchy horizon approaches zero. This instability is absent in

the extremal case [47, 48, 49].

Moreover, dispersive effects in the black hole exterior also impact the picture described by the blueshift

instability. Scalar perturbations are expected to decay along the event horizon of black holes at a rate

which, essentially, is exponential in the case Λ > 0 [40, 32, 44, 45, 61, 75], inverse polynomial in the case

Λ = 0 (see [87, 53] for heuristics and numerical arguments, see [31, 4, 5, 39, 38, 99, 77, 59] for rigorous
1In an appropriate sense, which will be specified rigorously during our study.
2We define the future domain of dependence of a spacelike hypersurface S as the set of points p such that every past-

directed, past-inextendible causal curve starting at p intersects S, see e.g. [82].
3The lack of global uniqueness can occur without any loss of regularity of the solution metric, even though the Einstein

equations are hyperbolic, up to their diffeomorphism invariance. See [25] for a discussion of this phenomenon.
4That is the boundary of the future domain of dependence of a complete Cauchy hypersurface in the extended spacetime

manifold. We refer the reader to the introduction of [22] for a discussion on the topic and to [16] for constructions of specific
non-isometric extensions.

5At the level of geometric optics, [84] asserts: “As [an observer crossing the Cauchy horizon CH+] looks out at the
universe that he is ‘leaving behind’, he sees, in one final flash, as he crosses CH+, the entire later history of the rest of his
‘old universe’ ”. See also Fig. 2.1.
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results) and logarithmic for Λ < 0 [63, 64]. This behaviour is known as Price’s law.

The case Λ > 0 suggests a scenario where the exponential blow-up of the energy due to blueshift (in

the sub-extremal case) can be counterbalanced by an exponentially fast decay in the black hole exterior

(at least near extremality), leading to extensions of H1 regularity at the Cauchy horizon. While this

effect has been described rigorously in [18, 60] for the linear wave equation on a Reissner-Nordström-de

Sitter background, the present work proves the analogous result in a non-linear setting with charged

scalar field (see already section 2.2 and see [22] for the non-linear and uncharged case).

Figure 2.1: A schematic depiction of the blueshift instability in the case, for instance, of a sub-extremal
Reissner-Nordström-de Sitter black hole (although we stress that this phenomenon is not specific to the
case Λ > 0). Assume that radiation pulses at constant time intervals, as measured in proper time, from a
timelike curve in the exterior of the black hole. The wordline in the exterior of the black hole has infinite
affine length. On the other hand, observers along the timelike worldline in the black hole interior can
reach the Cauchy horizon CH+ in finite proper time, thus receiving an infinite amount of pulses at the
moment of crossing CH+.

The current understanding of non-linear effects is influenced by the celebrated work by Israel and

Poisson on the Einstein-Maxwell-null dust system [86]. A subsequent turning point was the adoption

of the Einstein-Maxwell-(real) scalar field model to study black hole interiors [25]. In particular, the

addition of a scalar field not only renders the problem non-trivial (already under spherical symmetry)

but is also motivated by the hyperbolic properties expected from the Einstein equations. A review of

this construction can be found in the introduction of [30]. In the latter, the analysis of the non-linear

problem in the absence of spherical symmetry was initiated. We will review relevant past work in section

2.4.

The present thesis is strictly related to the following formulations of the SCCC for the non-linear

system (2.1).

Conjecture 2.1 (C0 formulation of the SCCC for the Einstein-Maxwell-charged-Klein-Gordon system

with Λ > 0, under spherical symmetry)

Let Σ be a regular, compact (without boundary),6 spacelike hypersurface. Let us prescribe generic (in the

spherically symmetric class) initial data on Σ, for the Einstein-Maxwell-charged-Klein-Gordon system

with Λ > 0. Then, the future maximal globally hyperbolic development7 of such initial data cannot be
6The case of S3 is often considered in the literature. Non-compact, “asymptotically de Sitter” hypersurfaces can also be

examined. See also Fig. 2.3 for an overview on potential global structures.
7Which is, roughly speaking, the largest Lorentzian manifold determined by the evolution of Cauchy data via the Einstein

equations. See [92] for a precise definition.

11



locally extended as a Lorentzian manifold endowed with a continuous metric.

Conjecture 2.2 (H1
loc formulation of the SCCC for the Einstein-Maxwell-charged-Klein-Gordon system

with Λ > 0, under spherical symmetry)

Let Σ be a regular, compact (without boundary), spacelike hypersurface. Let us prescribe generic (in the

spherically symmetric class) initial data on Σ, for the Einstein-Maxwell-charged-Klein-Gordon system

with Λ > 0. Then, the future maximal globally hyperbolic development of such initial data cannot be

locally extended as a Lorentzian manifold endowed with a continuous metric and Christoffel symbols in

H1
loc.

In particular, this work contributes to fill a gap in the literature by suggesting a negative resolution

to conjecture 2.1 and, more significantly, a negative resolution, for a large subset of the parameter space,

to conjecture 2.2. Such resolutions become definitive once the initial conditions of our system are shown

to arise from suitable Cauchy data (although we do not deal with this problem in the current work, we

explain in section 2.3 why we expect such results to hold in the black hole exterior).

Being a natural generalization of [22] (but notice that the coupled scalar field is now charged and

possibly massive) and [79] (in our case, however, Λ > 0, thus the Price law is exponential rather than

inverse polynomial), we take these works as starting points for our analysis. In section 2.4 we review

previous relevant work and compare the techniques we employed with those of [22] and [79].

2.2 Summary of the main results

The main conclusions of our work can be outlined as follows. We first study the characteristic IVP

for the first-order system related to (2.1) (this corresponds to equations (3.20)–(3.33)) and establish its

local well-posedness, modulo diffeomorphism invariance (see theorem 4.2 and proposition 4.4). We then

provide a novel proof of the extension criterion for the first-order system (theorem 5.1), demanding less

regularity on the initial data as compared to the analogous result in [72, theorem 1.8] for the second-order

system.

Subsequently, we show the equivalence between the first-order and the second-order Einstein-Maxwell-

charged-Klein-Gordon systems (see remark 4.5) under additional regularity of the initial data, which we

assume for the remaining part of our work. Finally, we assess the global uniqueness of the dynamical

black hole under investigation, and its consequences for the SCCC, in the following classes of regularity.

Theorem (stability of the Cauchy horizon and existence of continuous extensions. See corollary 6.20,

theorem 6.21)

Let Q+, ϖ+ and Λ be, respectively, the charge, mass and cosmological constant associated to a fixed sub-

extremal Reissner-Nordström-de Sitter black hole. Let us consider, with respect to the first-order system

(3.20)–(3.33), the future maximal globally hyperbolic development (M, g, F, ϕ) of spherically symmetric

initial data prescribed on two transversal null hypersurfaces, where q ∈ R \ {0} is the charge of the scalar

field ϕ and m ≥ 0 its mass.
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In particular, given Q = M/SO(3), let (u, v) be a system of null coordinates on Q, determined8 by

(3.44) and (3.45) and such that

g = −Ω2(u, v)dudv + r2(u, v)σS2 , (2.2)

where σS2 is the standard metric on the unit round sphere. For some U > 0 and v0 > 0, we express the

two initial hypersurfaces in the above null coordinate system as [0, U ]× {v0} ∪ {0} × [v0,+∞).

Assume that the initial data to the characteristic IVP satisfy assumptions (A)–(G), which require,

in particular, that the initial data asymptotically approach those of the afore-mentioned sub-extremal

black-hole, and that an exponential Price law upper bound holds: there exists s > 0 and C > 0 such that

|ϕ|(0, v) + |∂vϕ|(0, v) ≤ Ce−sv. (2.3)

Then, if U is sufficiently small,9 there exists a unique solution to this characteristic IVP, defined on

[0, U ]× [v0,+∞), given by the metric in (2.2) and such that

u 7→ lim
v→+∞

r(u, v) ≥ r > 0

is a continuous function from [0, U ] to [r, r−], for some r > 0, and

lim
u→0

lim
v→+∞

r(u, v) = r−,

where r− is the radius of the Cauchy horizon of the reference sub-extremal Reissner-Nordström-de Sitter

black hole.

Moreover, (M, g, F, ϕ) can be extended up to the Cauchy horizon CH+ = {v = +∞} with continuous

metric and continuous scalar field ϕ.

This suggests a negative resolution to conjecture 2.1 (see also section 2.3), for every non-zero

value of the scalar field charge and for every non-negative value of its mass. This resolution becomes

definitive if (2.3) is established for solutions evolved from regular Cauchy data.

Theorem (no-mass-inflation scenario and H1 extensions. See theorems 7.1 and 7.5)

Under the assumptions of the previous theorem, let s be the constant in (2.3) and consider

ρ :=
K−

K+
> 1,

where K− and K+ are the absolute values of the surface gravities of the Cauchy horizon and of the event

horizon, respectively, of the reference sub-extremal Reissner-Nordström-de Sitter black hole. We define

8When the initial data of the characteristic IVP coincide with Reissner-Nordström-de Sitter initial data, the coordinate
v is equal to the Eddington-Finkelstein coordinate r∗+t

2
used near the black hole event horizon. See appendix D for more

details.
9Compared to the L∞ norm of the initial data.
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the renormalized Hawking mass

ϖ =
r

2

(
1− g(dr♯, dr♯)

)
+
Q2

2r
− Λ

6
r3,

where Q is the charge function of the dynamical black hole and Λ is the cosmological constant. If:

s > K− and ρ < 2, (2.4)

then the geometric quantity ϖ is bounded, namely there exists C > 0, depending uniquely on the initial

data, such that:

∥ϖ∥L∞([0,U ]×[v0,+∞)) = C < +∞.

Moreover, for such values of s and ρ, there exists a coordinate system for which g can be extended

continuously up to CH+, with Christoffel symbols in L2
loc and ϕ in H1

loc.

When the decay given by the exponential Price law upper bound is sufficiently fast and the parameters

of the reference sub-extremal black hole lie in a certain range,10 the above result puts into question

the validity of conjecture 2.2 (see also section 2.3).

As shown in Fig. 2.2, this theorem significantly extends the known range of parameters for which H1

extensions can be obtained, when comparing to the case of a massless and uncharged scalar field [22], in

a way which is expected to be sharp in the (s, ρ) parameter space [18, 60]. We stress that the range of

parameters allowing for H1 extensions is not expected to depend on the charge of the scalar field. On

the other hand, the techniques of the present work are more general than those previously used in the

case of an uncharged scalar field, when Λ > 0.

Notice that the first condition in (2.4) depends on the choice of the outgoing null coordinate v, see

also appendix D.

Figure 2.2: Values of s and ρ = K−
K+

that guarantee the absence of mass inflation for a generic set of
initial data, in comparison to the results in [22]. In the extended range that we obtained, H1

loc extensions
of the solutions to the IVP are constructed. This extended range includes near-extremal black holes, for
which ρ is close to 1. The value of s is expected to depend in a non-trivial way on the parameters of the
fixed sub-extremal black hole, see [9, 10, 58, 62, 11].

10This includes the case in which the reference black hole is close to being extremal.
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2.3 Strong cosmic censorship in full generality

The results of our analysis show that the main conclusion of [22] is still valid when we add a charge

(and possibly mass) to the coupled scalar field: according to the state of the art of the SCCC,

the potential scenarios that lead to a violation of determinism in the case Λ > 0 cannot be

ruled out.

To explain how to reach this conclusion, we first illustrate the connection between our results and

conjecture 2.2, and then the relation between the latter and other formulations of the SCCC.

The results presented in section 2.2 stem from the evolution of initial data from two transversal null

hypersurfaces, one of which modelling the event horizon of a dynamical black hole. This suggests that

the black hole we take under consideration has already formed at the beginning of the evolution.11

Strictly speaking, however, the SCCC constrains the admissible future developments of spacelike

hypersurfaces, on which generic12 initial data are specified. Although we are not committed to any

specific global structure, it is useful to think of the characteristic IVP of section 3.1 as arising from

suitable (compact or non-compact) initial data prescribed in the black hole exterior (see also Fig. 2.3).

The reason why we believe that our results are relevant to the SCCC is that the initial data we prescribe

for our characteristic IVP are compatible with numerical solutions obtained in the exterior of Reissner-

Nordström-de Sitter black holes (see the paragraph below). Such results are also expected to hold for

perturbations of such black holes, due to the non-linear stability results [57, 61].

Figure 2.3: Two possible global spacetime structures in which the characteristic IVP of section 3.1 fits
in. The coloured region is the one depicted in the forthcoming Fig. 2.4, namely the black hole interior
region under inspection in the present work. These global structures require a dynamical formation of
trapped surfaces, starting from non-trapped initial data (see also [23, 2]).

In particular, our v coordinate can be compared to half of the outgoing Eddington-Finkelstein coordi-

nate of [10] (see appendix D). This can be used to see that, according to the same article, condition (2.4)

can be (numerically) attained at the linear level: s > K− (i.e. β = s
2K−

> 1
2 , in the language of [10]) for

linear waves propagating in the exterior of near-extremal (i.e. ρ close to 1) Reissner-Nordström-de Sitter
11Notice that the interior and exterior problems can be treated separately, due to domain of dependence arguments,

and the exterior region in this context was proved to be stable in [57], with respect to gravitational and electromagnetic
perturbations.

12By “generic” we mean open and dense in the moduli space of initial data, in a suitable topology (see, e.g. [91] and
[73]). This can also be interpreted in terms of a “finite co-dimension condition” (a related discussion can be found in [73]
for the non-linear case and in [34] in a linear setting). Genericity of the set of black hole parameters plays a prominent role
in [66], for a negative cosmological constant.
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black holes. This result is also expected to hold on dynamical black holes sufficiently close to Reissner-

Nordström-de Sitter, as the one we analyse. Indeed, notice that on a fixed background s is equal, up to

a multiplying factor, to the spectral gap of the Laplace-Beltrami operator □g. If we denote by QNM the

set of the quasinormal modes of the reference black hole, the spectral gap can also be expressed by

inf
ω∈QNM
Im(ω)<0

(− Im(ω)).

In particular, s depends on the black hole parameters. At the same time, [57] shows that, under small

perturbations, the parameters of the perturbed solution are sufficiently close to the initial ones.

Therefore, once the numerical results of [10] are verified rigorously and extended to the non-linear

case, a mathematical proof for the validity of (2.4) would in principle be possible, leading to a negative

resolution of conjecture 2.2.

On the other hand, conjectures 2.1 and 2.2 regard initial data which are generic in the spherically

symmetric class, but non-generic in the much larger moduli space of all possible initial configurations.

In particular, when we talk about the SCCC under spherical symmetry, the validity or failure of such

a conjecture does not automatically settle the non-spherically symmetric problem. Nonetheless, due to

analogies with the conformal structure of a Kerr-Newman spacetime, it is widely believed [25, 27, 22,

30] (and there is substantial numerical evidence in the case Λ > 0 [11, 35]) that results obtained in the

charged spherically symmetric context can provide vital evidence to either uphold or refute formulations

of the SCCC in absence of spherical symmetry.13

A larger moduli space can also be achieved by working in a rougher class of initial data. In [34],

where global uniqueness is investigated at the linear level, the following is proved: given initial data

(ψ0, ψ
′
0) ∈ H1

loc × L2
loc to the linear wave equation □gψ = 0 on a sub-extremal Reissner-Nordström-de

Sitter black hole, with data prescribed on a complete spacelike hypersurface, ψ cannot be extended across

the Cauchy horizon in H1
loc (see also the numerical work [37]). This means that, if the numerical results

[9] obtained in the exterior of Reissner-Nordström-de Sitter black holes were to be proved rigorously, the

initial data leading to a potential failure of the SCCC could be ignored, because they are non-generic

in this larger set of rough initial configurations. Whether this Sobolev level of regularity for the initial

data is “suitable” may well depend on the problem to be studied and is still a topic of discussion in the

literature. We also refer the reader to [33, 76] to compare with instability results in the Λ = 0 case.

2.4 Previous works and outline of the bootstrap method

The case Λ = 0: after foundational work by Christodoulou [13], Dafermos [25] first laid the frame-

work for the analysis of the SCCC in spherical symmetry via modern PDE methods. In [27], the C0

version of the SCCC was proved to be false for the spherically symmetric Einstein-Maxwell-(real) scalar

field system, conditionally on the validity of a Price law upper bound, which was later seen to hold in [31].
13The case of uncharged black holes, however, needs to be inspected separately. See the numerical study [36] for Kerr-de

Sitter. In particular, the H1 formulation of the SCCC is expected to be violated in Kerr-Newman-de Sitter black holes for
parameters sufficiently close to those of a near-extremal Reissner-Nordström-de Sitter solution [35].
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The work [73] proved the validity of the C2 formulation of the SCCC for the same spherically symmetric

system.

The first steps towards the analysis of a complex-valued (i.e. charged) and possibly massive scalar

field were taken in [72]: this is the model that we denoted as the Einstein-Maxwell-charged-Klein-Gordon

system. The work [72], in particular, presented a soft analysis of the future boundary of spacetimes

undergoing spherical collapse. More recent work on the SCCC for the same system can be found in

[79, 81, 80, 67], where continuous spacetime extensions were constructed and several instability results

obtained.

The analysis of the non-linear problem without symmetry assumptions and in vacuum, namely the

validity of the SCCC for a Kerr spacetime, was initiated in the seminal work [30]. Here, the C0 formulation

of the SCCC was shown to be false, under the assumption of the quantitative stability of the Kerr exterior.

The problem is indeed intertwined with stability results of black hole exteriors, object of an intense activity

that built on a sequence of remarkable results and notably led, in recent times, to [52, 69, 70] for slowly

rotating Kerr solutions. Further celebrated results are the non-linear stability of the Schwarzschild family

[29]. For an overview on the problem and recent contributions both in the linear and non-linear realm, we

refer the reader to [28, 3, 95, 96, 51, 8] and references therein. See also [6, 5] for results in the extremal

case.

The case Λ > 0: Differently from the asymptotically flat case, Reissner-Nordström-de Sitter black

holes present a spacelike future null infinity and an additional Killing horizon C+ (the cosmological

horizon). As a result, scalar perturbations of such black holes decay exponentially fast along H+ [40, 75,

44]. This behaviour competes with the blueshift effect expected near the Cauchy horizon and determining

a growth, also exponential, of the main perturbed quantities. While the H1 version of the SCCC is

expected to prevail in the asymptotically flat case (the exponential contribution from blueshift wins over

the inverse polynomial tails propagating from the event horizon), the situation drastically changes when

Λ > 0. In the latter case, indeed, knowing the exact asymptotic rates of scalar perturbations along the

event horizon, and thus determining which of the two exponential contributions is the leading one, is of

vital importance to determine the admissibility of spacetime extensions.

So far, a quantitative description of the exponents for such a decay is available at the linear level via

numerical methods. In particular, it has been shown numerically that the H1 norm (i.e. the energy) of

linear waves propagating in sub-extremal Reissner-Nordström-de Sitter black holes is bounded up to the

Cauchy horizon, provided that such black hole backgrounds are close to being extremal [9, 10, 78] (see

also the rigorous results [58] and [62] in the small mass limit). We refer to [11, 35] for the analogous

stability result for scalar perturbations of Kerr-Newman-de Sitter. A different outcome was found in the

Kerr-de Sitter case [36], where numerical results showed that the H1
loc version of the SCCC is respected

in the linear setting.

On the other hand, the SCCC with Λ > 0 has been rigorously studied via the Einstein-Maxwell-(real)

scalar field model in [19, 20, 21] (compare with [25]). One of the main novelties of this series of papers

is a partition of the black hole interior in terms of level sets of the radius function, rather than curves of

constant shifts as in [25, 27] (the latter curves fail to be spacelike when Λ ̸= 0). These three works deal
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with a real scalar field, taken identically zero along the event horizon. Conversely, an exponential Price

law (both a lower bound and an upper bound) was prescribed in [22] along the event horizon (compare

with [27]), and generic initial data leading to C0 extensions were constructed. Conditions to have either

H1
loc extensions or mass inflation were given in terms of the decay of the scalar field along the event

horizon.

The work that we present in the next sections is a natural prosecution of [22] as it replaces the neutral

scalar field with a charged one, whose behaviour along the event horizon is dictated by an exponential

Price law upper bound. We extend, in a way which is expected to be optimal, the set of parameters s

and ρ that allow for H1
loc extensions.

Again, the problem is related with stability results of black hole exteriors: see [57] for the non-linear

stability of slowly rotating Kerr-Newman-de Sitter black holes.

The case Λ < 0: recent progress with the investigation of the SCCC in the case Λ < 0 can be found,

for instance, in [63, 64, 66, 65].

Comparison with [79] and [22]: the present work generalizes the results of [22] to the case of

a charged and (possibly) massive scalar field, without requiring any lower bound14 for it along the

initial outgoing characteristic hypersurface. Differently from the neutral case, a charged scalar field is

compatible with a more realistic description of gravitational collapse (see Fig. 2.3 for potential global

structures). At the same time, the charged setting requires gauge covariant derivatives, brings additional

terms in the equations and generally undermines monotonicity properties due to the fact that the scalar

field is now complex-valued. With respect to the real case, additional dynamical quantities, such as the

electromagnetic potential Au and the charge function Q, need to be controlled during the evolution.

Moreover, the presence of a mass term for the scalar field allows to describe compact objects formed by

massive spin-0 bosons.

In particular, we replace many monotonicity arguments exploited in [22] with bootstrap methods. In

this sense, our work follows the spirit of [79], where the stability of the Cauchy horizon was proved by

bootstrapping the main estimates from the event horizon. In our case, however, we need to propagate

exponential terms of the form e−c(s)v, with c(s) > 0 and v being an Eddington-Finkelstein type of

coordinate.

We now summarize the main technical strategies that we adopt in our work (see also Fig. 2.4 for the

partition of the black hole interior that we adopt) and how they differ from the techniques of [22] and

[79]. Here, the quantities r− and r+ represent the radii of the Cauchy horizon and of the event horizon,

respectively, of the fixed sub-extremal Reissner-Nordström-de Sitter black hole. We recall that in section

2.2 we presented the coordinates u = uKru, v = vEF and the function Ω2 (see (2.2)). The functions ϖ

and µ are defined in (3.15) and (3.16), respectively.

• Redshift effect, sections 6.1, 6.3 and 6.5: Along the event horizon, we assume an exponential Price

law upper bound e−sv, for a fixed s ∈ (0,+∞), for the scalar field. Near the event horizon, the

redshift effect competes with the exponential Price law. This is translated into the presence of the
14An (integrated or pointwise) lower bound for the scalar field is generally expected in order to prove instability estimates,

such as mass inflation. We will not pursue this direction in our study, even though the estimates we obtain in the black
hole interior pave the way to a future analysis of instability results.
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Figure 2.4: A posteriori, these are the spacelike curves that partition the interior of the dynamical black
hole for v1 ≥ v0 large. Compare with Fig. 3 in [79] and with the figures in [22, section 4]. For the
construction, we consider r− and r+, with 0 < r− < r+, respectively the radius of the Cauchy horizon
and the radius of the event horizon of the reference sub-extremal black hole. We fix R < r+, close to r+,
and Y > r− close to r−. The region to the past of ΓR = {r = R} is the redshift region (the curve A is
the apparent horizon). Between ΓR and ΓY = {r = Y } is the no-shift region. Bounded between ΓY and
γ (which is not a level set of r) is the early blueshift region. Finally, to the future of γ we have the late
blueshift region.

slower15 decay rate e−c(s)v, rather than e−sv. The monotonicity results and Grönwall inequalities

adopted in the real-scalar-field case are replaced by a bootstrap argument. The latter is analogous

to the procedure in [79], where however in our case we need to take care of the different decay rates

in function of s, due to the exponential nature of the estimates.

• Blueshift effect, sections 6.5, 6.6, 6.7, 6.8: Near the Cauchy horizon (whose existence is proved

at the end of section 6.8) an exponentially growing contribution, arising from blueshift, affects the

main estimates. However, this effect is relevant only in a relatively small region in which we can

still propagate the previously obtained decay rates, up to a small error in the exponent of the main

terms. In [22], this was dealt with by using the monotonicity properties of ϖ (for instance to bound

1 − µ away from zero in the no-shift region and to show the integrability of ∂ur and ∂vr near the

Cauchy horizon). In our case, however, these monotonicity properties are lacking. In their place,

we exploit bootstrap arguments.

The bootstrap procedure has to differ from that of [79]: there, the estimate uEF ∼ | log(2K+uKru)|

∼ vEF (see section 3.3 for an overview of the different coordinate systems) is used multiple times.

The constant in this estimate leads to a multiplying factor in front of terms of the form v−s. These

factors can be dealt with using the smallness parameters of the bootstrap procedure. On the other

hand, in our case, such estimates on the null coordinates lead to exponentially large error terms

15Here, c(s) is bounded from above by a value depending on the surface gravity of the event horizon of the final black
hole, see definition (6.27).
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that cannot be removed. To solve this problem, we

replace e−c(s)v with e−Cs(u,v) ∼ e−(c(s)−τ)v

in the main estimates, for a suitable positive16 function Cs and for τ > 0. In particular, the

bootstrap estimates need to contain a function that depends both on the Kruskal-type coordinate

u and on the Eddington-Finkelstein type of coordinate v.17

A key role in the last region is played by the term ∂v log Ω
2 (see also the importance of this term

in [79]) to replace the monotonicity properties used in [22] and to obtain a finer control on the

H1 norm of the scalar field. Indeed, the product uΩ2 measures, in some sense, the redshift and

blueshift effects.

• C0 and H1 extensions, sections 6.9, 7.1, 7.2: once we propagate the exponential decay rates from

H+, the construction of a C0 extension of the spacetime metric mainly follows from the results in

[27, 22, 73, 79].

The H1 extension that we construct is related to the boundedness of the renormalized Hawking

mass ϖ (see also [22]). In the expression (7.3) for ϖ (here θ = r∂vϕ and λ = ∂vr), all quantities

are bounded except possibly for the integral of

|∂vϕ|2

∂vr
. (2.5)

We prove that, for a sufficiently fast decay rate of the scalar field along H+, i.e. for s sufficiently

large, and if the asymptotic black hole is sufficiently near-extremal, |∂vr| admits a lower bound that

makes (2.5) integrable in v. Thus, ϖ is bounded. The integrability of (2.5) is then used to prove

that the Christoffel symbols are locally square integrable, therefore leading to a H1
loc extension of

the metric along CH+.

The outline of the remaining part of the thesis is the following: in chapter 3 we delve into

the main aspects of the characteristic IVP for the Einstein-Maxwell-charged-Klein-Gordon system under

spherical symmetry. Well-posedness of the characteristic IVP is investigated in chapter 4. An extension

criterion is given in chapter 5.

In chapter 6 we establish quantitative bounds along H+ for the main PDE variables of the character-

istic IVP, and propagate these bounds to the black hole interior by bootstrap. This allows us to prove

the stability of CH+ and to construct a continuous spacetime extension at the end of the same section.

In chapter 7 we provide a sharp condition on the reference sub-extremal black hole to generically

prevent the occurrence of mass inflation. Under such an assumption, we also construct an H1
loc spacetime

extension up to and including the Cauchy horizon.

16Strictly speaking, Cs is positive only in a specific region of the black hole interior that has the curve γ as future boundary,
see section 6.6. This does not constitute a problem since all estimates to the future of this region can be expressed in terms
of Cs|γ .

17We follow the convention of [19, 20, 21, 22], where the null coordinates (u, v) = (uKru, vEF ) are used in the entire black
hole interior. See also section 3.3 for a comparison with other conventions.
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Chapter 3

The Einstein-Maxwell-charged-

Klein-Gordon system under

spherical symmetry

The present work revolves around the system of equations describing a spherically symmetric Einstein-

Maxwell-charged-Klein-Gordon model with positive cosmological constant Λ:

Ricµν(g)− 1
2R(g)gµν + Λgµν = 2

(
TEM
µν + Tϕ

µν

)
,

TEM
µν = gαβFαµFβν − 1

4gµνF
αβFαβ ,

Tϕ
µν = Re

(
DµϕDνϕ

)
− 1

2gµν
(
DαϕDαϕ+m2|ϕ|2

)
,

dF = 0, d ⋆ F = ⋆J,(
DµD

µ −m2
)
ϕ = 0.

The above system describes a spherically symmetric spacetime (M, g) interacting with a scalar field ϕ, the

latter being endowed with charge q ∈ R \ {0} and mass m ≥ 0. The units are chosen so that c = 4πG =

ϵ0 = 1 and the symbol ⋆ denotes the Hodge-star operator. The charge generates an electromagnetic field

which interacts with the spacetime itself and is modelled by the strength field tensor F . The description

of the charged scalar field through a complex-valued function and the use of the gauge covariant derivative

Dµ = ∇µ + iqAµ (3.1)

are standard techniques in the gauge-theoretical framework (see [72] for more details) and in Lagrangian

formalism. The current

Jµ = − iq
2

(
ϕDµϕ− ϕDµϕ

)
(3.2)
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appearing in Maxwell’s equations, in particular, can be seen as the Noether current of the (classical)

Lagrangian density L = |Dµϕ|2 −m2|ϕ|2.

We express the isometric action of SO(3) on our spacetime manifold by assuming

g = gQ + r2(u, v)σS2 , (3.3)

with

gQ := −Ω2(u, v)dudv,

for some real-valued function Ω, where σS2 = dθ2 + sin2(θ)dφ2 is the standard metric on the unit round

2-sphere, r is the area-radius function and u, v are null coordinates in the (1 + 1)–dimensional manifold

Q := M/SO(3). In particular, we can conformally embed (Q, gQ) in (R2, η), where η is the Minkowski

metric, and we can restrict ourselves to working with this subset of the two-dimensional space since

conformal transformations preserve the causal structure. Moreover, we will make use of the U(1) gauge

freedom to assume that ϕ and A (see (3.1)) do not depend on the angular coordinates. We will also

require that ∂u = ∂
∂u is a future-pointing, ingoing1 vector field and ∂v is a future-pointing, outgoing one.

We use the same symbol to denote a spherically symmetric function defined on M, and its push-

forward through the projection map π : M → Q.

In order to analyse the behaviour of our dynamical system, we are first naturally led to investigate the

maximal globally hyperbolic development (MGHD) generated by (spherically symmetric) initial data

prescribed on a suitable spacelike hypersurface (see also section 2.3 for possible global structures). After

this analysis, the null structure of the equations motivates us to treat the characteristic initial value

problem on Q, using the (u, v) coordinate system.

With respect to the afore-mentioned (u, v) null coordinates, we are going to work in the set [0, U ] ×

[0,+∞), for some U > 0. Therefore, there exists a 1-form A defined on the MGHD of the initial data

set, such that F = dA = Fuv(u, v)du∧ dv for some real-valued function Fuv. In particular, we can define

the real-valued function Q(u, v) such that

F =
QΩ2

2r2
du ∧ dv. (3.4)

Since we can choose the electromagnetic potential A up to an exact form by performing a gauge choice,

we can set A = Audu. Thus, the gauge covariant derivative Dv is just ∇v (see (3.1)) and

∂vAu = −QΩ2

2r2
. (3.5)

The above expression defines Au up to a function of u. So, without loss of generality, we will assume

that Au vanishes on the initial ingoing hypersurface. Namely, for U > 0 and v0 ≥ 0 fixed, we take

Au(u, v0) = 0 for every u ∈ [0, U ].

1In the language of [72], a vector field defined on the quotient spacetime manifold is ingoing if it points towards the
centre of symmetry, i.e. the projection on M/SO(3) of the set of fixed points of the SO(3) action. See also [72, proposition
2.1] for a related analysis of topologies for the initial data, in the Λ = 0 case.
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3.1 The second-order and first-order systems: the characteristic

initial value problem

Using the results of appendix C, we can write down the Einstein equations in the following form:



∂u

(
∂ur

Ω2

)
= −r |Duϕ|2

Ω2
, (Raychaudhuri equation along the u direction),

∂v

(
∂vr

Ω2

)
= −r |∂vϕ|

2

Ω2
, (Raychaudhuri equation along the v direction),

∂u∂vr =
Ω2

4r3
Q2 +

Ω2r

4
Λ− Ω2

4r
− ∂vr∂ur

r
+
m2Ω2

4
r|ϕ|2, (wave eqn. for r),

∂u∂vlog Ω
2 = −2Re

(
Duϕ∂vϕ

)
− Ω2Q2

r4
+

Ω2

2r2
+

2∂vr∂ur

r2
, (wave eqn. for log Ω2),

(3.6)

(3.7)

(3.8)

(3.9)

Moreover, the equation of motion
(
DµD

µ −m2
)
ϕ = 0 becomes

∂u∂vϕ = −1

r
(Dur∂vϕ+ ∂vrDuϕ) +

iqQΩ2

4r2
ϕ− m2Ω2

4
ϕ, (Klein-Gordon equation) (3.10)

where we used that

∇µ∇µϕ = − 4

rΩ2
(∂ur∂vϕ+ ∂vr∂uϕ+ r∂u∂vϕ),

and

∇µA
µ = − 2

Ω2
∂vAu − 4

Ω2r
Au∂vr =

Q

r2
− 4

Ω2r
Au∂vr.

Furthermore, the second Maxwell equation d ⋆ F = ⋆J implies

∂uQ = −qr2 Im
(
ϕDuϕ

)
,

∂vQ = qr2 Im
(
ϕ∂vϕ

)
.

(3.11)

(3.12)

In order to study the well-posedness of our system of PDEs, it is useful to rewrite the above equations

as a first-order system. To do this, we define the following quantities:

ν := ∂ur, (3.13)

λ := ∂vr, (3.14)

which were first introduced by Christodoulou, and

ϖ :=
Q2

2r
+
r

2
− Λ

6
r3 +

2r

Ω2
νλ, (3.15)

µ :=
2ϖ

r
− Q2

r2
+

Λ

3
r2, (3.16)

θ := r∂vϕ, (3.17)

ζ := rDuϕ, (3.18)

κ := −Ω2

4ν
, (3.19)
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whenever r, Ω2 and ν are non-zero, an assumption that we will make on the initial hypersurfaces of our

PDE system. All the newly defined quantities are real-valued, except for θ and ζ, since the scalar field ϕ

is complex-valued. From the above we can obtain the useful relation2

λ = κ(1− µ).

We also notice that ϖ is a geometric quantity (often called the renormalized Hawking mass), due to

the fact that 1 − µ = g(dr♯, dr♯). Using the new definitions, some lines of computations show that the

Einstein, Klein-Gordon and Maxwell equations imply the following first-order system:3

∂ur = ν, (3.20)

∂vr = λ, (3.21)

Duϕ = (∂u + iqAu)ϕ =
ζ

r
, (3.22)

Dvϕ = ∂vϕ =
θ

r
, (3.23)

∂vν = ∂uλ = −2νκ
1

r2

(
Q2

r
+
m2r3|ϕ|2

2
+

Λ

3
r3 −ϖ

)
, (3.24)

∂uϖ =
ν

2
m2r2|ϕ|2 −Qq Im

(
ϕζ
)
+

1

2

(
|ζ|
ν

)2

ν

(
1− 2ϖ

r
+
Q2

r2
− Λ

3
r2
)
, (3.25)

∂vϖ =
λ

2
m2r2|ϕ|2 +Qq Im

(
ϕθ
)
+

|θ|2

2κ
, (3.26)

Duθ = (∂u + iqAu)θ = −ζ
r
λ+

νκϕ

r

(
m2r2 − iqQ

)
, (3.27)

Dvζ = ∂vζ = −θ
r
ν +

νκϕ

r

(
m2r2 + iqQ

)
, (3.28)

∂uκ =
κν

r

(
|ζ|
ν

)2

, (3.29)

∂uQ = −qr Im(ϕζ), (3.30)

∂vQ = qr Im(ϕθ), (3.31)

∂vAu = 2
Qνκ

r2
, (3.32)

with the algebraic constraint

λ = κ(1− µ). (3.33)

It is also convenient to define the quantity

K :=
1

2
∂r(1− µ)(r,ϖ,Q) =

ϖ

r2
− Q2

r3
− Λ

3
r, (3.34)

2The variable κ was originally introduced in order to avoid problematic terms showing up in the case λ = 0.
3Strictly speaking, the equality ∂vν = ∂uλ and the equation for ∂vζ require an additional step to be obtained. Indeed,

they can be seen to hold for continuous solutions such that all partial derivatives present in the PDE system are continuous,
after proving that ∂u∂vr = ∂v∂ur (which follows from the second equality in (3.24)) and that ∂u∂vϕ = ∂v∂uϕ (which
follows from (3.22)). See also the proof of theorem 4.2.
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which, as we will see, is a generalization of the surface gravity of the Killing horizons of a Reissner-

Nordström black hole with cosmological constant Λ. The above quantities then satisfy

∂vν = ∂uλ = νκ
(
2K −m2r|ϕ|2

)
, (3.35)

by (3.24). By (3.15) and (3.19), we also have:

κϖ = κ

(
Q2

2r
+
r

2
− Λ

6
r3
)
− r

2
λ. (3.36)

Therefore, we can recast (3.24) as:

∂u(rλ) = ∂v(rν) = −νκ
(
Q2

r2
+m2r2|ϕ|2 − 1 + Λr2

)
. (3.37)

Using (3.19), (3.22), (3.23) and (3.33), the equations of the first-order and second-order systems can be

expressed in several forms. For our purposes, it will be useful to write the equation for ∂uϖ as

∂uϖ =
ν

2
m2r2|ϕ|2 −Qqr Im (ϕDuϕ)−

2λ

Ω2
r2|Duϕ|2, (3.38)

and the Klein-Gordon equation (3.10) as one of the following expressions:

Du(r∂vϕ) = −λDuϕ+m2νκrϕ− i
qQνκ

r
ϕ, (3.39)

∂v(rDuϕ) = −ν∂vϕ+m2νκrϕ+ i
qQνκ

r
ϕ. (3.40)

As noticed in [79] (and the result still holds for non-zero values of Λ), the wave equation (3.9) for log Ω2

can be cast as

∂u∂v log Ω
2 = κ∂u(2K)− 2Re

(
Duϕ∂vϕ

)
− 2κ

r2

(
∂uϖ − 2Q∂uQ

r

)
. (3.41)

The proof of this result only requires some algebra and the definitions (3.34) and (3.15), in this exact

order.

In the next sections, we are going to discuss the local well-posedness of a characteristic IVP for the

first-order system (3.20)–(3.33). Solutions to such a system are elements (λ, ϖ, θ, κ, ϕ, Q, r, ν, ζ, Au)

in an appropriate Cartesian product of function spaces. The system is overdetermined, since we are

solving 13 partial differential equations and an algebraic constraint for 10 unknowns. This is why we will

solve for equations (3.21)-(3.22), (3.24)-(3.25), (3.27)-(3.30), (3.32) and we will consider equations (3.20),

(3.23), (3.26), (3.31), (3.33) as constraints. In particular, for some U > 0, v0 ≥ 0, we will prescribe initial

data on the set ([0, U ]× {v0}) ∪ ({0} × [v0,+∞)) ⊂ [0, U ] × [0,+∞), seen as a subset of the conformal
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embedding of (Q, gQ) in (R2, η). In fact, we will specify:


r(u, v0),

ζ(u, v0),

Au(u, v0),

for u ∈ [0, U ], (3.42)

and 

λ(0, v),

ϖ(0, v),

θ(0, v),

κ(0, v),

ϕ(0, v),

Q(0, v),

for v ∈ [v0,+∞). (3.43)

The constraint equation (3.20) will be imposed on [0, U ] × {v0} so that the function u 7→ ν(u, v0) can

be obtained from u 7→ r(u, v0). In the following, we will denote the prescribed initial data by the zero

subscript, e.g. r0(u) := r(u, v0) and Au,0(u) = Au(u, v0). The coordinates (u, v) have not been fixed yet:

we only required them to be null and to stem from the above conformal embedding. We are going to fix

a specific gauge in the following.

3.2 Assumptions

Let us make some general assumptions so that our spherically symmetric model describes a dynamical

black hole asymptotically approaching (in some sense) a sub-extremal Reissner-Nordström solution with

cosmological constant Λ (we refer to [24, 18, 20] for an overview of this spacetime). In this section, we

fix the values v0 and U so that v0 ≥ 0 and 0 < U < +∞.

A) Gauge-fixing for the null coordinates: exploiting the diffeomorphism invariance of the Einstein-

Maxwell-charged-Klein-Gordon system, we fix the u coordinate by setting

ν0(u) = −1, ∀u ∈ [0, U ] (3.44)

and we specify the v coordinate by choosing

κ0(v) = 1, ∀ v ∈ [v0,+∞). (3.45)

The negativity of ν0 can be related to the absence of anti-trapped surfaces. We also require the

positivity of the area-radius:

r0(u) > 0 ∀u ∈ [0, U ] and r(0, v) > 0 ∀ v ∈ [v0,+∞). (3.46)
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Using the above gauge, we define

H+ := {(u, v) : u = 0, v ≥ v0}

as the event horizon of the dynamical black hole.

B) Regularity assumptions: we suppose that

ν0, ζ0, λ0, θ0, κ0 are C0 functions in their respective domains,

and that

r0, ϖ0, ϕ0, Au,0, Q0 are C1 functions in their respective domains.

We emphasize that θ0, ζ0 and ϕ0 are complex-valued functions. We will also make use of the function

v 7→ r(0, v), whose regularity depends on the regularity of λ0. These assumptions are enough to

prove well-posedness of the first-order system. In order to demonstrate that such a system implies

the Einstein-Maxwell equations, it is sufficient to additionally require that ν0, λ0 and κ0 are C1

functions in their respective domains (see also the forthcoming remark 4.5).

C) Compatibility conditions: we require the following constraints to be satisfied:

r′0(u) = ν0(u),

ϕ′0(v) =
θ0(v)
r(0,v) ,

ϖ′
0(v) =

λ0(v)
2 m2r(0, v)2|ϕ0(v)|2 +Q0(v)q Im(ϕ0(v)θ0(v)) +

|θ0(v)|2
2κ0(v)

,

Q′
0(v) = q r(0, v) Im(ϕ0(v)θ0(v))

λ0(v) = κ0(v)
(
1− 2ϖ0(v)

r(0,v) + Q0(v)
2

r(0,v)2 − Λ
3 r(0, v)

2
)
,

(3.47)

for every u ∈ [0, U ], every v ∈ [v0,+∞).

D) Absence of anti-trapped surfaces: we require

ν(0, v) < 0, ∀ v ∈ [v0,+∞). (3.48)

Once we construct a solution in a set D = [0, U ′)× [v0,+∞) for 0 < U ′ < +∞, the Raychaudhuri

equation (3.6) implies that ν remains negative in D.

Starting from chapter 6, we also assume the following.

E) Exponential Price law upper bound: we require that Λ > 0 and that, on the event horizon of

the dynamical black hole, ϕ decays as

|ϕ|(0, v) + |∂vϕ|(0, v) ≤ Ce−sv, ∀ v ∈ [v0,+∞) (3.49)

for some C > 0, s > 0. This assumption is one of the main consequences of the presence of a positive
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cosmological constant Λ. Here, the coordinate v is related to an Eddington-Finkelstein coordinate

adopted near the event horizon of a Reissner-Nordström-de Sitter black hole (see appendix D).

F) Asymptotically approaching a sub-extremal black hole: consider a fixed sub-extremal

Reissner-Nordström-de Sitter spacetime. Let r+ and K+ be, respectively, the radius and the sur-

face gravity of its event horizon, and let Q+ be its charge and ϖ+ its mass. Notice that several

constraints apply on these four values, due to the sub-extremality condition.4 Then, on the event

horizon, we require:5

lim
v→+∞

r(0, v) = r+, (3.50)

lim
v→+∞

Q(0, v) = Q+, (3.51)

lim
v→+∞

ϖ(0, v) = ϖ+, (3.52)

lim
v→+∞

K(0, v) = K+. (3.53)

G) Hawking’s area theorem: we assume6

λ(0, v) > 0, ∀ v ≥ v0. (3.54)

3.3 Notations and conventions

Given two non-negative functions f and g, we use the notation f ≲ g to denote the existence of a

positive constant C such that f ≤ Cg. The relation f ≳ g is defined analogously, and we write f ∼ g

whenever both f ≲ g and f ≳ g hold. Different constants may be denoted by the same symbols if the

value of such constant is not relevant in the computations. Whenever the symbols ≲ and ≳ are used, we

mean that the respective constants depend on the initial data only, except for the following cases:

• In the redshift region (section 6.3), constants depend on the initial data and possibly on the constant

η (see the statement of proposition 6.7),

• In the no-shift region (section 6.5), early blueshift region (sections 6.6 and 6.7) and late blueshift re-

gion (section 6.8), constants depend on the initial data, and possibly on η, R and Y (see propositions

6.7 and 6.12).

4Given K+ := 1
2
∂r(1− µ)(r+, ϖ+, Q+), the values of ϖ+, Q+ and r+ are constrained by the sub-extremality condition

K+ > 0 (see also [57, section 3]). Moreover, (1− µ)(r+, ϖ+, Q+) = 0. As in [20], in the course of our work we assume that
(1 − µ)(·, ϖ+, Q+) admits the three distinct and positive roots r−, r+ and rC , with r− < r+ < rC , corresponding to the
radii of the Cauchy horizon, event horizon and cosmological horizon, respectively, of a Reissner-Nordström-de Sitter black
hole.

5More generally, we could assign a condition on the lim sup of r,Q,ϖ,K. This requires minimal changes in the proof of
proposition 6.2 and yields the same results.

6The case λ|H+ ≡ 0 was studied in [20, 21], since Reissner-Nordström-de Sitter data were prescribed along H+. The
case in which λ(0, ·) is identically zero for large values of the v coordinate, but not for small ones, falls into that analysis
after a coordinate shift. Moreover, due to our construction, the initial data along the event horizon are approaching the
data of a Reissner-Nordström-de Sitter black hole in a non-trivial way. So, the apparent horizon does not coincide with the
event horizon. By Hawking’s area theorem [22] and lemma 6.9, then, we are left to examine the case λ|H+ > 0.
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Coordinate systems: We follow the conventions of [19, 20, 21, 22], where the (u, v) = (uKru, vEF)

coordinate system (that we specified in section 3.2) is used in the entirety of the black hole interior. Notice

that additional coordinate systems have been used in the literature in the case Λ = 0. For instance, in

[79] and [73], our coordinate system is only used in the redshift region, whereas the Eddington-Finkelstein

coordinate uEF , defined as

uEF :=
1

2K+
log(2K+uKru)

is used in the remaining region of the black hole interior. Moreover, the quantity ν = νKru (see also

Ω2 = Ω2
Kru) that we use throughout the present work corresponds to the quantity νH (see also Ω2

H) in

[79]. It is therefore different from the quantity

νEF = 2K+uKruνKru

used in [79] to the future of the redshift region.
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Chapter 4

Well-posedness of the initial value

problem

Following [19], we are going to discuss local existence, uniqueness and continuous dependence with

respect to the initial data for the solutions to the first-order system (3.20)-(3.33). In this chapter, we

consider the constants U ≥ 0 and V ≥ 0, while we take v0 = 0 for the sake of convenience. The initial

data κ0, ν0 and Au,0 are taken to be constant, according to assumption (A) and (3.5). The case of more

general functions ν0, κ0 and Au,0 follows in a straightforward way.

Definition 4.1 (solution to the PDE system)

We define a solution to the PDE system (3.20)–(3.32), with initial conditions (3.42), (3.43) and satisfying

the regularity assumptions (B) and constraint (3.33), to be a vector (λ, ϖ, θ, κ, ϕ, Q, r, ν, ζ, Au) of

continuous functions defined on [0, U ]× [0, V ], such that all partial derivatives appearing in such a system

are continuous.

Theorem 4.2 (local existence and uniqueness)

Under the assumptions (A), (B), (C) and (D), let us prescribe initial data on the characteristic initial

set [0, U ]× {0} ∪ {0} × [0, V ] for some 0 < U < +∞ and 0 < V < +∞. We define the quantity

Ni.d. :=(∥λ0∥+ ∥ϖ0∥+ ∥θ0∥+ ∥κ0∥+ ∥ϕ0∥+ ∥Q0∥)L∞([0,V ])

+ (∥r0∥+ ∥ν0∥+ ∥ζ0∥+ ∥Au,0∥)L∞([0,U ]).

Then, there exists a time of existence 0 < ϵ = ϵ(Ni.d.) ≤ U for which the characteristic IVP for the

first-order system (3.20)–(3.33) admits a unique solution in Dϵ := [0, ϵ] × [0, V ], the solution being such

that the functions r, ν and κ are bounded away from zero in Dϵ.

Similarly, there exists a time of existence 0 < ϵ = ϵ(Ni.d.) ≤ V such that the characteristic IVP

admits a unique solution in Dϵ := [0, U ]× [0, ϵ] and such that the functions r, ν and κ are bounded away

from zero in Dϵ.

Proof. Local existence can be proved via a fixed-point argument. Given V , where 0 < V < +∞, let us

31



choose ϵ > 0 small enough, whose value will ultimately depend on Ni.d.. Let us then consider the metric

space

Sϵ :=BRλ
(λ0)×BRϖ

(ϖ0)×BRθ
(θ0)×BRκ

(1)×BRϕ
(ϕ0)×

BRQ
(Q0)× I(α, β, r0)×BRν

(−1)×BRζ
(ζ0)×BRA

(0),

endowed with the L∞ norm, where

BRλ
(λ0) := {λ ∈ C0(Dϵ;R) : ∥λ(u, v)− λ0(v)∥L∞(Dϵ) ≤ Rλ}

for Rλ > 0 and

I(α, β, r0) := {r ∈ C0(Dϵ;R) : α ≤ r(u, v)− r0(u) ≤ β},

for some constants α, β ∈ R. Similar definitions hold for the remaining balls.1

We notice that, from equations (3.20)–(3.32), we formally have:

λ(u, v) = λ0(v)−
∫ u

0

2νκ

r2

(
Q2

r
+
m2r3

2
|ϕ|2 + Λ

3
r3 −ϖ

)
(u′, v)du′, (4.1)

ϖ(u, v) = ϖ0(v)e
−

∫ u
0

|ζ|2
rν (u′,v)du′

(4.2)

+

∫ u

0

e−
∫ u
s

|ζ|2
rν (u′,v)du′

(
|ζ|2

2ν

(
1 +

Q2

r2
− Λ

3
r2
)
− qQ Im

(
ζϕ
)
+
ν

2
m2r2|ϕ|2

)
(s, v)ds,

θ(u, v) = θ0(v)e
−iq

∫ u
0

Au(u
′,v)du′

(4.3)

+

∫ u

0

e−iq
∫ u
s

Au(u
′,v)du′

(
−ζλ
r

+
νκϕ

r

(
m2r2 − iqQ

))
(s, v)ds,

κ(u, v) = e
∫ u
0

|ζ|2
rν (u′,v)du′

, (4.4)

ϕ(u, v) = ϕ0(v)e
−iq

∫ u
0

Au(u
′,v)du′

+

∫ u

0

ζ

r
(s, v)e−iq

∫ u
s

Au(u
′,v)du′

ds, (4.5)

Q(u, v) = Q0(v)− q

∫ u

0

r(u′, v) Im(ϕζ)(u′, v)du′, (4.6)

r(u, v) = r0(u) +

∫ v

0

λ(u, v′)dv′, (4.7)

ν(u, v) = − exp

(
−
∫ v

0

2κ

r2

(
Q2

r
+
m2r3

2
|ϕ|2 + Λ

3
r3 −ϖ

)
(u, v′)dv′

)
(4.8)

ζ(u, v) = ζ0(u)−
∫ v

0

(
θ

r
ν − νκϕ

r

(
m2r2 + iqQ

))
(u, v′)dv′, (4.9)

Au(u, v) = 2

∫ v

0

Qνκ

r2
(u, v′)dv′. (4.10)

In the above formulas, we exploited the gauge choice Au,0 ≡ 0 and the fact that ν0 ≡ −1 and κ0 ≡ 1.

Now, we define the operator T : Sϵ → Sϵ such that, to each element f := (λ, ϖ, θ, κ, ϕ, Q, r, ν, ζ, Au)

in Sϵ, it associates the vector

Tf = (Tλf, Tϖf, Tθf, Tκf, Tϕf, TQf, Trf, Tνf, Tζf, TAf),

1Notice, however, that ϕ0, θ0 and ζ0 are complex-valued continuous functions, so that, e.g., ∥(Reϕ0, Imϕ0)∥L∞ =
∥Reϕ0∥L∞ + ∥ Imϕ0∥L∞ .
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where:

Tλf(u, v) = λ0(v)−
∫ u

0

2νκ

r2

(
Q2

r
+
m2r3

2
|ϕ|2 + Λ

3
r3 −ϖ

)
(u′, v)du′, ∀ (u, v) ∈ Dϵ,

and analogous definitions hold for Tϖf , Tθf , Tκf , Tϕf , TQf , i.e. we use the expressions at the right hand

side of equations (4.1)–(4.6). For the remaining components of the vector Tf , we use the expressions at

the right hand side of (4.7)–(4.10), but, under the integral signs, we replace r by Trf , λ by Tλf and so

on for the other terms. For instance:

Trf(u, v) = r0(u) +

∫ v

0

Tλf(u, v
′)dv′, ∀ (u, v) ∈ Dϵ,

and similar definitions are used for Tνf , Tζf , TAf . Let us now fix the constants Rϖ, Rθ, Rκ, Rϕ, RQ

freely, while the remaining constants will be specified in the next lines. We divide the rest of the proof

into three separate steps.

1. The operator T is well-defined: indeed, let us assume that f is in Sϵ. By further reducing ϵ, if

needed,2 we have that Tλf , Tϖf, Tθf, Tκf , Tϕf and TQf are sufficiently close to the respective initial

data (see equations (4.1)–(4.6)). This follows indeed by continuity and due to the fact that, since r and

ν are bounded away from zero in {0} × [0, V ] (see (3.46) and (3.48)), they are also non-zero in Dϵ for ϵ

small. So, for instance:

|Tλf(u, v)− λ0(v)| ≤ Cϵ, ∀ (u, v) ∈ Dϵ,

for some Cϵ > 0, which goes to zero as ϵ → 0. We focus on Trf , Tνf , Tζf and TAf separately. In order

to prove that Trf belongs to I(α, β, r0), we use the definition of Trf and the previous estimates to write

Trf(u, v)− r0(u) =

∫ v

0

Tλf(u, v
′)dv′ ≤ CϵV +

∫ v

0

λ(0, v′)dv′ = CϵV + r(0, v)− r0(0),

and similarly for a lower bound. Thus Trf ∈ I(α, β, r0) if we choose

α = −CϵV + min
v∈[0,V ]

r(0, v)− r0(0) and β = CϵV + max
v∈[0,V ]

r(0, v)− r0(0).

By picking ϵ sufficiently small, we can additionally ensure that

Trf(u, v) ≥ r0(u)− CϵV + min
v∈[0,V ]

r(0, v)− r0(0) ≥
1

2
min

v∈[0,V ]
r(0, v) > 0, ∀ (u, v) ∈ Dϵ,

by continuity of r.

We can bound Tνf in BRν (−1) by choosing Rν = Rν(V, Rκ, Rϕ, RQ, Rϖ, α, β) large enough (see

(4.8)). By the same expression, it also follows that Tνf is bounded away from zero and, consequently,

Tκf is (see (4.4)). Similarly, we have that (Tζf, TAf) ∈ BRζ
(ζ0) × BRA

(0) by picking both Rζ = Rζ(V,

Rθ, Rν , Rκ, Rϕ, RQ, α, β) and RA = RA(V, RQ, Rν , Rκ, α, β) large. Therefore, Tf belongs to Sϵ.

2Let ϵ1, ϵ2 be such that 0 < ϵ1 < ϵ2. It is straightforward to see that Sϵ2 ⊊ Sϵ1 . On the other hand, the additional
functions that we need to consider when reducing ϵ are uniformly bounded in terms of the constants Rλ, Rϖ, Rθ, Rκ, Rϕ,
RQ, α, β, Rν , Rζ and RA.
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2. The operator T is a contraction: let fi = (λi, ϖi, θi, κi, ϕi, Qi, ri, νi, ζi, Au,i) ∈ Sϵ for i = 1, 2.

We now prove that, for every f1, f2 ∈ Sϵ:

∥Tf1 − Tf2∥L∞(Sϵ) ≤ p∥f1 − f2∥L∞(Sϵ), (4.11)

for some p, 0 ≤ p < 1. Since Tλfi, Tϖfi, Tθfi, Tκfi, Tϕfi and TQfi, for i = 1, 2, contain only integrals

taken with respect to the variable u, we have, for every q ∈ {λ,ϖ, θ, κ, ϕ,Q}:

∥Tqf1 − Tqf2∥L∞(Sϵ) ≤ C̃ϵ∥f1 − f2∥L∞(Sϵ),

for some constant C̃ϵ, where C̃ϵ goes to zero as ϵ → 0. We used, again, that r and ν are bounded away

from zero in Dϵ, for ϵ small. We employ these results to estimate the remaining components of Tf , for

instance:

|Trf1 − Trf2| (u, v) =
∣∣∣∣∫ v

0

(Tλf1 − Tλf2)(u, v
′)dv′

∣∣∣∣ ≤ C̃ϵV ∥f1 − f2∥L∞(Sϵ), ∀ (u, v) ∈ Dϵ.

A similar reasoning holds true for Tνfi, Tζfi and TAfi, i = 1, 2, in this order, since they can be expressed

in terms of already bounded quantities, and since Trfi and Tνfi are bounded away from zero, as previously

showed. So, for a sufficiently small choice of ϵ, we have that T is a contraction. Then, it follows from

Banach’s fixed-point theorem that there exists a unique solution f ∈ Sϵ to our system that satisfies

expressions (4.1)-(4.10) in a rigorous way.

Even though we will not elaborate on it, a similar proof follows if we exchange the role of the u

coordinate with the one of the v coordinate. In this case we fix 0 < U < +∞ and choose 0 < ϵ(Ni.d.) ≤ V

small enough. We can define the operator T in the same spirit of the previous case, analogously to the

procedure in [19].

3. The constraints propagate along the evolution: first, we know that constraint (3.20) holds at

v = 0. To prove its validity in Dϵ, it is enough to show that

∂v(∂ur − ν) ≡ 0 in Dϵ. (4.12)

Indeed, we notice that λ = ∂vr is continuous in Dε by definition of solution. On the other hand, (4.7)

shows that

(u, v) 7→ ∂ur(u, v) = r′0(u) +

∫ v

0

(∂uλ)(u, v
′)dv′,

is continuous as well (notice that ∂uλ = ∂u∂vr is continuous by (3.24)). Therefore, r ∈ C1(Dϵ). Moreover,

the second-order mixed partial derivatives of r are also continuous, by the previous two computations.

Schwarz’s theorem then gives ∂v∂ur = ∂u∂vr = ∂uλ. Equality (4.12) finally follows from (3.24).

In order to verify that the algebraic constraint (3.33) is propagated, we notice that

∂u(κ(1− µ)) = ∂uλ in Dϵ,
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by (3.16), (3.20) (which can now be used in Dϵ, by the previous lines), (3.25), (3.29) and (3.30).

The propagation of constraint (3.23) follows after showing that

∂u

(
∂vϕ− θ

r

)
= −iqAu

(
∂vϕ− θ

r

)
.

This is a consequence of (3.22), (3.27), (3.20) (which we can use in Dϵ now, see above), (3.21), (3.28),

(3.32), and the fact that ∂u∂vϕ = ∂v∂uϕ. The latter can be proved as follows. By (3.22):

ϕ(u, v) = ϕ0(v) +

∫ u

0

(
−iqAuϕ+

ζ

r

)
(u′, v)du′,

which implies that ∂u∂vϕ ∈ C0(Dϵ). Differentiation can be taken under the integral signs by uniform

continuity. Moreover, (3.22) implies that ∂v∂uϕ ∈ C0(Dϵ) as well.

We now consider constraint (3.31). We differentiate the explicit expression (4.6), use that the con-

straint is satified on {u = 0}, (3.20) and that

qr(0, v) Im
(
ϕ0(v)θ0(v)

)
= q

[
r Im

(
ϕθ
)]

(u, v)−
∫ u

0

∂u
(
qr Im

(
ϕθ
))
(u′, v)du′ ∀ (u, v) ∈ Dϵ,

to write

∂vQ(u, v) =q
[
r Im

(
ϕθ
)]

(u, v)+ (4.13)

− q

∫ u

0

[
λ Im

(
ϕζ
)
+ r Im

(
∂v
(
ϕζ
))

+ ν Im
(
ϕθ
)
+ r Im

(
∂u
(
ϕθ
))]

(u′, v)du′.

The conclusion follows after noticing (as we will see in the next lines) that the quantity in the square

brackets inside the last integral vanishes identically. In fact, (3.28) and (3.22) yield

r Im
(
∂v
(
ϕζ
))

= Im
(
θζ
)
− ν Im

(
ϕθ
)
− qQνκ|ϕ|2. (4.14)

On the other hand, (3.27) and (3.23) (which holds in Dϵ as we saw above) give

r Im
(
∂u
(
ϕθ
))

= − Im
(
θζ
)
− λ Im

(
ϕζ
)
+ qQνκ|ϕ|2. (4.15)

Moreover, (4.13) and (3.27) imply that ∂u∂vQ is continuous in Dϵ. The same conclusion can be reached

for ∂v∂uQ, by (3.30) and (3.28). Thus, ∂u∂vQ = ∂v∂uQ due to Schwarz’s theorem.

We are now left to deal with constraint (3.26). By the explicit expression (4.2) and by (3.25), both

∂u∂vϖ and ∂v∂uϖ are continuous and, in particular, ∂u∂vϖ = ∂v∂uϖ. Then, we can prove that the

constraint is propagated by noticing that

∂uf(u, v) = −|ζ|2

rν
f(u, v), (4.16)

with f := ∂vϖ − λ

2
m2r2|ϕ|2 −Qq Im

(
ϕθ
)
− |θ|2

2κ
.

The above relation is a result of the following steps. First, we exploit (3.16), (3.24), (3.31) and (3.33)
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(the last two relations hold in Dϵ, as seen above) to notice that

∂v

(
λ

νκ

)
= − 2

rν
∂vϖ + 2

qQ Im
(
ϕθ
)

νr
+
λ

ν
m2r|ϕ|2. (4.17)

Then, we differentiate f and use that ∂u∂vϖ = ∂v∂uϖ, ∂u∂vr = ∂v∂ur, ∂u∂vQ = ∂v∂uQ together with

equations (3.30), (3.25), (3.29), (3.24), (3.31), (4.17), (4.14), (4.15) to see that (4.16) holds, up to the

additive term

λ
qQ Im

(
ϕζ
)

r
+ ν

qQ Im
(
ϕθ
)

r
+
ν

2
m2r2∂v(|ϕ|2)+

− λ

2
m2r2∂u(|ϕ|2)−

1

2κ
∂u(|θ|2) +

λ

2νκ
∂v(|ζ|2).

The latter can be shown to be zero by using basic properties of complex numbers, such as ∂u
(
|θ|2
)
=

2Re
(
θ∂uθ

)
and ∂v

(
|ζ|2
)
= 2Re

(
ζ∂vζ

)
, jointly with (3.27) and (3.28).

Final remarks: The fixed-point theorem only shows uniqueness of the solution in Sϵ. To prove unique-

ness in the general setting, we consider two solutions f1 and f2 having same initial data. Let D be the

intersection of their domains of existence. If we take a point (u, v) in D, we can consider the initial value

problem with data prescribed on [0, u]×{0} ∪ {0}× [0, v]. By the local existence result in Sϵ, there exists

a unique solution f3 in E := [0, ϵ1] × [0, v] for some ϵ1 > 0 small, with ϵ1 depending on the norm of the

initial data Ni.d.. Since the solution is unique, it must be that f1 ≡ f3 ≡ f2 on E .

We can repeat the procedure by considering the initial value problem with initial data in [ϵ1, 2ϵ1]×{0}

∪ {ϵ1} × [0, v]. These initial data are again controlled by Ni.d., since the L∞ norm of f1 ≡ f2 ≡ f3 in

[0, ϵ1]× [0, v] is itself controlled by Ni.d.. So, we obtain a further stripe of size ϵ1 on which f1 ≡ f2. We

can iterate this procedure by subdividing the entire set D into stripes of side ϵ1.

Remark 4.3 (maximal past sets)

A set P ⊂ [0, U ] × [v0,+∞) is a past set if [0, u] × [v0, v] ⊂ P for every (u, v) ∈ P. As noticed in [19,

Theorem 4.4], every solution to the characteristic IVP with initial data prescribed on [0, U ] × [v0,+∞),

for some v0 ≥ 0, and satisfying assumptions (A), (B), (C) and (D), can be extended to a maximal past

set P ⊃ [0, U ]× {v0} ∪ {0} × [v0,+∞).

Proposition 4.4 (continuous dependence with respect to the initial data)

Let us consider two solutions f and f̃ of the first-order system, with initial data (r0, ν0, λ0, ϖ0, θ0, ζ0, κ0,

ϕ0, Q0, Au,0) and (r̃0, ν̃0, λ̃0, ϖ̃0, θ̃0, ζ̃0, κ̃0, ϕ̃0, Q̃0, Ãu,0), respectively. Assume that the two solutions

are defined in D := [0, U ]× [0, V ] for some U, V ∈ R+
0 and define the two quantities

d(U, V ) := ∥f − f̃∥L∞(D),

and

d0(U, V ) :=
(
∥r0 − r̃0∥+ ∥ν0 − ν̃0∥+ ∥ζ0 − ζ̃0∥+ ∥Au,0 − Ãu,0∥

)
L∞([0,U ])
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+
(
∥λ0 − λ̃0∥+ ∥ϖ0 − ϖ̃0∥+ ∥θ0 − θ̃0∥+ ∥κ0 − κ̃0∥+ ∥ϕ0 − ϕ̃0∥+ ∥Q0 − Q̃0∥

)
L∞([0,V ])

.

Then, if d0(U, V ) is sufficiently small, we have:

d(U, V ) ≤ Cd0(U, V ),

where C is a positive constant depending on U, V and on

N(D) := ∥f∥L∞(D) +

∥∥∥∥1r
∥∥∥∥
L∞(D)

+

∥∥∥∥1ν
∥∥∥∥
L∞(D)

.

Proof. The proof is closely related to that of lemma 4.6 in [19]. Using the expressions (4.1)-(4.10) for the

solutions, we get, for instance:

∥ϖ − ϖ̃∥L∞(D) ≲ ∥ϖ0 − ϖ̃0∥L∞([0,V ]) +
(
∥r − r̃∥+ ∥ν − ν̃∥+ ∥ζ − ζ̃∥+ ∥Q− Q̃∥+ ∥ϕ− ϕ̃∥

)
L∞(D)

,

where the multiplying constants may depend on U, V,N(D) and ∥f̃∥L∞(D). Similar relations hold for the

remaining unknowns of the first-order system. In particular, we get

d(U, V ) ≤ C

(
d0(U, V ) +

∫ V

0

d(U, V ′)dV ′

)
,

where C depends on U, V,N(D) and, a priori, also depends on ∥f̃∥L∞(D). However, the proof of theorem

4.2 shows that f̃ is controlled by the L∞ norm of its initial data. Thus, we can conclude that C only

depends on U, V and N(D). The claim then follows from Grönwall’s inequality.

Remark 4.5 (On the equivalence between the first-order and second-order system)

Under assumptions (A), (B), (C), (D), the second-order system (3.6)–(3.10), (3.30)–(3.31) implies the

first-order system (3.20)–(3.33).

On the other hand, if (r,Ω2, ϕ,Q) solves the second-order system (namely r, Ω2, ϕ, Q satisfy the

system, they are continuous functions and all derivatives in the second-order system are continuous),

then the Raychaudhuri equations and the wave equation for r imply that r ∈ C2. Such a property is

guaranteed for a solution to the first-order system if we additionally require that

(B2) ν0, λ0 and κ0 are C1 functions in their respective domains.

A straightforward adaptation of [19, Section 6] reveals that assumption (B2) is in fact sufficient to show

that a solution to the first-order system solves the second-order system, in the above-mentioned sense.

Therefore, we say that the first-order system and the second-order system are equivalent if assumptions

(A), (B), (B2), (C) and (D) are satisfied.

Remark 4.6 (general properties of solutions)

As a consequence of (4.1)-(4.10), we have that, for a solution f = (λ, ϖ, θ, κ, ϕ, Q, r, ν, ζ, Au) of the
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first order system in a past set P:

• κ is positive,

• ν is negative.

We notice that the renormalized Hawking mass ϖ is generally not a monotonic function, differently from

the case of the Einstein-Maxwell-(real) scalar field system. However, we have

∂u

(
ϖ − Q2

2r

)
< 0 and ∂v

(
ϖ − Q2

2r

)
≥ 0

in the region {(u, v) : λ(u, v) ≥ 0}.
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Chapter 5

The extension criterion

We are now interested in conditions that let us extend the domain of existence of a solution to the

characteristic IVP. Results of this sort were obtained in [26], [19] and [72]. In [26, 72], in particular,

the lack of extensions was used to characterize the first singularities possibly present in the considered

spacetimes, therefore addressing that problem of spacetime predictability which, in more general settings,

is captured by the weak cosmic censorship conjecture. In particular, the following result was proved in

[72] for the Einstein-Maxwell-(charged) scalar field system with Λ = 0: given initial data prescribed on

[0, U ]× {0} ∪ {0} × [0, V ] for some U, V ∈ R+
0 , where the initial data satisfy the assumptions of the local

existence theorem 4.2, a solution f defined in

D := [0, U ′)× [0, V ′),

with 0 < U ′ < U and 0 < V ′ < V , can be extended along both the future ingoing and outgoing directions

if we can control the L∞ norm of the solution and of the inverse of r and Ω2. More precisely, the result

is formulated in a global sense in terms of Cauchy data. In [72], it was also shown that for this to

happen, two conditions are sufficient (provided that singularities emanating from spacetime endpoints

are avoided): 1) that the area-radius function can be estimated in D from below and above by positive

constants, and 2) that the spacetime volume of D, i.e.

∫
D
Ω2dudv

is bounded from above. The results of [72] apply to our setting, where the cosmological constant is

possibly non-zero, since the presence of Λ in (3.8) does not require any substantial change in the proofs

of the above statements.

The main part of the proof of the extension criterion in [72] consists of bounding the quantity

∫∫
D
r2Tuv ∼

∫ V ′

0

∫ U ′

0

|ν|κ
(
m2r2|ϕ|2 + Q2

r2

)
dudv (5.1)

in order to obtain estimates on the spacetime integrals of several PDE variables. This allows to get a
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bound on ϕ when integrating the Klein-Gordon equation (3.10):

∂u∂vϕ = −1

r
(Dur∂vϕ+ ∂vrDuϕ) +

iqQΩ2

4r2
ϕ− m2Ω2

4
ϕ.

As a final step, the bound on ϕ is applied to obtain the remaining uniform bounds. This proof requires a

bootstrap argument, due to the need to bound ϕ also at the right hand side of (3.10). Such an argument

can be closed after partitioning D in ϵ-small rectangles.

On the other hand, the expressions (4.1)–(4.10) satisfied by the solution to the characteristic IVP

suggest that it might be sufficient to uniformly bound the iterated integrals1 in (5.1) to estimate the

remaining PDE variables. We present here a proof that uses this insight. In particular, we demonstrate

that an extension result for the first-order system follows from the requirement of an upper and

lower bound for the function r,2 without adopting any bootstrap method and essentially only using the

positivity of Tuv. We stress that, with respect to the extension criterion for the second-order system

in [72], slightly less regularity is required: the initial data ν0, λ0 and κ0 only need to be C0 in their

respective domains (see remark 4.5).

Theorem 5.1 (extension criterion)

Let f0 = (r0, ν0, λ0, ϖ0, θ0, ζ0, κ0, ϕ0, Q0, Au,0) be the initial data prescribed on

D0 := [0, U ]× {0} ∪ {0} × [0, V ]

for some U, V ∈ R+
0 , under the assumptions (A), (B), (C) and (D). Let us consider the unique solution

f = (r, ν, λ, ϖ, θ, ζ, κ, ϕ, Q, Au) to the characteristic IVP in the rectangle

D := [0, U ′)× [0, V ′)

for some 0 < U ′ < U and 0 < V ′ < V . Assume that the area-radius function is bounded away from zero

and bounded from above, i.e. there exist L and R such that:

0 < L ≤ r(u, v) ≤ R < +∞, ∀ (u, v) ∈ D.

Define

N0 := ∥f0∥L∞(D0)

and

N(D) :=

∥∥∥∥ 1κ
∥∥∥∥
L∞(D)

+

∥∥∥∥1ν
∥∥∥∥
L∞(D)

+ ∥f∥L∞(D).

Then:

N(D) ≤ C = C(U ′, V ′, L,R,N0) < +∞

1As we will see, it is enough to bound just the iterated integral taken with respect to the v variable, using the good signs
of the charge function and scalar field terms at the right hand side of (4.8).

2This was also the case for the real, massless scalar field system analysed in [27] (Λ = 0) and in [19] (for any value of
Λ), where monotonicity properties were exploited. In our case, the same properties do not generally hold.
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and there exists a δ > 0 and a solution f̃ to the same characteristic IVP such that f̃ is defined on

Dδ := [0, U ′ + δ]× [0, V ′ + δ].

Proof. We split the proof into two separate parts. First, we prove the uniform bound on N(D) and, then,

construct an explicit extension.

1. Bounded area-radius =⇒ finite norms.

Preamble: in the following, we will use the fact that ν < 0 in D (see remark 4.6) multiple times, and

we will denote by C any positive constant depending on one (or more) value(s) in {U ′, V ′, L,R,N0}.

Uniform bounds on κ: due to (4.4), it follows that

0 < κ ≤ 1 (5.2)

in D.3

Uniform bound on the double integral of Q2 and |ϕ|2: for every (u, v) ∈ D, we can use (3.20),

(3.21), (3.37), (5.2) and the boundedness of r to get:

0 ≤ −
∫ v

0

∫ u

0

νκ

(
Q2

r2
+m2r2|ϕ|2

)
(u′, v′)du′dv′

=

∫ v

0

∫ u

0

[
∂u(rλ) + νκ

(
Λr2 − 1

)]
(u′, v′)du′dv′

≤ R2 +
|Λ|
3
R3V ′ +RV ′ ≤ C. (5.3)

Preliminary integral bound on |λ|: we notice that, after integrating (3.37) in u, the bounds on κ

and r give

L · sup
u∈[0,U ′)

|λ|(u, v) ≤ C +

∫ U ′

0

|ν|κ
(
Q2

r2
+m2r2|ϕ|2

)
(u′, v)du′, ∀ v ∈ [0, V ′).

A further integration in the v variable, together with (5.3), gives

∫ v

0

sup
u∈[0,U ′)

|λ|(u, v′)dv′ ≤ C, ∀ v ∈ [0, V ′). (5.4)

Uniform (upper) bound on |ν|: by applying (3.36) to (4.8), and by using the bounds on κ and the

positivity of the terms containing Q and ϕ, we can write:

|ν|(u, v) = exp

(
−
∫ v

0

[
κ

(
Q2

r3
− 1

r
+ Λr +m2r|ϕ|2

)
+
λ

r

]
(u, v′)dv′

)
≤ R

L
e(|Λ|R+ 1

L )V
′
, (5.5)

in D. This gives a uniform bound on |ν| for every (u, v) ∈ D.

Uniform bound on an iterated integral: the integral
∫ V ′

0
νκ
(

Q2

r2 +m2r2|ϕ|2
)
dv′, for which Fubini-

Tonelli’s theorem gives a pointwise estimate, can be uniformly bounded. Indeed, after integrating (3.37),

3This estimate can be used, together with the assumptions on the function r, to get a uniform bound on
∫∫

D Ω2 =

−4
∫ V ′

0

(∫ U′

0 (∂ur)κdu′
)
dv′. The extension principle of [72] can then be applied to our system. Our intention, however,

is to provide an alternative proof and at the same time to verify explicitly that the presence of Λ does not constitute an
obstruction to spacetime extensions.
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we have

(rν)(u, v)− (rν)(u, 0)−
∫ v

0

νκ
(
1− Λr2

)
(u, v′)dv′ = −

∫ v

0

νκ

(
Q2

r2
+m2r2|ϕ|2

)
(u, v′)dv′

for every (u, v) ∈ D. The left hand side of last expression is bounded uniformly due to (5.2), (5.5) and

to the boundedness assumption on r. Hence, we have

∫ v

0

|ν|κ
(
Q2

r2
+m2r2|ϕ|2

)
(u, v′)dv′ ≤ C, ∀ (u, v) ∈ D. (5.6)

Uniform bound on Au: by applying the Cauchy–Schwarz inequality in (4.10), we have:

|Au|(u, v) ≤ 2

(
−
∫ v

0

νκ
Q2

r2
(u, v′)dv′

) 1
2
(
−
∫ v

0

νκ

r2
(u, v′)dv′

) 1
2

≤ C (5.7)

in D.

Preliminary bound on |θ|: we observe that (4.3) and bound (5.7) yield:

|θ|(u, v) ≤ sup
v∈[0,V ′)

|θ0|(v) +
∫ u

0

|ζλ|
r

(u′, v)du′ +

∫ u

0

|ν|κ
r

|ϕ|
(
m2r2 + |qQ|

)
(u′, v)du′, (5.8)

in D.

Uniform bound on |ζ|: expression (4.9), together with the uniform bounds on r and ν, lets us write,

for every (u, v) ∈ D:

|ζ|(u, v) ≤ sup
u∈[0,U ′)

|ζ0|(u) + C

∫ v

0

|θ|(u, v′)dv′ +
∫ v

0

|ν|κ
r

|ϕ|
(
m2r2 + |qQ|

)
(u, v′)dv′. (5.9)

The last integral term can be bounded again by (5.6) and by the Cauchy-Schwarz inequality, for instance:

∫ v

0

|ν|κ
r

|ϕqQ|(u, v′)dv′ ≤ 1

mL

(∫ v

0

|ν|κ
r2

q2Q2

) 1
2
(∫ v

0

|ν|κm2r2|ϕ|2
) 1

2

≤ C. (5.10)

By plugging (5.8) in (5.9):

|ζ|(u, v) ≤ C + C

∫ u

0

∫ v

0

|ζλ|
r

(u′, v′)dv′du′ + C

∫ u

0

∫ v

0

|ν|κ
r

|ϕ|
(
m2r2 + |qQ|

)
(u′, v′)dv′du′,

where the order of integration could be reversed due to Fubini-Tonelli’s theorem. The last integral can

be bounded using (5.6) and (5.10). Moreover, we define

ζϵ(u) := max
v∈[0,V ′−ϵ]

|ζ|(u, v),

for every u ∈ [0, U ′) and for some fixed 0 < ϵ < V ′. Therefore, the previous lines give

ζϵ(u) ≤ C + C

∫ u

0

ζϵ(u
′)

(∫ V ′−ϵ

0

|λ|(u′, v′)dv′
)
du′. (5.11)
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We now use (5.4) in (5.11) to obtain

ζϵ(u) ≤ C

(
1 +

∫ u

0

ζϵ(u
′)du′

)
.

By applying Grönwall’s inequality, and then taking the limit ϵ→ 0, we finally get a uniform bound on ζ.

Uniform bound on |ϕ|: equation (4.5), together with the uniform bounds on Au, ζ and r, gives

|ϕ|(u, v) ≤ sup
v∈[0,V ′)

|ϕ0|(v) +
∫ u

0

|ζ|
r
(u′, v)du′ ≤ C,

where C does not depend on the value of u ∈ [0, U ′).

Uniform bound on |Q|: equation (4.6), together with the uniform bounds on r, ϕ and ζ, gives

|Q|(u, v) ≤ sup
v∈[0,V ′)

|Q0|(v) + |q|
∫ u

0

(r|ϕ||ζ|)(u′, v)du′ ≤ C,

for every v in [0, V ′).

Uniform (lower) bound on |ν|: the above uniform bounds on ϕ and Q are sufficient to prove that ν

is bounded away from zero in D, as can be seen from the finiteness of the integrals in expression (5.5).

Uniform (lower) bound on κ: the estimates on ζ, ν and r can be applied to (4.4) to bound κ away

from zero.

Remaining uniform bounds: a bound on λ follows after integrating (3.37) in u and noticing that

every term at the right hand side of the equation is uniformly bounded. The previous estimate on λ can

be applied to (5.8) to get a uniform bound on θ, since we have estimated each function appearing in the

integrand terms of (5.8) in the supD-norm. Finally, we can divide both sides of (3.36) by κ to bound ϖ

uniformly, due to the estimates from above that we have for Q, r, λ, and to the estimates from below

that we have for κ and r.

2. Construction of the extension: let δ, ϵ > 0 be small and consider the initial value problem with

initial data prescribed on

[0, U ′ − ϵ]× {V ′ − δ} ∪ {0} × [V ′ − δ, V ′ + δ].

By the local existence theorem 4.2, and due to the uniform bound on N(D) proved in the previous
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steps, there exists a minimum time of existence δ̃ > 0, whose size depends only on N0, such that

we can construct a solution to our PDE system in D1 := [0, U ′ − ϵ] × [V ′ − δ, V ′ − δ + δ̃]. Since we

chose the minimum time of existence, this result holds whenever we translate the initial null segments

along the v–direction, provided that the ingoing segment stays in D and that the outgoing segment is

contained in {0} × [0, V ]. Without loss of generality, we therefore consider the new shifted rectangle to

be D1 := [0, U ′ − ϵ]× [V ′ − δ, V ′ + δ], where the value of δ is possibly different from the original one, and

take ϵ = δ
2 .

The same construction can be followed with respect to the initial data prescribed on

[U ′ − δ, U ′ + δ]× {0} ∪ {U ′ − δ} ×
[
0, V ′ − δ

2

]
.

In particular, we define D2 := [U ′ − δ, U ′ + δ] × [0, V ′ − δ
2 ], for the same value of δ (if a smaller value

of δ is required by the local existence theorem, we repeat the construction of D1 and D2 from scratch,

starting from the ingoing null segment).

We now consider the point p =
(
U ′ − δ

2 , V
′ − δ

2

)
. By performing a coordinate shift, we can set

p = (0, 0). We then construct a solution from the initial data prescribed on
[
0, 32δ

]
×{0} ∪ {0}×

[
0, 32δ

]
.

By the proof of theorem 4.2, the L∞ norm of the (continuous) solution in the compact sets D1 and D2 is

controlled by N0. Therefore, for the initial value problem prescribed on these null segments, the minimum

time of existence of solutions is again given by the previously obtained δ. Thus, we obtain a continuous

solution in

D3 := [0, δ]×
[
0,

3

2
δ

]
,

which is enough to conclude the proof.

Remark 5.2 (A counter-example)

Let us consider a solution to the first-order system defined, modulo the SO(3) orbit space, in a half-

open rectangle in the Reissner-Nordström-de Sitter spacetime. Assume that the rectangle lies in the

outer domain of communications, where one of the corners of the closure of the rectangle coincides with

i+. Although the area-radius function is bounded in such a rectangle, no extensions are possible due

to the singularity originating at i+. The reason for this is that assumption (D) does not hold and so

theorem 5.1 does not apply: ν vanishes along the cosmological horizon and thus the L∞ norm of ν−1

is unbounded along the initial outgoing null segment. In particular, we do not have a lower bound on

the time of existence when constructing local solutions. Notice that, in particular, such a rectangle has

infinite spacetime volume.
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Figure 5.1: The Reissner-Nordström-de Sitter spacetime.
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Chapter 6

Existence and stability of the

Cauchy horizon

We recall that a set P ⊂ [0, U ]× [v0,+∞) is called a past set if J−(u, v) := [0, u]× [v0, v] is contained

in P for every (u, v) in P. Given a set S ⊂ [0, U ]× [v0,+∞), we define

J−(S) :=
⋃

(u,v)∈S

J−(u, v),

and analogous definitions hold for J+(S), I−(S) and I+(S) (where I−(u, v) := [0, u)× [v0, v)).

In the following, we work with a solution to the characteristic IVP of section 3.1, defined in the

maximal past set P containing

D0 := [0, U ]× {v0} ∪ {0} × [v0,+∞), for some 0 < U < +∞, v0 ≥ 0.

The existence of P is guaranteed by the well-posedness results proved in chapter 4. In turn, its maximality

is to be interpreted in the sense that the solution cannot be defined on any larger past set (see also theorem

5.1). From now on, we suppose that assumptions (A), (B), (B2) (see remark 4.5), (C), (D), (E), (F)

and (G) hold. In particular, we are going to use the equations from both the first-order and second-order

systems, depending on the most convenient choice.

In this context, P corresponds to a region containing the event horizon and extending inside the

dynamical black hole under investigation. In the course of the following proofs, we actually work with

solutions defined in

P ∩ {v ≥ v1},

for some v1 ≥ v0. We require (finitely many times) that the values of U and v1 are, respectively, sufficiently

small and sufficiently large. A posteriori, this implies that our results hold in a region adjacent to both the

event horizon and the Cauchy horizon of the dynamical black hole under investigation. We will highlight

the steps where we constrain the values of U and v1. This occurs finitely many times and depends only

on the L∞ norm of the initial data and possibly on η, R (see proposition 6.7), Y (see proposition 6.12),
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and ε (see proposition 6.13). These quantities can ultimately be chosen in terms of the initial data.

In this chapter, we are also going to prove that the apparent horizon

A := {(u, v) ∈ [0, U ]× [v0,+∞) : λ(u, v) = 0}

is a non-empty C1 curve for large values of the v coordinate. It is also convenient to define the regular

region

R := {(u, v) ∈ [0, U ]× [v0,+∞) : λ(u, v) > 0},

which, as we will see, extends from the event horizon to part of the redshift region. The remaining part

of the black hole interior is occupied by the trapped region

T := {(u, v) ∈ [0, U ]× [v0,+∞) : λ(u, v) < 0}. (6.1)

For the system under analysis, the regular region is a priori non-empty, differently from the case of the

Reissner-Nordström-de Sitter solution. In the latter case, indeed, every 2-sphere in the interior of the

black hole region is a trapped surface and, furthermore, the apparent horizon coincides with the event

horizon.

Remark 6.1 (on the main constants)

Throughout the bootstrap procedure, we use several auxiliary, positive quantities:

• Redshift region (proposition 6.7): η, δ = δ(η), R = R(δ),

• No-shift region (proposition 6.12): ε = ε(β), ∆, Y = Y (∆),

• Early blueshift region (see (6.101)): β.

We stress that, in proposition 6.13, we choose ∆ in function of ε. However, as explained in remark 6.14,

an analogous proof holds even if we choose ∆ independently from ε. All above constants can be ultimately

defined in terms of the initial data.

In particular, we have:

• δ → 0 as η → 0 and R→ r+ as δ → 0 (see proposition 6.7),

• Y → r− as ∆ → 0 (see proposition 6.13),

• ε→ 0 as β → 0 (see lemma 6.16).

6.1 Event horizon

Recall that ϖ+, Q+ and Λ are the parameters of the final sub-extremal Reissner-Nordström-de Sitter

black hole (see assumption (F)), while r+ and K+ denote the radius and the surface gravity, respectively,

associated to its event horizon.
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Proposition 6.2 (bounds along the event horizon)

For every v ≥ v0, we have:

0 < r+ − r(0, v) ≤ CHe
−2sv, (6.2)

0 < λ(0, v) ≤ CHe
−2sv, (6.3)

e2K+v

CH
≤ |ν|(0, v) ≤ CHe

2K+v, (6.4)

|ϖ(0, v)−ϖ+| ≤ CHe
−2sv, (6.5)

|Q(0, v)−Q+| ≤ CHe
−2sv, (6.6)

|K(0, v)−K+| ≤ CHe
−2sv, (6.7)

|∂v log Ω2(0, v)− 2K(0, v)| ≤ CHe
−2sv, (6.8)

|Duϕ|(0, v) ≤


CH|ν|(0, v)e−sv, if s < 2K+,

CH(v − v0), if s = 2K+,

CH, if s > 2K+,

(6.9)

|ϕ|(0, v) + |∂vϕ|(0, v) ≤ CHe
−sv. (6.10)

where CH is a positive constant depending only on the initial data.

Proof. The proof exploits the decay due to the redshift effect, similarly to the proof of [79, proposition

4.4]. In the current case, however, the competition between the redshift effect and the exponential Price

law is evident in the estimate for |Duϕ| (see already remark 6.3).

In the following, the letter C will denote a positive constant depending uniquely on the initial data.

Moreover, we will exploit the assumptions (3.45) and (3.48) on κ and ν, respectively, multiple times in

the next computations.

Preliminary bounds and exponential growth of |ν|: first, we notice that (3.50) and (3.54) imply

0 < r(0, v0) ≤ r(0, v) < r+ < +∞, ∀ v ≥ v0. (6.11)

It will also be useful to write (3.35), when evaluated on H+, as

∂v log |ν|(0, v) = 2K(0, v)−m2r(0, v)|ϕ|2(0, v). (6.12)

Now, given ϵ > 0, expressions (3.49), (3.53) and the boundedness of r provide a sufficiently large

v1 > v0 such that ∣∣2K(0, v)−m2r(0, v)|ϕ|2(0, v)− 2K+

∣∣ < ϵ, ∀ v ≥ v1. (6.13)

This estimate will be improved during the next steps of the current proof, but for the moment we can

use it in (6.12) and require ϵ to be sufficiently small to obtain

0 < K+ < 2K+ − ϵ ≤ ∂v log |ν|(0, v) ≤ 2K+ + ϵ, ∀ v ≥ v1, (6.14)
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and so, by integrating and due to (3.44):

e(2K+−ϵ)(v−v1) ≤ |ν|(0, v) ≤ e(2K++ϵ)(v−v1), ∀ v ≥ v1. (6.15)

Note that Ω2(0, v) = −4ν(0, v) for every v ≥ v0, by (3.19). So, (3.49), (6.12) and the boundedness of

r entail ∣∣∂v log Ω2(0, v)− 2K(0, v)
∣∣ ≤ Ce−2sv.

To obtain (6.3), we first show that λ
ν admits a finite limit as v → +∞, and that such a limit is

zero. Indeed, by assumptions (A) and (F), we have that limv→+∞ λ(0, v) = limv→+∞(1− µ)(0, v) = 0.

Moreover, due to (6.15) and to the fact that λ|H+ > 0:

lim
v→+∞

λ

ν
(0, v) = 0. (6.16)

Exponential decays: We now focus on the proof of the decay of λ. Using (3.7) and (3.19) we cast

one of the Raychaudhuri equations as

∂v

(
λ

νκ

)
= −r |∂vϕ|

2

νκ
.

Using the above, assumptions (3.49) and (3.54), and exploiting (6.11) and (6.16), we have:

0 < λ(0, v) = ν(0, v)

∫ v

+∞
∂v

(
λ

ν

)
(0, v′)dv′

= ν(0, v)

∫ +∞

v

r|∂vϕ|2

ν
(0, v′)dv′ ≤ Cν(0, v)

∫ +∞

v

e−2sv′

ν(0, v′)
dv′.

We now multiply and divide by K+, which is a positive quantity, and use that K+ < ∂v log |ν|(0, v′) (see

(6.14)), the fact that v 7→ ν−1(0, v) is an increasing function (indeed ∂vν
−1 = |ν|−1∂v log |ν| > 0) and

(6.15) to write

ν(0, v)

∫ +∞

v

e−2sv′

ν(0, v′)
dv′ ≤ |ν|(0, v)

K+

∫ +∞

v

e−2sv′
∂v

(
1

ν

)
(0, v′)dv′

≤ C|ν|(0, v)e−2sv

∫ +∞

v

∂v

(
1

ν

)
(0, v′)dv′ = Ce−2sv, (6.17)

which therefore gives 0 < λ(0, v) ≤ Ce−2sv for every v ≥ v0.

After recalling (3.51), we integrate (3.12) along the event horizon and use (6.11) and the exponential

Price law (3.49) to write

|Q(0, v)−Q+| = C

∣∣∣∣∫ +∞

v

r2(0, v′) Im(ϕ∂vϕ)(0, v
′)dv′

∣∣∣∣ ≤ Ce−2sv, ∀ v ≥ v0. (6.18)

This gives (6.6).

We can use this after integrating (3.26) (recall that θ = r∂vϕ), together with (3.49), (3.52), (6.18),
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(6.11) and the decay of λ to see that

|ϖ(0, v)−ϖ+| ≤ Ce−2sv, ∀ v ≥ v0, (6.19)

therefore giving (6.5).

By integrating (6.17) and using (3.50), it also follows that

0 < r+ − r(0, v) ≤ Ce−2sv.

Due to definition (3.34) and to the decays proved for Q and ϖ, this is also sufficient to prove

|K(0, v)−K+| ≤ Ce−2sv, ∀ v ≥ v0. (6.20)

This result also allows us to improve (6.13) and, following the same steps leading to (6.14) and (6.15), to

obtain:

|ν|(0, v) ∼ e2K+(v−v0), ∀ v ≥ v0. (6.21)

Bounds on |Duϕ|: we use (3.40), (3.49), (6.18) and (6.11) to write

|∂v(rDuϕ)| (0, v) =
∣∣∣∣−ν∂vϕ+m2νrϕ+ i

qQν

r
ϕ

∣∣∣∣ (0, v) ≤ C|ν|(0, v)e−sv. (6.22)

Now, let us first assume that s < 2K+ and define the constant a := K+ − s
2 > 0. There exists V ≥ v0,

depending uniquely on the initial data, such that, using (3.35), (3.49) and (6.20), we obtain

∂v
(
|ν|e−sv

)
|H+ = |ν|(0, v)e−sv

(
2K(0, v)−m2r(0, v)|ϕ|2(0, v)− s

)
> a|ν|(0, v)e−sv,

for every v ≥ V . We can use this inequality when we integrate (6.22):

|rDuϕ|(0, v) ≤ C

(
1 +

∫ v

v0

|ν|(0, v′)e−sv′
dv′
)
< C

(
1 +

1

a

∫ v

V

∂v

(
|ν|(0, v′)e−sv′

)
dv′
)

≤ C

(
1 +

1

a
|ν|(0, v)e−sv

)
, (6.23)

where we emphasize that C depends uniquely on the initial data. Using (6.21) and the boundedness of

r, we conclude that

|Duϕ|(0, v) ≤ C|ν|(0, v)e−sv ≲ e(2K+−s)v, ∀ v ≥ v0,

when s < 2K+.

On the other hand, when s > 2K+, (6.21) gives:

|rDuϕ|(0, v) ≤ C

(
1 +

∫ v

v0

e(2K+−s)v′
dv′
)

≤ C̃,

for some C̃ determined by the initial data and for every v ≥ v0. The final estimate follows from (6.11).
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When s = 2K+, we can integrate (6.22) and use (6.21) to get

|rDuϕ|(0, v) ≤ C

(
1 +

∫ v

v0

|ν|(0, v′)e−2K+v′
dv′
)

≤ C̃(v − v0), ∀ v ≥ v0,

for some C̃ > 0 depending on the initial data. The final estimate follows again from the boundedness of

r.

Finally, (6.10) follows from (3.49). We then choose CH as the largest of the previous positive constants

depending on the initial data.

Remark 6.3 (Redshift effect)

From the point of view of a family of observers crossing the event horizon H+, the energy associated to

the null geodesics ruling H+ decays as e−2K+v due to the redshift effect.

This is the same rate at which we found the geometric quantity
∣∣ν−1Duϕ

∣∣ to decay for s > 2K+

along the event horizon (see (6.9)). Here, the constant s is the same as in (3.49). For s < 2K+, the

quantity
∣∣ν−1Duϕ

∣∣ decays as e−sv or faster, which is the same rate dictated by the Price law upper bound

(3.49). From these two different rates, we deduce the physical relevance of two competing phenomena

along the event horizon: the redshift effect and the decay of the scalar field ϕ.

6.2 Level sets of the area-radius function

The strategy of the next proofs is based on a partition of the past set P. In the two-dimensional

quotient space that we are considering, such subsets are mainly separated by curves where the area-radius

function is constant. We review the main properties of the sets

Γϱ := {(u, v) ∈ P : r(u, v) = ϱ} (6.24)

for some ϱ ∈ (0, r+) (see also [22]).

Lemma 6.4 (properties of Γϱ)

Assume that Γϱ ̸= ∅. Then, the following set equality holds:

Γϱ = {(uϱ(v), v) : v ∈ [v1,+∞)},

for some v1 ≥ v0 and for some C1 function uϱ : [v1,+∞) → R such that r(uϱ(·), ·) ≡ ϱ. Moreover, let

v := inf{v ≥ v1 : λ(uϱ(v), v) ≤ 0}. (6.25)

Then, the following properties are satisfied:

PΓ1. Γϱ is a C1 curve,

PΓ2. We have

u′ϱ(v) = −λ(uϱ(v), v)
ν(uϱ(v), v)

, (6.26)
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PΓ3. λ(uϱ(v), v) ≤ 0 for every v ≥ v.

Proof. The existence of such a uϱ follows from the implicit function theorem, together with the fact that

ν < 0 in P (see remark 4.6). The regularity of Γϱ follows from the regularity of uϱ. Furthermore, we

obtain (6.26) by differentiating the relation r(uϱ(v), v) = ϱ.

Property PΓ3 is showed in [22, lemma 4.2], whose results hold in the current case as well, since they

are proved just by exploiting the signs of κ and ν (see remark 4.6), the Raychaudhuri equation (3.7),

(6.26) and the extension criterion (see theorem 5.1). Lemma 4.2 also shows that the domain of uϱ is

[v1,+∞).

Lemma 6.5 (conditions to bound λ away from zero)

Let ϱ ∈ (r−, r+). Assume that Γϱ ̸= ∅ and that for every ϵ > 0 there exists v1 ≥ v0 and c > 0 such that

|Q(uϱ(v), v)−Q+|+ |ϖ(uϱ(v), v)−ϖ+| < ϵ, ∀ v ≥ v1,

and

0 < c ≤ κ(uϱ(v), v) ≤ 1, ∀ v ≥ v1.

Then, there exist positive constants C1 and C2 such that:

−C2 ≤ λ(uϱ(v), v) ≤ −C1 < 0, ∀ v ≥ v1.

Proof. Assume that ϵ is sufficiently small. We then use (3.16) to write

(1− µ)(uϱ(v), v) =

(
1− 2

ϱ
(ϖ −ϖ+)−

2

ϱ
ϖ+ +

Q2 −Q2
+

ϱ2
+
Q2

+

ϱ2
− Λ

3
ϱ2
)
(uϱ(v), v)

= (1− µ)(ϱ,ϖ+, Q+) +O(ϵ),

for every v ≥ v1. After inspecting the plot of (1 − µ)(·, ϖ+, Q+) (see, e.g. [20, section 3]), using the

smallness of ϵ, (3.33) and the bounds on κ(uϱ(·), ·), we have:

−C2 ≤ λ(uϱ(v), v) = [κ(1− µ)](uϱ(v), v) ≤ −C1 < 0,

for some positive constants C1 and C2.

We use the definitions (6.1) and (6.25) of T and v, respectively, for the next result.

Corollary 6.6 (entering the trapped region)

If the assumptions of lemma 6.5 are satisfied, the curve Γϱ is spacelike for large values of the v coordinate.

Moreover, v < +∞ and Γϱ ∩ {v ≥ v1} ⊂ T .

Proof. The conclusion follows from the negativity of ν in P and of λ in Γϱ ∩ {v ≥ v1}, for some v1 ≥ v0

(see lemma 6.5).
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6.3 Redshift region

For some fixed R, chosen close enough to r+ (see assumption (F)), we now study the region J−(ΓR),

after proving that it is non-empty.1 We denote this set as the redshift region (see also [25, 73, 79]). Most

of the estimates showed in proposition 6.2 propagate throughout the redshift region, and the interplay

between the decay of the scalar field and the redshift effect that we observed along the event horizon H+

(see remark 6.3) is still present.

To obtain quantitative bounds in this region, it is sufficient to bootstrap the estimates on |ϕ|, |∂vϕ|,

|Duϕ|, κ and |ν| from H+, and exploit these to achieve the remaining bounds. In particular, we employ

the results of proposition 6.2 and use the smallness of r+−r to close the bootstrap inequalities. The proof

is an adaptation of the one in [79, proposition 4.5] to the case of exponential estimates. In particular,

this requires a careful treatment of the Grönwall argument used to close the bootstrap for |Duϕ|. The

estimates that we obtain depend on the integrable quantity uΩ2(0, v) ∼ ue2K+v (see proposition 6.2).

Proposition 6.7 (propagation of estimates by redshift)

Given a fixed η ∈ (0,K+), let δ ∈ (0, η) be small compared to the initial data and to η. Moreover, let R

be a fixed constant such that

0 < r+ −R < δ

and consider the function

c(s) :=

s, if 0 < s ≤ 2K+ − η,

2K+ − η, if s ≥ 2K+ − η.

(6.27)

Then, given v1 ≥ v0 large, whose size depends on the initial data, we have J−(ΓR) ∩ {v ≥ v1} ̸= ∅.

Moreover, for every (u, v) ∈ J−(ΓR) ∩ {v ≥ v1}, the following inequalities hold:

2(r(0, v)− r(u, v)) ≤ uΩ2(0, v) ≤ Cδ, (6.28)

0 < r+ − r(u, v) ≤ Ce−2sv + uΩ2(0, v), (6.29)

|λ|(u, v) ≤ Ce−2sv + uΩ2(0, v), (6.30)

|ν|(u, v) ∼ Ω2(0, v), (6.31)

|ϖ(u, v)−ϖ+| ≤ Ce−2c(s)v, (6.32)

|Q(u, v)−Q+| ≤ Ce−2c(s)v, (6.33)

|K(u, v)−K+| ≤ C
(
e−2c(s)v + uΩ2(0, v)

)
, (6.34)

|∂v log Ω2(u, v)− 2K(u, v)| ≤ Ce−2c(s)v, (6.35)

|Duϕ|(u, v) ≤ C|ν|(u, v)e−c(s)v, (6.36)

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ Ce−c(s)v, (6.37)

1By definition (6.24), ΓR = {r = R} is a (possibly empty) subset of the maximal past set P. Since ν < 0 in P (see
remark 4.6) and due to the extension criterion (theorem 5.1), the curve being empty means that R is smaller than any value
of the area-radius function in [0, U ]× [v0,+∞). We will see that this is never the case, i.e. for every choice of v1 ≥ v0 and
U , we can find a curve in [0, U ]× [v1,+∞) such that r = R along it.
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for a positive constant C that depends only on the initial data and on η. Additionally, we have:

∂uλ(u, v) < 0, ∀ (u, v) ∈ J−(ΓR) ∩ {v ≥ v1}. (6.38)

Proof. In the following, CH denotes the constant appearing in the statement of proposition 6.2. We will

use the notation

C = C(Ni.d., η)

to denote a positive constant depending on (a suitable norm of) the initial data of our IVP and on η.

We will use the same letter C to denote possibly different constants, when the exact expression of such

constants is not important for the bootstrap. To close the bootstrap argument, we will require δ to be

sufficiently small with respect to Ni.d. and η. Moreover, we use that 0 < κ ≤ 1 and ν < 0 in P (see (4.4)

and remark 4.6) and that λ|H+ > 0 (see assumption (G)) multiple times.

Setting up the bootstrap procedure: we recall that P is the maximal past set where we can

define a solution to the characteristic IVP of section 3.1, with initial data prescribed on [0, U ] × {v0} ∪

{0} × [v0,+∞). In the following, we consider v1 ≥ v0 to be sufficiently large with respect to the initial

data and to η, and define the set

Pδ := P ∩ {(u, v) ∈ [0, U ]× [v1,+∞) : 0 < r+ − r(u, v) ≤ δ}. (6.39)

The latter is non-empty, since the area-radius function provides an increasing parametrization on H+,

and r(0, v) → r+ as v → +∞ (see (3.50) and (3.54)).

We now define E as the set of points q in Pδ such that the following four inequalities hold for every

(u, v) in J−(q) ∩ Pδ:

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ 4CHe
−c(s)v, (6.40)

|Duϕ|(u, v) ≤M |ν|(u, v)e−c(s)v, (6.41)

κ(u, v) ≥ 1

2
, (6.42)

1

8
Ω2(0, v) ≤ |ν|(u, v) ≤ Ω2(0, v), (6.43)

where M > 0 is a constant depending uniquely on the initial data.

The set E is non-empty due to the estimates we obtained along the event horizon. Moreover, we notice

that, since E is a past set by construction, inequalities (6.40)–(6.43) can be integrated along causal curves

ending in (u, v) and starting from the event horizon or from the null segment [0, U ]× {v1}.

Outline of the proof : in the following, we show that estimates (6.28)–(6.38) are valid in E and, at

the same time, use this result to close the bootstrap and show that E = Pδ. The conclusion then follows

after proving that ∅ ̸= J−(ΓR) ∩ {v ≥ v1} ⊂ Pδ.

Closing the bootstrap: let us now fix (u, v) ∈ E. First, we stress that we have the following bounds
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on the area-radius function: 
0 < r(0, v)− r(u, v) ≤ r+ − r(u, v) ≤ δ,

r(u, v) > r+
2 ,

r(u, v) < r+,

(6.44)

due to (6.39), assumption (G) and by taking δ < r+
2 .

We notice that, by (6.44) and (6.43):

δ ≥ r(0, v)− r(u, v) =

∫ u

0

|ν|(u′, v)du′ ≥ CuΩ2(0, v). (6.45)

In particular:

uΩ2(0, v) ≤ Cδ. (6.46)

We stress that in [79] this relation was taken as the definition of the redshift region and, on the other

hand, the bounds for r were derived. A similar computation and (6.2) yield

r+ − r(u, v) = r+ − r(0, v) + r(0, v)− r(u, v) ≤ Ce−2sv + uΩ2(0, v). (6.47)

Now, we use (3.11) and bootstrap inequalities (6.40) and (6.41) to get

|∂uQ|(u, v) ≤ CMCHr
2(u, v)|ν|(u, v)e−2c(s)v.

After integrating in u and using (6.44):

|Q(u, v)−Q(0, v)| ≤ CMCHδe
−2c(s)v. (6.48)

Then, by proposition 6.2 and by (6.27):

|Q(u, v)−Q+| ≤ |Q(u, v)−Q(0, v)|+ |Q(0, v)−Q+| ≤ C(Ni.d.,M)e−2c(s)v. (6.49)

Furthermore, by integrating (3.37) and using (6.40), (6.44) and the above bound on Q, we obtain

|rλ|(u, v) ≤ r+|λ|(0, v) +
(
C(Ni.d., η) +O

(
e−2c(s)v

))∫ u

0

|ν|(u′, v)du′.

The decay of λ|H+ proved in proposition 6.2 and (6.43), yield

|λ|(u, v) ≤ Ce−2sv + uΩ2(0, v), (6.50)

for a positive constant C = C(Ni.d., η).

We can apply the latter bound, together with bootstrap inequalities (6.40)–(6.42) and with (3.19), to

56



estimate ϖ. Indeed, (3.38) gives

|∂uϖ|(u, v) ≤ C|ν|(u, v)e−2c(s)v.

Thus, (6.44) and the bounds along the event horizon let us write

|ϖ(u, v)−ϖ+| ≤ |ϖ(u, v)−ϖ(0, v)|+ |ϖ(0, v)−ϖ+| ≤ Ce−2c(s)v. (6.51)

The definition of K (see (3.34)), together with bounds (6.44), (6.47), (6.49) and (6.51), can be used

to obtain

|K(u, v)−K+| ≤
1

r2+
|ϖ(u, v)−ϖ+|+

1

r3+

∣∣Q2(u, v)−Q2
+

∣∣+ |Λ|
3

|r(u, v)− r+|

+ |ϖ|(u, v)
∣∣∣∣ 1

r2(u, v)
− 1

r2+

∣∣∣∣+Q2(u, v)

∣∣∣∣ 1

r3(u, v)
− 1

r3+

∣∣∣∣
≤ C

(
e−2sv + uΩ2(0, v)

)
+O(e−2c(s)v) ≤ C

(
e−2c(s)v + uΩ2(0, v)

)
, (6.52)

for v1 sufficiently large.

In order to close the bootstrap for κ, we use equation (3.29), the bootstrap inequalities (6.41), (6.43)

and recall that ζ = rDuϕ to get

|∂u log κ|(u, v) =
r|Duϕ|2

|ν|
(u, v) ≤ CM2|ν|(u, v)e−2c(s)v ≤ CM2Ω2(0, v)e−2c(s)v.

So, after integrating from H+, we use (3.45) and (6.44) to get:

exp(−CM2uΩ2(0, v)e−2c(s)v) ≤ κ(u, v) ≤ 1. (6.53)

Since uΩ2(0, v) is bounded (see (6.46)), the above closes the bootstrap if we choose v1 large enough.

Notice that (3.35), the positivity of K (see (6.52)) and the smallness of |ϕ| imply that

∂vν = ∂uλ < 0 (6.54)

holds in E.

We can now improve estimate (6.41) by following the procedure in [79] (see also the Grönwall inequal-

ities exploited in [22, section 5]). Let us consider a constant a > 0, which will be chosen in the next lines,

and define

f(u, v) := r(u, v)
Duϕ

ν
(u, v). (6.55)

Then, (3.35) and (3.40) imply

∂v(e
avf(u, v)) = eav

(
−∂vϕ+m2rκϕ+

iqQκ

r
ϕ

)
+ eavf(u, v)(a− κ(2K −m2r|ϕ|2)). (6.56)
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Before continuing, we fix a in such a way that the following two conditions are satisfied: we require

a− κ
(
2K −m2r|ϕ|2

)
(u, v′) < 0, ∀ v′ ≥ v1

and

a− c(s) >
η

2
> 0.

Notice that such a choice of a is admissible due to (6.53), (6.27), (6.52) and (6.40), provided that δ is

chosen sufficiently small.

This choice of a is then exploited when we integrate (6.56) and use (6.40), (6.44) and (6.49):

eav|f |(u, v) ≤ eav0 |f |(u, v0)e
∫ v
v0
(a−κ(2K−m2r|ϕ|2))(u,v′)dv′

+

∫ v

v0

eav
′
∣∣∣∣−∂vϕ+m2rκϕ+ i

qQκ

r
ϕ

∣∣∣∣ (u, v′)e∫ v
v′(a−κ(2K−m2r|ϕ|2))(u,s)dsdv′

≤ C(Ni.d., v1)(e
av0 |f |(u, v0) + 1) + C(Ni.d., η)

∫ v

v1

e(a−c(s))v′
dv′,

where we used

∫ v1

v0

eav
′
∣∣∣∣−∂vϕ+m2rκϕ+ i

qQκ

r
ϕ

∣∣∣∣ (u, v′)e∫ v1
v′ (a−κ(2K−m2r|ϕ|2))(u,s)dsdv′ ≤ C(Ni.d., v1),

with C(Ni.d., v1) depending on the initial data, due to theorem 4.2, and on v1. Notice that, so far, we

increased the size of v1 based on the L∞ norm of the initial data and on η. Thus, we have C(Ni.d., v1) =

C(Ni.d., η).

Finally, we obtain: ∣∣∣∣Duϕ

ν

∣∣∣∣ (u, v) ≤ C(Ni.d., η)
(
e−av + e−c(s)v

)
,

where we emphasize that the above constant does not depend on M . The bootstrap inequality (6.41)

then closes after choosing M > 0 sufficiently large with respect to the initial data. From now on, the

constant M will be absorbed in C(Ni.d., η).

Now, if we integrate (3.9) and use (6.40), (6.41), (6.49), (6.50), the fact that Ω2 = 4|ν|κ, the bound-

edness of r and κ and, finally, (6.43):∣∣∣∣∂v log Ω2(u, v)

Ω2(0, v)

∣∣∣∣ ≤ C

∫ u

0

|ν|(u′, v)du′ ≤ CuΩ2(0, v). (6.57)

Now, notice that, by assumption (A):

Ω2(u, v0)

Ω2(0, v0)
= κ(u, v0) = 1 + o(1),

as u goes to zero.2 So, if we integrate (6.57) along the v direction and use (6.4) and (6.43), we obtain:∣∣∣∣log Ω2(u, v)

Ω2(0, v)
+ o(1)

∣∣∣∣ ≤ Cu

∫ v

v0

Ω2(0, v′)dv′ ≤ Cue2K+v ≤ CuΩ2(0, v),

2In the following, we assume that v1 is sufficiently large. By (6.45) and (6.4), this implies that u is small.
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for some C = C(Ni.d., η) that may differ from term to term. Therefore, using (6.46):

e−Cδ+o(1) ≤ e−CuΩ2(0,v)+o(1) ≤ Ω2(u, v)

Ω2(0, v)
≤ eCuΩ2(0,v)+o(1) ≤ eCδ+o(1), (6.58)

where the o(1) notation refers to the limit v1 → +∞. Since Ω2 = 4|ν|κ, the above and (6.42) are enough

to close the bootstrap inequality (6.43), provided that δ is chosen small and v1 is sufficiently large with

respect to the initial data and η.

Equations (3.29), (3.41) and the fact that ζ = rDuϕ give

∂u
(
∂v log Ω

2 − 2K
)
= (κ− 1)∂u(2K)− 2Re

(
Duϕ∂vϕ

)
− 2κ

r2

(
∂uϖ − 2Q∂uQ

r

)
, (6.59)

= ∂u [2K(κ− 1)]− 2K
κr|Duϕ|2

ν
− 2Re

(
Duϕ∂vϕ

)
− 2κ

r2

(
∂uϖ − 2Q∂uQ

r

)
.

By integrating the above from the event horizon and using (3.45), (6.8), (6.40), (6.41), (6.44), (6.52),

(6.53), the previous bounds on Q, ∂uQ, ϖ and ∂uϖ:

|∂v log Ω2(u, v)− 2K(u, v)| ≲ e−2sv + 2K(u, v)(1− κ(u, v)) + e−2c(s)v

∫ u

0

|ν|(u′, v)du′

≲ e−2sv + 1− e−Ce−2c(s)v

+ δe−2c(s)v.

Now, notice that, given a fixed C > 0, the function h(x) := 1− e−Ce−x − Ce−x is non-positive. Indeed,

h(0) < 0, h′(x) > 0 for every x in R and limx→+∞ h(x) = 0. Thus, recalling (6.27):

|∂v log Ω2(u, v)− 2K(u, v)| ≤ Ce−2c(s)v. (6.60)

In the next steps, we will bound ϕ and ∂vϕ. By integrating ∂uϕ = Duϕ − iqAuϕ and using (6.10),

(6.41), (6.44), we have:

|ϕ|(u, v) =
∣∣∣∣ϕ(0, v)e−iq

∫ u
0

Au(u
′,v)du′

+

∫ u

0

(Duϕ)(u
′, v)e−iq

∫ u
u′ Au(s,v)dsdu′

∣∣∣∣ (6.61)

≤ CHe
−sv + C(Ni.d., η)e

−c(s)v

∫ u

0

|ν|(u′, v)du′ ≤ (CH + C(Ni.d., η)δ)e
−c(s)v.

By taking δ small:

|ϕ|(u, v) < 3

2
CHe

−c(s)v. (6.62)

Now, the wave equation (3.39) for ϕ can be integrated to give

(r∂vϕ)(u, v) = (r∂vϕ)(0, v)e
−iq

∫ u
0

Au(u
′,v)du′

+ (6.63)

+

∫ u

0

e−iq
∫ u
u′ Au(s,v)ds

(
−λDuϕ+ νκm2rϕ− i

qQνκϕ

r

)
(u′, v)du′.

Then, expressions (6.10), (6.40), (6.41), (6.44), (6.49) and (6.50) yield

|r∂vϕ|(u, v) ≤ r+CHe
−sv + C(Ni.d., η)e

−c(s)v

∫ u

0

|ν|(u′, v)du′ ≤ r+CHe
−sv + C(Ni.d., η)δe

−c(s)v,
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where C(Ni.d., η) may possibly differ from term to term and the quantity O(e−2c(s)v) stemming from

the estimate in Q was reabsorbed in the costants, assuming that v1 is sufficiently large. The fact that

r(u, v) ≥ r+
2 (see (6.44)), together with a suitably small choice of δ, implies

|∂vϕ|(u, v) <
5

2
CHe

−c(s)v.

Combined with (6.62), this result closes the bootstrap inequality (6.40). Due to the connectedness of Pδ,

the previous steps reveal the set equality E = Pδ.

Localization of J−(ΓR): To conclude the proof, it is enough to show that J−(ΓR) ∩ {v ≥ v1} ≠ ∅

and that J−(ΓR) ∩ {v ≥ v1} ⊂ Pδ. First, we choose v1 sufficiently large so that uR(v1) ≤ U : this choice

of v1 is possible by the exponential decay of the u coordinate in this region (see (6.46) and recall that

Ω2(0, v) ∼ e2K+v) and entails that ΓR = {r = R} ̸= ∅, due to the extension criterion (see theorem 5.1).

In particular, J−(ΓR) ∩ {v ≥ v1} ≠ ∅.

Moreover, ΓR is a spacelike curve for v1 large (see corollary 6.6), and thus u ≤ uR(v) ≤ U for every

(u, v) in J−(ΓR)∩{v ≥ v1}. So, using again that ν < 0 in P, we have, for every (u, v) in J−(ΓR)∩{v ≥ v1}:

0 < r+ − r(u, v) ≤ r+ − r(uR(v), v) = r+ −R < δ,

and thus J−(ΓR) ∩ {v ≥ v1} ⊂ Pδ.

Remark 6.8

By corollary 6.6 and by (6.54), there exists a C1 function u 7→ vR(u) defined for 0 ≤ u ≤ uR(v1) such

that (see also lemma 6.4):

ΓR ∩ {v ≥ v1} = {(uR(v), v) : v ≥ v1} = {(u, vR(u)) : 0 ≤ u ≤ uR(v1)}.

We considered the case v ≥ v1 because (6.54) holds for large values of the v coordinate. However, notice

that we might have

ΓR ∩ {v ≥ v1} ⊊ ΓR,

see definition (6.24). Since we are going to study solutions to the characteristic IVP restricted to large

values of the v coordinate, we will make no distinction between Γϱ and Γϱ ∩ {v ≥ v1}, for ϱ ∈ (0, r+),

whenever the restriction to large values of v is clear from the context.

Furthermore, by differentiating the relation r(u, vR(u)) = R, we can see that

v′R(u) = −ν(u, vR(u))
λ(u, vR(u))

< 0. (6.64)
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6.4 Apparent horizon

Assume that the constants η, R and δ of proposition 6.7 are fixed. This allows us to give a parametriza-

tion of the apparent horizon

A = {(u, v) ∈ [0, U ]× [v0,+∞) : λ(u, v) = 0}

and to show that, for large values of the v coordinate, A is a C1 curve that lies in the causal past of

ΓR. We report here the main results on A, that follow from methods analogous to those used in [22,

section 4]. In particular, in the quotient manifold, A ∩ ΓR can only contain isolated points or outgoing

null segments of finite length. In the far future, we can be more precise: ΓR never intersects the apparent

horizon for large values of v.

Lemma 6.9 (on the sign of λ along null cones)

Let P be the maximal past set where a solution to our characteristic IVP is defined. Take (u, v) ∈ P.

If λ(u, v) = 0 (respectively, λ(u, v) < 0), then λ(u, v + V ) ≤ 0 (respectively, λ(u, v + V ) < 0) for every

V > 0 for which (u, v + V ) ∈ P.

Proof. By (3.7):

∂v

(
λ

Ω2

)
≤ 0.

Moreover, by (3.19), (4.4) and (4.8), we know that Ω2 = −4νκ > 0 in P. So, let us assume that λ(u, v) = 0

(the other case follows similarly). Then, for every V > 0 such that (u, v + V ) ∈ P:

λ

Ω2
(u, v) = 0 implies λ

Ω2
(u, v + V ) ≤ 0,

and thus λ(u, v + V ) ≤ 0.

Remark 6.10

At the end of chapter 6 we will prove that [0, U ]×[v1,+∞] ⊂ P for a sufficiently small U and a sufficiently

large v1. Therefore, a posteriori, the statement in lemma 6.9 holds for every V > 0.

Corollary 6.11 (characterization of the apparent horizon)

Under the assumptions of proposition 6.7, we have that:

PA1. For every ũ ∈ [0, U ], the set ΓR ∩ A ∩ {u = ũ}, if non-empty, consists only of a single point or

only of a null segment of finite length.

Moreover, for v ≥ v1, the set A is a non-empty C1 curve and the following properties are satisfied:

PA2. The inclusion

A ∩ {v ≥ v1} ⊂ I−(ΓR) (6.65)

holds;
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PA3. The apparent horizon can be parametrized as

A ∩ {v ≥ v1} = {(uA(v), v) : v ≥ v1}

for some C1 function uA defined on [v1,+∞) such that λ(uA(v), v) = 0 on such a domain;

PA4. We have

u′A(v) = −∂vλ(uA(v), v)
∂uλ(uA(v), v)

≤ 0, ∀ v ≥ v1. (6.66)

Proof. Let us fix ũ ∈ [0, U ] such that C := ΓR ∩ A ∩ {u = ũ} ̸= ∅ (this is the case if A ̸= ∅, v0 ≤ v

and we choose ũ = uR(v), where v and the function uR are defined in lemma 6.4 for a generic curve of

constant area-radius). Moreover, let us assume that there exists p = (ũ, vp), q = (ũ, vq) ∈ C with vp ̸= vq.

Without loss of generality, we require vp < vq. By definition of A, we have λ(p) = λ(q) = 0. By lemma

6.9, it follows that λ(u, vt) = 0 for every vp < vt < vq. So, in particular, if two points belong to C, then

the outgoing null segment connecting such points is entirely contained in C. We stress that it is excluded

that the above null segment has infinite length, due to the decay of the function v 7→ uR(v) shown in

(6.28) (see also (6.4)).

Notice that, for sufficiently large values of the v coordinate, the set C must be empty for any choice

of ũ, due to the fact that λ(uR(v), v) < 0 for v ≥ v1 (see lemma 6.5, whose assumptions are satisfied due

to proposition 6.7). In the rest of the proof, we assume that v ≥ v1.

By (3.54), λ(0, v1) > 0. However, λ(uR(v1), v1) < 0 by lemma 6.5. So, by continuity, there exists

ũ ∈ ]0, uR(v1)[ such that λ(ũ, v1) = 0, and thus A is non-empty. In particular, ũ is unique due to (6.38).

Moreover, the previous reasoning shows that

A ∩ {v ≥ v1} ∩ I−(ΓR) ̸= ∅.

To prove property PA2, it is sufficient to show that A ∩ {v ≥ v1} ∩ J+(ΓR) = ∅. This is enough, since

ΓR is a spacelike curve for v ≥ v1 (see corollary 6.6).

To show the above, we notice that, again by lemma 6.5, we have λ(uR(v), v) < 0 for v ≥ v1. But

then, by lemma 6.9 and since ΓR is spacelike in this region, we necessarily have λ < 0 in J+(ΓR).

The existence of the function uA follows from the implicit function theorem and from (6.38), which

holds in the current case due to property PA2. The regularity of uA also implies the regularity of the

curve A.

The expression for u′A can be obtained by differentiating the relation λ(uA(v), v) = 0. Moreover, the

sign of u′A in (6.66) is determined by the fact that ∂uλ < 0 in J−(ΓR) and that ∂vλ|A ≤ 0 (see lemma

6.9).

6.5 No-shift region

In regions corresponding to smaller values of the area-radius, the redshift effect is counterbalanced

by a blueshift effect which is expected to originate in the Cauchy horizon (whose existence and stability
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will be proved as a consequence of the results of chapter 6). A by-product of this phenomenon is the

propagation, throughout this new region, of most of the estimates already obtained in proposition 6.7.

We recall that the constants η, δ and R can be fixed according to the statement of proposition 6.7, and

that r− ∈ (0, r+) is one of the roots of the function (1 − µ)(·, ϖ+, Q+). A more precise formulation of

the above heuristics is then the following: let us choose3 Y ∈ (r−, R), close enough to r−, and work in

the set

J+(ΓR) ∩ J−(ΓY ), (6.67)

which we denote by the name no-shift region, after proving that it is non-empty. The following

properties hold in this set:

• the functions r+ − r(·, ·) and r(·, ·)− r− are bounded, but not necessarily δ–small,

• the surface gravity K of the dynamical black hole changes sign: it remains positive near ΓR and

becomes negative near ΓY . In this context, we introduce the quantity

K− :=
1

2
|∂r(1− µ)(r−, ϖ+, Q+)|, (6.68)

namely the absolute value of the surface gravity along the Cauchy horizon4 of the final sub-extremal

black hole.

In particular, the proof of proposition 6.7, in which the smallness of r+ − r is used to close the bootstrap

inequalities, cannot be directly applied to this region. Nonetheless, we can subdivide the region (6.67) in

finitely many narrow subsets on which we have a finer control on the area-radius function. The validity

of the respective estimates is then proved in each subset by induction, where the basis step follows from

the estimates on the redshift region, while the inductive step is proved with the aid of bootstrap (this

technique was used in [79], see also [27]). A key role will be played by the bound on the geometric

quantity 1 − µ, which lets us relate the quantity ν defined in this region to ν|ΓR
. We stress that, in

the uncharged case [22], the bound on 1 − µ could be obtained directly from the monotonicity of the

renormalized Hawking mass. Such a property is not present in the current case.

Proposition 6.12 (propagation of estimates due to coexisting redshift and blueshift effects)

Let ∆ > 0 be small, compared to the initial data, and let Y > 0 be such that

0 < Y − r− < ∆.

Then, given v1 ≥ v0 large, we have J+(ΓR) ∩ J−(ΓY ) ∩ {v ≥ v1} ≠ ∅ and, for every (u, v) in J+(ΓR) ∩

J−(ΓY ) ∩ {v ≥ v1}, the following relations hold:

−CN ≤ λ(u, v) ≤ −cN < 0, (6.69)

3The letter Y , which denotes the constant radius in the region where redshift and blueshift effects balance each other,
stands for the yellow color, which lies between the red and blue colors in the visible electromagnetic spectrum.

4We adopt the convention of [22, 73], where K− is a positive quantity. In [79], this quantity is defined with the opposite
sign.
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|ν|(u, v) ∼ |ν|(u, vR(u)) (6.70)

|ϖ(u, v)−ϖ+| ≤ CN e
−2c(s)v, (6.71)

|Q(u, v)−Q+| ≤ CN e
−2c(s)v, (6.72)

|K(u, v)−K+|+ |K(u, v) +K−| ≤ CN , (6.73)

|∂v log Ω2(u, v)− 2K(u, v)| ≤ CN e
−2c(s)v, (6.74)

|Duϕ|(u, v) ≤ CN |ν|(u, v)e−c(s)v, (6.75)

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ CN e
−c(s)v, (6.76)

u ∼ e−2K+v, (6.77)

v − vR(u) ≤ CN , (6.78)

for some positive constants CN , cN depending on the initial data, and possibly on η, R and Y . Here, vR
is the function that gives a parametrization of ΓR as

ΓR = {r = R} = {(u, vR(u)) : u ∈ [0, uR(v1)]},

and c(s) was defined in (6.27).

Proof. We recall that there exists a value r0 ∈ (r−, r+) such that5 ∂r(1− µ)(r0, ϖ+, Q+) = 0.

Definitions of the constants: For every positive integer l, we define the following constants induc-

tively: Cl := 4Cl−1,

C0 := 4CH,

(6.79)

where CH is the constant given by proposition 6.2, and we consider6 N ∈ N, which will be chosen

sufficiently large during the proof, based on the initial data, on R and on Y . Moreover, let

ϵ = ϵ(N) :=
R− Y

N
> 0. (6.80)

For l = 0, . . . , N , we define the sets

Nl := J+(ΓR) ∩ {v ≥ v1} ∩ {(u, v) ∈ P : R− lϵ ≤ r(u, v) ≤ R− (l − 1)ϵ}

and

N :=

N⋃
l=0

Nl.

We observe that, for every l = 0, . . . , N , we have Nl ̸= ∅, by the extension criterion (see theorem 5.1).

Since ν < 0 in P and λ < 0 in J+(ΓR) (see lemma 6.5, which holds along ΓR, and lemma 6.9), these

newly defined sets are connected. Finally, it is also straightforward to see that N0 = ΓR ∩ {v ≥ v1}. In

the following, we will repeatedly use that 0 < κ ≤ 1 in P (see (4.4)).
5See also section 3 in [20] for a more detailed analysis of the function r 7→ (1− µ)(r,ϖ+, Q+).
6In particular, our choice will imply that N → +∞ if either R → r+ or Y → r−.
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1. Induction: We want to prove, by induction, that for every l ∈ {0, . . . , N} the following holds:

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ Cle
−c(s)v, (6.81)

|Duϕ|(u, v) ≤MCl|ν|(u, v)e−c(s)v, (6.82)

κ(u, v) ≥ 1

2
, (6.83)

|∂v log Ω2(u, v)− 2K(u, v)| ≤ Ce−2c(s)v, (6.84)

for every (u, v) ∈ Nl, for some constants C = C(Ni.d., η, R, Y ) and M = M(Ni.d., η, R, Y ). As we will

see, this result implies that inequalities (6.69)–(6.78) are satisfied. The above inequalities hold for l = 0

by the results obtained in the redshift region (see, in particular, (6.35), (6.40)–(6.42)) and by choosing

M large compared to the initial data.

Let us now consider the inductive step: let l ∈ {1, . . . , N} be fixed and assume that, for every

i = 0, . . . , l − 1, inequalities (6.81)–(6.84) are satisfied in Ni. To prove that these inequalities also hold

for i = l in Nl, we adapt the bootstrap techniques of [79].

2. Bootstrap: we define El as the set of points q in Nl such that the following inequalities hold for

every (u, v) in J−(q) ∩Nl:

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ Cle
−c(s)v, (6.85)

|Duϕ|(u, v) ≤MCl|ν|(u, v)e−c(s)v, (6.86)

κ(u, v) ≥ 1

2
. (6.87)

The set El is non-empty since (6.85)–(6.87) hold in {r = R− (l − 1)ϵ} ⊂ ∂Nl−1 ∩ ∂Nl, by the induction

hypothesis. Now, let (u, v) ∈ El be fixed.

We will repeatedly use the following estimates for r:



r− < Y ≤ r ≤ R < r+, in N ,

0 ≤ R− r(u, v) ≤ R− Y,

0 ≤ R− (l − 1)ϵ− r(u, v) ≤ ϵ,

0 ≤ r(u, v)− (R− lϵ) ≤ ϵ.

(6.88)
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Now, equation (3.11), together with (6.85), (6.86) and (6.88), gives

|∂uQ|(u, v) ≤ CMC2
l |ν|(u, v)e−2c(s)v. (6.89)

If we integrate the latter from the curve ΓR and use the results of proposition 6.7 and (6.79):

|Q(u, v)−Q+| ≤ |Q(u, v)−Q(uR(v), v)|+ |Q(uR(v), v)−Q+| ≤ C(Ni.d., η,M)e−2c(s)v. (6.90)

Notice that the above constant depending on M is coupled with the term e−2c(s), which decays faster

than the leading-order term of the next inequalities that we take into account.

We can proceed similarly for ϖ by using (3.19) and integrating equation (3.38) from ΓR. Indeed, we

can use the fact that |λ| is bounded from above by a positive constant (this can be proved by following

the same steps that led to (6.50) in the redshift region), together with (6.85)–(6.87), (6.88), (6.90) and

the bounds obtained in the redshift region, to write

|∂uϖ|(u, v) ≤ C|ν|(u, v)e−2c(s)v (6.91)

and thus

|ϖ(u, v)−ϖ+| ≤ |ϖ(u, v)−ϖ(uR(v), v)|+ |ϖ(uR(v), v)−ϖ+| ≤ Ce−2c(s)v. (6.92)

The inequality

−C(Ni.d.) < (1− µ)(u, v) < −C(Ni.d., R, Y ) < 0, (6.93)

follows from (6.90), (6.92), (6.87) and lemma 6.5 (its proof does not require r to be constant: it is

sufficient that the area-radius is bounded away from r− and r+ as in the current case). In particular,

(1− µ)(u, v) approaches zero when either R→ r+ or Y → r−. Whence (6.87) entails

−C(Ni.d.) < λ(u, v) = [κ(1− µ)](u, v) < −C(Ni.d., R, Y )

2
< 0. (6.94)

We now show the validity of (6.77). Due to (6.28):

2(r(0, vR(u))−R)Ω−2(0, vR(u)) ≤ u ≤ CδΩ−2(0, vR(u)), (6.95)

where vR was introduced in remark 6.8. Furthermore, the difference between vR(u) and v is bounded. In

fact, if we integrate (6.94) from vR(u) to v:

−C(Ni.d.)(v − vR(u)) < r(u, v)−R < −C(Ni.d., R, Y )

2
(v − vR(u)).

Hence, due to (6.88):

0 ≤ v − vR(u) ≤ 2
R− r(u, v)

C(Ni.d., R, Y )
≤ 2

R− Y

C(Ni.d., R, Y )
. (6.96)

Since Ω2(0, y) ∼ e2K+y for every y, if we plug (6.96) in (6.95) then (6.77) is satisfied.
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Now, using (3.19) and (3.33), the Raychaudhuri equation (3.7) can be cast in the form

∂v

(
ν

1− µ

)
=

ν

1− µ

r|∂vϕ|2

λ
, (6.97)

to get a bound on ν. Indeed, by integrating the above from vR(u) to v, we have

|ν|(u, v) = |ν|(u, vR(u))
|1− µ|(u, v)

|1− µ|(u, vR(u))
e
∫ v
vR(u)

r
λ |∂vϕ|2(u,v′)dv′

. (6.98)

By (6.85), (6.88) and (6.94):∣∣∣∣∣
∫ v

vR(u)

r

λ
|∂vϕ|2(u, v′)dv′

∣∣∣∣∣ ≤ C(Ni.d., R, Y )e−2c(s)vR(u). (6.99)

Thus, (6.98) and (6.93) give

|ν|(u, v) ∼ |ν|(u, vR(u)). (6.100)

We can now close bootstrap inequality (6.86). By inspecting (3.40) and using (6.85), (6.88), (6.90)

and (6.100), we have

|∂v(rDuϕ)|(u, v) ≤ C(Ni.d.)Cl|ν|(u, v)e−c(s)v ≤ C(Ni.d., R, Y )Cl|ν|(u, vR(u))e−c(s)v,

for v1 large. Notice that the above constant does not depend on M . Before integrating the above

inequality from ΓR, we notice that (6.36) gives

|rDuϕ|(u, vR(u)) ≤ C(Ni.d., η)|ν|(u, vR(u))e−c(s)vR(u)

Therefore, the relation Cl = 4l+1CH and estimates (6.96) and (6.100) allow us to write

|rDuϕ|(u, v) ≤ (C(Ni.d., η) + C(Ni.d., R, Y ))Cl|ν|(u, vR(u))ec(s)(v−vR(u))e−c(s)v

≤ C(Ni.d., η, R, Y )Cl|ν|(u, v)e−c(s)v.

Inequality (6.86) is then closed due to (6.88) and by choosing M sufficiently large with respect to the

initial data, η, R and Y (this might possibly require a larger value for v1, as well).

The bootstrap on κ can then be closed by following the same steps that precede (6.53) in the proof

of proposition 6.7.

Now, ΓR−(l−1)ϵ is non-empty (see the end of the proof of proposition 6.7). Lemma 6.4 then shows

that we have the parametrization ΓR−(l−1)ϵ = {(ul−1(v), v) : v ≥ v1} for some function ul−1.

In order to close the bootstrap for ϕ and ∂vϕ, we first notice that, by the inductive assumption (i.e.

(6.81) for the (l − 1)-th step) and by (6.79), we have:

|ϕ|(ul−1(v), v) ≤
Cl

4
e−c(s)v.
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Then, by integrating ∂uϕ = Duϕ− iqAuϕ and using (6.86) and (6.88), we obtain

|ϕ|(u, v) ≤ Cl

4
e−c(s)v + ClC(Ni.d., R, Y )e−c(s)v

∫ u

ul−1(v)

|ν|(u′, v)du′ ≤
(
1

4
+ C(Ni.d., R, Y )ϵ

)
Cle

−c(s)v,

By choosing N sufficiently large (see (6.80)), the last constant multiplying Cle
−c(s)v is strictly smaller

than 3
8 .

Similarly, we integrate (3.39) from ul−1(v) to u (see also (6.63)) and use (6.85), (6.86), (6.88), (6.94)

and the inductive assumption (see (6.81) for the (l − 1)-th step) to obtain

|r∂vϕ|(u, v) ≤
Cl

4
(R− (l − 1)ϵ)e−c(s)v + ClC(Ni.d., R, Y )e−c(s)v

∫ u

ul−1(v)

|ν|(u′, v)du′

≤ Cle
−c(s)v

(
1

4
(R− (l − 1)ϵ) + C(Ni.d., R, Y )ϵ

)
,

assuming that v1 is sufficiently large. If we divide both sides of the above by r(u, v) ≥ R− lϵ (see (6.88)),

the first term enclosed in brackets can be estimated using that R− lϵ ≥ Y and that, taking N large:

R− lϵ+ ϵ

R− lϵ
< 1 +

ϵ

Y
< 2.

Thus, for N large:

|∂vϕ|(u, v) <
5

8
Cle

−c(s)v.

This result and the previous bound on ϕ close the bootstrap inequality (6.85). Hence, we have El = Nl.

3. Remaining estimates: We are now left to prove (6.84) in Nl. Similarly to the case of the

redshift region, this follows after integrating (6.59) from ΓR−(l−1)ϵ, and using (6.84) (in Nl−1), (6.85),

(6.86), (6.88), (6.89), (6.90), (6.91), (6.92) and the fact thatK is bounded. In particular, given (u, v) ∈ Nl:

|∂v log Ω2(u, v)− 2K(u, v)| ≤ |∂v log Ω2 − 2K|(ul−1(v), v) + [|2K|(1− κ)] (u, v)

+ [|2K|(1− κ)] (ul−1(v), v) + Ce−2c(s)v

∫ u

ul−1(v)

|ν|(u′, v)du′

≤ C
(
1− e−Ce−2c(s)v

+ e−2c(s)v
)

≤ Ce−2c(s)v,

for v1 sufficiently large. In particular, we used that x 7→ 1 − e−Ce−x − Ce−x is a non-positive function,

as seen right after (6.59).

It then follows that inequalities (6.69)–(6.78) are satisfied in N . Moreover, we showed in the previous

steps that ΓR−(l−1)ϵ ̸= ∅, for l ∈ {1, . . . , N}. The last step of the induction yields ∅ ̸= ΓY ∩{v ≥ v1} ⊂ N ,

and we further know that ΓY is a spacelike curve, for v ≥ v1, by corollary 6.6. The latter result, together

with the fact that ν < 0 in P, entails that ∅ ̸= J+(ΓR)∩ J−(ΓY )∩ {v ≥ v1} ⊂ N (see last paragraph of

the proof of proposition 6.7).
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6.6 Early blueshift region: general behaviour

In the next steps, we inspect the consequences of the blueshift effect in the region J+(ΓY ). Given a

real number

β > 0, (6.101)

sufficiently small compared to the initial data, we define the curve

γ :=
{
(u, (1 + β)vY (u)) : u ∈ [0, uY (v1)]

}
. (6.102)

For a suitably large choice of v1, the curve γ is spacelike, since that is the case for ΓY = {(u, vY (u)) : u ∈

[0, uY (v1)]}. Indeed, after recalling the expression of g in (3.3), it is immediate to verify that g(X,X) > 0,

X = ∂u + (1 + β)v′Y ∂v being the vector field tangent to γ. We also use the notation

vγ(u) := (1 + β)vY (u),

and we denote by uγ(v) the u-coordinate of the unique point along the curve γ corresponding to the

outgoing null coordinate v.

The aim of the curve γ is to probe a spacetime region where the blueshift effect starts to be relevant,

but whose influence is weak enough so that the quantities describing the dynamical black hole can be

controlled as done in the previously inspected regions. This is why we denote the region

J+(ΓY ) ∩ J−(γ)

by the name early blueshift region.

Here the dynamical solution is still quantitatively close to the final sub-extremal Reissner-Nordström-

de Sitter black hole, in the sense that ϖ converges to ϖ+ and Q converges to Q+ at an exponential rate.

However, due to the non-zero value of β (which distinguishes γ from a curve of constant radius), we lose

decay with respect to the no-shift region. Also, although this region is delimited by a curve of constant

area-radius only in the past, the function r is still bounded away from zero for v1 large.

Some technical difficulties, which were absent in the uncharged Λ > 0 case and in the charged Λ = 0

case, arise in this region. Differently from [20] and [22], we cannot directly apply BV estimates (originally

presented in [27]) on the quantities Duϕ and ∂vϕ, due to new terms in equations (3.27) and (3.28) that

were absent in the uncharged case. We then prove the results by bootstrap, similarly to the procedure

followed in the redshift region, where now we close the bootstrap inequalities by exploiting the smallness

of r − r−. The procedure differs from the bootstrap technique used in [79], since the approximations of

the v coordinate used there give rise to exponential errors that cannot be removed7 using the smallness

of r − r−, see also section 2.4.

A prominent role in the proof is played by Cs, a function in both the u and v coordinates that we

7Notice that that the same problem occurred in the no-shift region of section 6.5. However, these error terms could be
controlled due to (6.78).
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define and that determines the exponential decay of the main quantities. This function is positive in the

early blueshift region8 and replaces the linear function v 7→ c(s)v of the previous regions. The aim of Cs
is to interpolate between the exponential decay known along the curve ΓY (see proposition 6.12) and the

one expected along γ (see [22]), so that the function |ν| exp(−Cs), appearing in many integral estimates,

is monotonically increasing in v. In particular, Cs is chosen in such a way that it is monotonic in both

coordinates, so that the main integral estimates of this region can be achieved similarly to the ones of

the redshift and no-shift regions.

Proposition 6.13 (estimates in the early blueshift region)

Let β > 0. Then, for every ε > 0 small enough, depending only on the initial data, there exists ∆ ∈ (0, ε)

and Y > 0 such that

0 < Y − r− < ∆, (6.103)

and such that the following inequalities hold for every (u, v) ∈ J+(ΓY ) ∩ J−(γ) ∩ {v ≥ v1}:

r(u, v) ≥ r− − ε, (6.104)

|ϖ(u, v)−ϖ+| ≤ Ce−2(c(s)−τ)v, (6.105)

|Q(u, v)−Q+| ≤ Ce−2(c(s)−τ)v, (6.106)

|K(u, v) +K−| ≤ Cε, (6.107)

|∂v log Ω2(u, v)− 2K(u, v)| ≤ Ce−(c(s)−τ)v, (6.108)

|Duϕ|(u, v) ≤ C|ν|(u, v)e−(c(s)−τ)v, (6.109)

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ Ce−(c(s)−τ)v, (6.110)

for some v1 ≥ v0 large, where τ > 0, τ = O(β) and where C > 0 depends on the initial data and possibly

on η, R and Y . The curve γ is defined in (6.102). The positive constant K− is given by (6.68) and c(s)

is defined in (6.27).

Proof. In the following, we will repeatedly use that 0 < κ ≤ 1, that ν < 0 in P and that λ < 0 in J+(ΓY )

(this follows from (6.69) and lemma 6.9, together with the fact that ΓY is a spacelike curve). In the next

lines the constant CN = CN (Ni.d., η, R, Y ) (defined in the statement of proposition 6.12) will be used.

Given C > 0 depending uniquely on the initial data, we define

Cs(u, v) := c(s)vY (u)− 2(2K− + Cε)(v − vY (u)), (6.111)

which is positive in J+(ΓY ) ∩ J−(γ). Recall that, in the latter region, vY (u) ≤ v ≤ (1 + β)vY (u). So, if

β is small:

Cs(u, v) = c(s)vY (u)− 2(2K− + Cε)(v − vY (u)) ≥ [c(s)− 2(2K− + Cε)β]vY (u) > 0,

for every (u, v) ∈ J+(ΓY ) ∩ J−(γ) ∩ {v ≥ v1}. In particular, Cs is a positive function in the early
8It is not necessarily positive to the future of this region, but this will not be a problem, see already section 6.8.
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blueshift region. Using the restrictions on the v coordinate again, the above also implies

Cs(u, v) > (c(s)− τ)v, (6.112)

for τ > 0, τ = O(β). Furthermore, the fact that v′Y (u) < 0 for every u ∈ [0, uR(v1)] (see also (6.64)) gives

∂uCs < 0 in J+(ΓY ) ∩ J−(γ) ∩ {v ≥ v1}. (6.113)

Setting up the bootstrap procedure: let E be the set of points q in D := J+(ΓY )∩J−(γ)∩{v ≥ v1}

such that the following inequalities hold for every (u, v) in J−(q) ∩ D:

r(u, v) ≥ r− − 2ε, (6.114)

|ϕ|(u, v) + |∂vϕ|(u, v) ≤ 4CN e
−Cs(u,v), (6.115)

|Duϕ|(u, v) ≤MCN |ν|(u, v)e−Cs(u,v), (6.116)

κ(u, v) ≥ 1

2
, (6.117)

for some suitably large M =M(Ni.d.) > 0.

The validity of the bootstrap inequalities along ΓY is promptly ensured for v1 large, since Y > r−,

due to (6.76), (6.75), (6.83) and to the fact that (see (6.111)):

Cs(u, vY (u)) = c(s)vY (u), ∀u ∈ [0, uY (v1)].

Closing the bootstrap: let (u, v) ∈ E. First, we notice that, by construction of E:

0 <
r−
2
< r− − 2ε ≤ r(u, v) ≤ Y < r+, (6.118)

provided that ε is sufficiently small.

Similarly to the previous regions (and now using (6.113)), the inequalities (6.115), (6.116), (6.118)

applied to (3.11) and the results of proposition 6.12 yield

|Q(u, v)−Q+| ≤ |Q(u, v)−Q(uY (v), v)|+ |Q(uY (v), v)−Q+| ≤ C(Ni.d., η, R, Y )e−2Cs(u,v), (6.119)

where, in particular, we used e−c(s)vY (u) ≤ e−Cs(u,v).

Furthermore, integrating (3.37) from ΓY and using (6.115), (6.118) and (6.119), together with the

bound (6.94) obtained in the no-shift region:

|λ|(u, v) ≤ C = C(Ni.d.), (6.120)

In order to bound ϖ, we consider (3.38) and apply (3.19), the bootstrap inequalities (6.115), (6.116),
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(6.117), the previous bounds on |λ| and Q and finally integrate using (6.118) and (6.113) to get

|ϖ(u, v)−ϖ+| ≤ |ϖ(u, v)−ϖ(u, vY (u))|+ |ϖ(u, vY (u))−ϖ+| ≲ e−2Cs(u,v). (6.121)

Now, since J+(ΓY )∩J−(γ) is stricly contained in the trapped region T for v large (see (6.65)), relation

(3.33) entails that (1− µ)(u, v) < 0. In particular, by (3.16):

(1− µ)(u, v) = 1− 2

r
ϖ+ +

Q2
+

r2
− Λ

3
r2 − 2

r
(ϖ(u, v)−ϖ+) +

Q(u, v)2 −Q2
+

r2
< 0.

Due to (6.119) and (6.121), the latter implies that

(1− µ)(r(u, v), ϖ+, Q+) <
2

r
(ϖ(u, v)−ϖ+)−

Q(u, v)2 −Q2
+

r2
≲ e−2Cs(u,v).

Thus, by studying the plot of r 7→ (1− µ)(r,ϖ+, Q+) (see e.g. [20, section 3]), we have

r(u, v) > r− − ε, (6.122)

provided that v1 is sufficiently large. This closes the bootstrap inequality (6.114) for r.

We now use (3.34) and (6.68) to write

|K(u, v) +K−| =
∣∣∣∣ϖr2 (u, v)− Q2

r3
(u, v)− Λ

3
r(u, v)−

(
ϖ+

r2−
−
Q2

+

r3−
− Λ

3
r−

)∣∣∣∣
≤ |ϖ|(u, v)

∣∣∣∣ 1

r2(u, v)
− 1

r2−

∣∣∣∣+ |ϖ(u, v)−ϖ+|
r2−

+Q2(u, v)

∣∣∣∣ 1

r3(u, v)
− 1

r3−

∣∣∣∣+ |Q2(u, v)−Q2
+|

r3−
+

|Λ|
3
|r(u, v)− r−|.

The terms proportional to |ϖ − ϖ+| and |Q − Q+| give O(e−2Cs(u,v)), due to the previously obtained

estimates. Moreover, we note that the inequality r(u, v) ≤ Y , together with (6.103), (6.122) and the fact

that ∆ < ε gives:

|r(u, v)− r−| < max{∆, ε} = ε.

On the other hand, from (6.118) and the above we obtain:∣∣∣∣ 1

r2(u, v)
− 1

r2−

∣∣∣∣ < C(Ni.d.)ε,

and similarly for the cubic case. Therefore, we conclude that

|2K(u, v) + 2K−| ≤ C(Ni.d.)ε, (6.123)

for v1 sufficiently large. In particular, K is a negative quantity in the early blueshift region.

The bootstrap condition on κ can be closed as done in the redshift region (see e.g. (6.53)), now using

(3.29) (recall that ζ = rDuϕ), (6.116), (6.118) and the fact that κ is close to 1 in the no-shift region. We
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emphasize that κ can be taken close to 1 also in the current region, provided that v1 is sufficiently large.

Hence, for a suitable choice of v1:

|κ(2K −m2r|ϕ|2)| > (1− o(1))(2K− − Cε) > 2K− − 2Cε > 0, (6.124)

due to the smallness of ε, where C > 0 depends uniquely on the initial data.

The estimate for ∂v log Ω2 is obtained analogously to the procedure of the previous regions, i.e. by

integrating (6.59) from ΓY and using (6.74), (6.113), (6.115), (6.116), (6.118), (6.123), the estimate for

∂v log Ω
2 in the no-shift region and the previous bounds on ∂uQ, Q, ∂uϖ and ϖ.

To close the bootstrap for ϕ we integrate ∂uϕ = −iqAuϕ + Duϕ from the curve ΓY (see also (6.61)

for an analogous expression). Thus, we use (6.76), (6.103), (6.113), (6.116), (6.122) and the fact that

e−c(s)vY (u) ≤ e−Cs(u,v) to get, for a suitably large v1:

|ϕ|(u, v) ≤ CN e
−c(s)vY (u) +MCN e

−Cs(u,v)

∫ u

uY (v)

|ν|(u′, v)du′

≤ CN (1 + (Y − r− + ε)M)e−Cs(u,v)

≤ CN (1 + 2εM)e−Cs(u,v). (6.125)

The quantity 1 + 2εM(Ni.d.) is strictly smaller than 3
2 for ε small.

To bound |∂vϕ|, we integrate (3.39) from ΓY and obtain an expression for r∂vϕ analogous to (6.63).

Then, by using (6.76), (6.113), (6.118), (6.119), (6.120), (6.122), the bootstrap inequalities for ϕ and

Duϕ, and the fact that e−c(s)vY (u) ≤ e−Cs(u,v):

|r∂vϕ|(u, v) ≤ CN

(
Y + C(Ni.d.)

∫ u

uY (v)

|ν|(u′, v)du′
)
e−Cs(u,v)

≤ CN (Y + (Y − r− + ε)C(Ni.d.))e
−Cs(u,v),

for v1 large. After dividing both sides of the above by r ≥ r− − ε (see (6.122)) and using (6.103) and

(6.118) to notice that
Y

r− − ε
< 2 and Y − r− + ε

r− − ε
<

4ε

r−
,

for ε small, we conclude that

|∂vϕ|(u, v) ≤ CN

(
2 +

4ε

r−
C(Ni.d.)

)
e−Cs(u,v) <

5

2
CN e

−Cs(u,v).

This result, together with (6.125), is sufficient to close bootstrap inequality (6.115).

We now improve the bound (6.116) for Duϕ. First, we notice that, by integrating (3.35) from ΓY :

|ν|(u, v) = |ν|(u, vY (u)) exp

(∫ v

vY (u)

κ(2K −m2r|ϕ|2)(u, v′)dv′
)
. (6.126)
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Moreover, by (3.40):

|rDuϕ|(u, v) ≤ |rDuϕ|(u, vY (u)) + C(Ni.d.)CN

∫ v

vY (u)

|ν|(u, v′)e−Cs(u,v
′)dv′.

Since (3.35), (6.111) and (6.123) give9

∂v

(
|ν|(u, v)e−Cs(u,v)

)
= |ν|(u, v)e−Cs(u,v)

(
κ(2K −m2r|ϕ|2)(u, v) + 4K− + 2Cε

)
≥ |ν|(u, v)e−Cs(u,v)(2K− + Cε) > 0

in the bootstrap set E, then:

∫ v

vY (u)

|ν|(u, v′)e−Cs(u,v
′)dv′ ≤ 1

2K− + Cε

∫ v

vY (u)

∂v
(
|ν|e−Cs

)
dv′ ≤ |ν|(u, v)e−Cs(u,v)

2K−
.

Expressions (6.75), (6.126), (6.123), (6.115) and the definition of Cs then yield

|rDuϕ|(u, v) ≤ CN |ν|(u, v)
(
r+e

−c(s)vY (u)+(2K−+Cε)(v−vY (u)) + C(Ni.d.)e
−Cs(u,v)

)
≤ CNC(Ni.d.)|ν|(u, v)e−Cs(u,v),

for a suitably large v1. Hence, the bootstrap closes by choosing M large compared to the initial data

(this might possibly reduce the size ε even further).

Finally, we can express the above estimates in terms of c(s)−τ , rather than Cs(u, v), using (6.112).

Remark 6.14

We observe that:

• The inequality ∆ < ε that we assumed in the statement of proposition 6.13 is not needed for the

proof. Such a condition can be replaced by an assumption on the smallness of ∆+ ε (with respect

to the initial data).

• Proposition 6.13 can be proved in an analogous fashion if we replace (6.111) with the following

definition of Cs:

Cs(u, v) = c(s)vY (u)− α(2K− + Cε)(v − vY (u)),

for (u, v) ∈ J+(ΓY ) ∩ J−(γ) ∩ {v ≥ v1} and for any α > 1.

6.7 Early blueshift region: bounds along γ

In this section, we improve the estimates of ν and λ along the future boundary of the early blueshift

region.

Lemma 6.15 (integral bounds on Ω2)

The following results hold:
9Here and in the following steps the expression of Cs plays a prominent role. The same reasoning would not work if we

replaced Cs(u, v) with (c(s)− τ)v.
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1. If there exists D > 0 such that

∂v log Ω
2(w, z) ≤ −D, ∀ (w, z) ∈ J+(ΓY ) ∩ J−(γ),

and if v is sufficiently large, then:

∫ u

uY (v)

Ω2(ũ, v)dũ ≤ C(Ni.d., R, Y )
β

1 + β
v e−D β

1+β v, ∀ (u, v) ∈ γ. (6.127)

2. Let E ⊆ J+(γ) be a past set such that γ ⊂ E. If there exists D > 0 such that

∂v log Ω
2(w, z) ≤ −D, ∀ (w, z) ∈ J+(ΓY ) ∩ J−(E), (6.128)

and if v is sufficiently large, then:

∫ u

uγ(v)

Ω2(ũ, v)dũ ≤ C(Ni.d., R, Y )(v − vγ(u))e
−D β

1+β v, ∀ (u, v) ∈ E.

Proof. We will prove the second statement. Inequality (6.127) follows similarly.

First, we notice that estimate (6.93) can be improved when 1−µ is restricted to the curve ΓY . Indeed,

we have

(1− µ)(uY (z), z) = (1− µ)(Y,ϖ+, Q+) + 2
ϖ+ −ϖ(uY (z), z)

Y
+
Q2(uY (z), z)−Q2

+

Y 2
,

for every z ≥ v1. Using (6.72) and (6.71):

∣∣∣|1− µ|(uY (z), z)− |1− µ|(Y,ϖ+, Q+)
∣∣∣ ≲ e−2c(s)z, (6.129)

for every z suitably large. An analogous estimate can be proved for |1− µ|(w, vY (w)), for every w.

Let us now integrate (6.128) from ΓY to (ũ, ṽ) ∈ E and use the fact that ṽ ≥ (1 + β)vY (ũ) to get

log
Ω2(ũ, ṽ)

Ω2(ũ, vY (ũ))
≤ −D β

1 + β
ṽ,

and thus

Ω2(ũ, ṽ) ≤ Ω2(ũ, vY (ũ))e
−D β

1+β ṽ, ∀ (ũ, ṽ) ∈ E. (6.130)

Now, if we differentiate the relation r(·, vY (·)) = Y , we have

ν(·, vY (·)) + λ(·, vY (·))v′Y (·) ≡ 0 in [0, uY (v1)].

Given (u, v) ∈ intE, we can integrate the above in [uγ(v), u], use that uγ = v−1
γ and perform a change of

variables (see (6.64)): ∫ u

uγ(v)

ν(ũ, vY (ũ))dũ =

∫ vY (uγ(v))

vY (u)

λ(uY (ṽ), ṽ)dṽ. (6.131)
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On the other hand, if we integrate (6.130) from the curve γ ⊂ E to (u, v) ∈ intE and use: (6.130), the

facts that Ω2 = 4|ν|κ and 0 < κ ≤ 1 in P and the relations (6.131), (3.33) and (6.129), in this order:

∫ u

uγ(v)

Ω2(ũ, v)dũ ≤ e−D β
1+β v

∫ u

uγ(v)

Ω2(ũ, vY (ũ))dũ ≤ 4e−D β
1+β v

∫ u

uγ(v)

|ν|(ũ, vY (ũ))dũ

= 4e−D β
1+β v

∫ vY (uγ(v))

vY (u)

|λ|(uY (ṽ), ṽ)dṽ

≤ C(Ni.d., R, Y )(vY (uγ(v))− vY (u))e
−D β

1+β v

≤ C(Ni.d., R, Y )(v − vγ(u))e
−D β

1+β v,

for v1 suitably large.

We recall that, in the following, the notation ≲ refers to constants depending on the initial data, η,

R and Y .

Lemma 6.16 (bounds along γ)

Under the assumptions of proposition 6.13, if we further suppose that U is sufficiently small, the following

inequalities hold for every (u, v) ∈ γ ∩ {v ≥ v1}:

e−(2K−+c1ε)
β

1+β v ≲ −λ(u, v) ≲ e−(2K−−c2ε)
β

1+β v, (6.132)

u
−1+

K−
K+

β+α̃
≲ −ν(u, v) ≲ u

−1+
K−
K+

β−α
, (6.133)

for some positive constants α, α̃, c1 and c2. The constants α and α̃ depend on the initial data, on β and

on ε, whereas c1 and c2 depend on the initial data and on η, R and Y . Moreover, for every

β > 0

small compared to the initial data, there exists ε > 0 such that

K−

K+
β − α(β, ε) > 0.

Remark 6.17 (on the estimates along the curve γ)

As β tends to zero (see (6.101)), the curve γ approaches the curve of constant radius ΓY . The importance

of a non-zero value for β is apparent in the results of lemma 6.16, showing that, along γ:

• Not only the quantity |λ| is bounded (as occurs in the redshift, no-shift and early blueshift regions,

see (6.30), (6.69) and (6.120)) but it also decays at a rate which is integrable in [v1,+∞); this result

will be vital to prove that r is bounded and bounded away from zero at the Cauchy horizon;

• The “blow-up” behaviour of |ν| in the u coordinate (property already present in the previous regions,

see (6.4), (6.31), (6.70)) is now integrable in u: this can be used in alternative to the previous point

to show the stability of the Cauchy horizon, once we propagate this result to J+(γ).
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We also notice that, in J+(ΓY ) ∩ J−(γ), requiring U to be small is equivalent to requiring suitably large

values of v1, due to the spacelike nature of γ and its location in the black hole interior. Indeed, we showed

that every u ∈ [0, uY (v1)] satisfies (6.77):

u ∼ e−2K+vY (u),

and a similar relation holds for points along γ, since vY (u) = (1 + β)−1vγ(u). On the other hand, in the

region J+(γ) the restrictions on the v coordinate do not constrain the ingoing null coordinate.

proof of lemma 6.16. Let (u, v) ∈ γ ∩ {v ≥ v1}. To prove the bounds for |λ|, some preliminary estimates

will be useful. First, we obtain an upper bound on ν
1−µ by exploiting (6.97):

0 <
ν

1− µ
(u, v) ≤ ν

1− µ
(u, vY (u)). (6.134)

Furthermore, by differentiating the relation r(·, vY (·)) = Y , we note that

ν(·, vY (·)) + λ(·, vY (·))v′Y (·) ≡ 0 in [0, uY (v1)].

If we integrate the latter in [uY (v), u], use that uY = v−1
Y and perform a change of variables:

∫ u

uY (v)

ν(ũ, vY (ũ))dũ =

∫ v

vY (u)

λ(uY (ṽ), ṽ)dṽ. (6.135)

Figure 6.1: The integration procedure for ν(1− µ)−1.

Now, we obtain integral bounds on ν
1−µ as a preliminary step. An upper bound is achieved as follows.

We use (6.134), together with (6.129), (6.135), (3.33) and with the definition of the curve γ, in this precise

order, to obtain

0 <

∫ u

uY (v)

ν

1− µ
(u′, v)du′ ≤

∫ u

uY (v)

ν

1− µ
(ũ, vY (ũ))dũ

≤ 1

C(Ni.d., R, Y ) + o(1)

∫ u

uY (v)

(−ν)(ũ, vY (ũ))dũ =
1

C(Ni.d., R, Y ) + o(1)

∫ v

vY (u)

(−λ)(uY (ṽ), ṽ)dṽ
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≤ C(Ni.d., R, Y ) + o(1)

C(Ni.d., R, Y ) + o(1)

∫ v

vY (u)

κ(uY (ṽ), ṽ)dṽ ≤ (1 + o(1))
β

1 + β
v, (6.136)

where the notation o(1) refers to the limit u → 0. This yields a lower bound on |λ| as follows. We use

(3.33) to cast (3.35) as

∂uλ = λ
ν

1− µ
(2K −m2r|ϕ|2). (6.137)

If we integrate the latter from ΓY and use that |λ|(uY (v), v) = [κ(1 − µ)](uY (v), v), together with the

boundedness of r, (6.110), (6.123), (6.129), (6.136) and the fact that κ is close to 1 in the early blueshift

region:

|λ|(u, v) = |λ|(uY (v), v) exp

(∫ u

uY (v)

ν

1− µ

(
2K −m2r|ϕ|2

)
(u′, v)du′

)

≥ C(Ni.d., R, Y ) exp

(
−(2K− + C(Ni.d.)ε)(1 + o(1))

β

1 + β
v

)
≥ C(Ni.d., R, Y )e−(2K−+c1ε)

β
1+β v (6.138)

for U sufficiently small, where the constant c1 depends uniquely on the initial data.

Now, we imitate the previous steps to get an upper bound on |λ|. Since λ < 0 and ∂u|λ| < 0 in this

region (see (3.35) and (6.107)), we use (6.110), (6.138) and the fact that v = (1 + β)vY (u) to write:

∫ v

vY (u)

|∂vϕ|2

|λ|
(u, v′)dv′ ≤

∫ v

vY (u)

|∂vϕ|2(u, v′)
|λ|(uγ(v′), v′)

dv′

≲
∫ v

vY (u)

e−2(c(s)−τ)v′+(2K−+c1ε)
β

1+β v′
dv′

≲ e−avY (u) = e−
a

1+β v,

for some a > 0 and for β small. In particular, provided that v1 is chosen sufficiently large, a reasoning

similar to that of the steps (6.97)–(6.100) leads to

ν

1− µ
(u, v) ≥ 1

(1 + o(1))
· ν

1− µ
(u, vY (u)), (6.139)

where the notation o(1) refers to the limit u→ 0.

Analogously to the steps in (6.136), but now using (6.139) with (6.129), (6.135), (3.33), with the fact

that κ is close to 1 in the early blueshift region, and with the definition of the curve γ, in this precise

order, we obtain: ∫ u

uY (v)

ν

1− µ
(u′, v)du′ ≥ (1 + o(1))

β

1 + β
v, (6.140)

for (u, v) ∈ γ ∩ {v ≥ v1}. We now integrate (6.137) from ΓY and use that |λ|(uY (v), v) = [κ(1 −

µ)](uY (v), v), together with the boundedness of r, (6.110), (6.123) and (6.140):

|λ|(u, v) = |λ|(uY (v), v) exp

(∫ u

uY (v)

ν

1− µ

(
2K −m2r|ϕ|2

)
(u′, v)du′

)
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≤ C(Ni.d., R, Y ) exp

(
−(2K− − C(Ni.d.)ε)(1 + o(1))

β

1 + β
v

)
≤ C(Ni.d., R, Y )e−(2K−−c2ε)

β
1+β v, (6.141)

where c2 > 0 depends uniquely on the initial data and can be chosen so that 2K− − c2ε > 0.

We now proceed to estimate |ν| along γ. First, by relation (6.77) proved in the no-shift region, we

have

u ∼ e−2K+vY (u), ∀u ∈ [0, uY (v1)]. (6.142)

Now, for every 0 < σ < 2K− and for every u ≤ uY (v1):

e−(2K−±σ)βvY (u) ∼ u
2K−±σ

2K+
β
= u

K−
K+

β±α
, (6.143)

with 0 < α = σβ
2K+

≲ 1.

We now use, in this order, (6.126), (6.100) (from the no-shift region), (6.124), the definition (6.102)

of γ, (6.31), (6.28) and (6.143) to obtain:

|ν|(u, v) = |ν|(u, vY (u)) exp

(∫ v

vY (u)

κ(2K −m2r|ϕ|2)(u, v′)dv′
)

≤ C(Ni.d., R, Y )|ν|(u, vR(u))e−(2K−−2Cε)βvY (u)

≤ C(Ni.d., R, Y )
1

u
e−(2K−−2Cε)βvY (u)

≲ u
−1+

K−
K+

β−α
,

for every (u, v) ∈ γ ∩ {v ≥ v1}, where 0 < α ≲ εβ. In particular, for every β, we can assume without loss

of generality that ε was chosen sufficiently small so that

K−

K+
β − α > 0. (6.144)

The lower bound in (6.133) then follows analogously to the previous steps, after recalling that vY (u)−

vR(u) is bounded by a constant (see (6.96)).

6.8 Late blueshift region

In the causal future of the curve γ, also dubbed the late blueshift region, the dynamical black

hole departs considerably10 from the fixed sub-extremal solution. After showing that the upper bounds

in (6.132) and (6.133) propagate to J+(γ), it will follow that r remains bounded away from zero in this

entire region. This will be the key ingredient to show the existence, for the dynamical model, of a Cauchy

horizon CH+ beyond which the metric g can be continuously extended. We stress that the smallness of

the region J+(γ) is what allows us to propagate decaying estimates despite the adverse contribution of
10By this, we mean that we have less control on the main dynamical quantities, e.g. K and ϖ, with respect to the

previous regions that we analysed. A precise notion of ‘distance’ between the dynamical black-hole and the fixed sub-
extremal Reissner-Nordström-de Sitter solution depends on the norm used to control the PDE variables.
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the blueshift effect (see already lemma 6.19).

The core idea of the proof is again a bootstrap argument involving the quantity ∂vϕ. The proof,

however, differs significantly from the bootstrap procedures of the previous regions, due to the lack of an

upper bound11 on the quantities |ϖ| and |K| and due to the absence of a lower bound on κ. A natural

way to close the argument is to control ϕ and Duϕ by integrating the estimate on ∂vϕ that we bootstrap

from γ. This is also possible due to a bound on ∂v log Ω
2, which is related to K via (3.41).

The technical difficulties of the proof can be summarised as follows. Due to the presence of the non-

constant charge function Q, we cannot apply the soft analysis used in [20, 22] to propagate the bounds

on |ν| and |λ| from the curve γ. A bootstrap argument lets us circumvent this difficulty and obtain

additional estimates on |ϕ|, |∂vϕ|, |Duϕ| and |Q|. Two core ingredients of the proof are given by a bound

on ∂v log Ω
2, which also plays a crucial role in [79], and by the sub-extremality condition K−

K+
> 1.

Proposition 6.18 (estimates in the late blueshift region)

Under the assumptions of proposition 6.13, if U and β are sufficiently small and if ε is chosen small so

that (see lemma 6.16):
K−

K+
β − α(β, ε) > 0,

then the following inequalities hold for every (u, v) ∈ J+(γ) ∩ {r ≥ r− − ε, v ≥ v1}:

0 < −λ(u, v) ≲ Ω2(u, v)

Ω2(u, vγ(u))
|λ|(u, vγ(u)) + e−min{2c(s)−4τ,2K−−τ}v, (6.145)

0 < −ν(u, v) ≲ u
−1+

K−
K+

β−α
, (6.146)

|∂vϕ|(u, v) ≲ e−(c(s)−τ)v, (6.147)

|ϕ|(u, v) ≲ e−(c(s)−τ)vγ(u), (6.148)

|Duϕ|(u, v) ≲ u
−1+

K−
K+

β−α
e−(c(s)−τ)vγ(u), (6.149)

∂v log Ω
2(u, v) = −2K− +O(ε), (6.150)

|Q|(u, v) ≲ |Q|(u, vγ(u)) + e−2(c(s)−τ)vγ(u), (6.151)

where τ > 0, τ = O(β).

Proof. As for the previous proofs, we will repeatedly use that 0 < κ ≤ 1 and ν < 0 in P, and that λ < 0

in J+(γ) (see lemma 6.9 and lemma 6.16). The value of ε is taken small so that, in particular:

3

4
r− < r− − ε ≤ r ≤ Y in J+(ΓY ) ∩ {r ≥ r− − ε, v ≥ v1}. (6.152)

Moreover, we will use that

c(s) < 2K−. (6.153)

The above follows from (6.27) and from the fact that K−
K+

> 1 (see appendix A in [21]).

11The main obstructions to this result stemming from the quadratic term |Duϕ|2 in (3.38) and the term κ−1 in (3.26).
The renormalized Hawking mass was shown to blow up in the real and massless case [22] for a class of initial data and by
further assuming a lower bound on |∂vϕ| along the event horizon.
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Setting up the bootstrap procedure: Define E as the set of points q in D := J+(γ) ∩ {r ≥

r− − ε, v ≥ v1} such that the following inequalities hold for every (u, v) in J−(q) ∩ D:

|r∂vϕ|(u, v) ≤Me−(c(s)−τ)v, (6.154)

|λ|(u, v) ≤ C(Ni.d.), (6.155)

∂v log Ω
2(u, v) ≤ −K−, (6.156)

where M = M(Ni.d.) > 0 is a large constant and τ > 0, τ = O(β). Moreover, notice that, whenever

(u, v) belongs to γ, we have (u, v) = (uγ(v), v) = (u, vγ(u)).

Closing the bootstrap: let us fix (u, v) ∈ E. By integrating the bootstrap inequality (6.154) and

using (6.110) and the above bounds on r, we can write:

|ϕ|(u, v) ≤ |ϕ|(u, vγ(u))+C(Ni.d.,M)

∫ v

vγ(u)

e−(c(s)−τ)v′
dv′ ≤ C(Ni.d., η, R, Y,M)e−(c(s)−τ)vγ(u). (6.157)

Since the constants R, Y and η will be left unchanged in the next steps, we can absorb those in C =

C(Ni.d.,M) > 0.

In the causal future of γ, the charge function Q remains bounded. Indeed, by integrating (3.12) and

using (6.152), (6.154) and (6.157):

|Q|(u, v) ≤ |Q|(u, vγ(u)) + C(Ni.d.,M)e−2(c(s)−τ)vγ(u). (6.158)

Now, (3.37), (3.19) and the bounds (6.152), (6.156), (6.157) and (6.158) give

|∂v(rν)|(u, v) ≲ Ω2(u, v) ≤ −Ω2(u, v)

K−
∂v log Ω

2(u, v) = −∂v[Ω
2](u, v)

K−
.

After integrating the latter from γ and exploiting (6.133), (3.19) and the boundedness of r:

|ν|(u, v) ≲ |ν|(u, vγ(u)) + Ω2(u, vγ(u)) ≤ C(Ni.d.)u
−1+

K−
K+

β−α
.

To estimate |Duϕ|, we first notice that bound (6.109), obtained for the early blueshift region, and

(6.133) entail

|Duϕ|(u, vγ(u)) ≲ u
−1+

K−
K+

β−α
e−(c(s)−τ)vγ(u).

Therefore, the relations (6.152), (6.154), (6.156), (6.157), the fact that Ω2 = −4νκ and the above bounds

on ν and Q can be used to integrate (3.40) as follows:

|rDuϕ|(u, v) ≲ |rDuϕ|(u, vγ(u)) +
∫ v

vγ(u)

|ν∂vϕ|(u, v′)dv′ + C(Ni.d.)

∫ v

vγ(u)

Ω2|ϕ|(u, v′)dv′

≲ u
−1+

K−
K+

β−α
e−(c(s)−τ)vγ(u) + C(Ni.d.,M)u

−1+
K−
K+

β−α
e−(c(s)−τ)vγ(u)

− C(Ni.d.,M)e−(c(s)−τ)vγ(u)

∫ v

vγ(u)

∂v[Ω
2](u, v′)

K−
dv′,
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where all above constants are positive. So, since Ω2(u, vγ(u)) ≲ u
−1+

K−
K+

β−α:

|Duϕ|(u, v) ≤ C(Ni.d.,M)u
−1+

K−
K+

β−α
e−(c(s)−τ)vγ(u). (6.159)

To close bootstrap inequality (6.156), we first note that the results (6.108) and (6.123) obtained in

the early blueshift region give

|∂v log Ω2(uγ(v), v) + 2K−| ≤ |∂v log Ω2(uγ(v), v)− 2K(uγ(v), v)|+ |2K(uγ(v), v) + 2K−|

= o(1) +O(ε), (6.160)

where o(1) refers to the limit v1 → +∞. On the other hand, it is useful to notice that (6.154) and the

previous bound on |Duϕ| yield12

∫ u

uγ(v)

|Duϕ∂vϕ|(u′, v)du′ = o(1), (6.161)

as v1 → +∞.

Furthermore, (6.156) also holds in J+(ΓY ) ∩ J−(E) (see (6.107) and (6.108)). By applying lemma

6.15 with D = K−:

∫ u

uγ(v)

Ω2(u′, v)du′ ≤ C(Ni.d.)(v − vγ(u))e
−K−

β
1+β v ≤ e−K−

β
2+2β v, (6.162)

for v1 sufficiently large. Now, if we integrate (3.9) from the curve γ and use (6.152), (6.155), (6.160),

(6.161), (6.162) and the previous bound on |ν|:

∂v log Ω
2(u, v) + 2K− +O(ε) + ov1(1) ≤ ∂v log Ω

2(u, v)− ∂v log Ω
2(uγ(v), v)

= ov1(1) + oU (1),

where oU (1) refers to the limit U → 0. This closes bootstrap inequality (6.156). Notice that a similar

reasoning gives

∂v log Ω
2(u, v) = −2K− +O(ε)

for v1 large and U small. Hence, after integration:

e−(2K−+τ)(v−vγ(u)) ≤ Ω2(u, v)

Ω2(u, vγ(u))
≤ e−(2K−−τ)(v−vγ(u)), (6.163)

where τ > 0, τ = O(β) and we assumed that ε is small compared to β.13

12We recall that K−
K+

β − α > 0 by assumptions.
13Recall that for every small choice of β, the value of ε may possibly be taken smaller so that K−

K+
β−α > 0. See also the

proof of lemma 6.16.
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To close the bootstrap on |λ|: integrate (3.7) and use (6.152) to get

|λ|
Ω2

(u, v) ≤ |λ|
Ω2

(u, vγ(u)) + C(Ni.d.)

∫ v

vγ(u)

|∂vϕ|2

Ω2
(u, v′)dv′.

Then, after using (6.154) and (6.163):

|λ|(u, v) ≤ Ω2(u, v)

Ω2(u, vγ(u))

(
|λ|(u, vγ(u)) + C(Ni.d.,M)e−(2K−+τ)vγ(u)

∫ v

vγ(u)

e−(2c(s)−2K−+τ)v′
dv′

)
.

(6.164)

We finally obtain (6.145) after distinguishing between the cases c(s) ≤ K− and c(s) > K−, and exploiting

(6.163) again. In particular, (6.155) is closed.

For the next step, it is useful to notice that (6.163), (6.157), (6.153) and (6.133) (recall that Ω2 ∼ |ν|

along γ) give:

∫ u

uγ(v)

(
Ω2|ϕ|

)
(u′, v)du′ ≤ C(Ni.d.,M)

∫ u

uγ(v)

Ω2(x, vγ(x))e
−(2K−−τ)(v−vγ(x))e−(c(s)−τ)vγ(x)dx

≤ C(Ni.d.,M)u
K−
K+

β−α
e−(c(s)−τ)v. (6.165)

To close the bootstrap inequality on ∂vϕ, we integrate (3.39) (see (6.63) for an explicit expression) and

use (3.19), (6.110), the boundedness of r, of the charge Q, (6.145), (6.165), (6.159), (6.132) and (6.153):

|r∂vϕ|(u, v) ≲ |r∂vϕ|(uγ(v), v) +
∫ u

uγ(v)

(
|λDuϕ|+Ω2|ϕ|

)
(u′, v)du′

≤ C(Ni.d.)e
−(c(s)−τ)v + C(Ni.d.,M)e−(2K−−τ)v

∫ u

uγ(v)

e(2K−−c(s))vγ(x)x
−1+

K−
K+

β−α
dx

+ C(Ni.d.,M)u
K−
K+

β−α
e−min{2c(s)−2τ,2K−−τ}v + C(Ni.d.,M)u

K−
K+

β−α
e−(c(s)−τ)v

≤
(
C(Ni.d.) + C(Ni.d.,M)u

K−
K+

β−α
)
e−(c(s)−τ)v,

assuming that β and ε are small compared to the initial data. Inequality (6.154) is then improved,

provided that U is sufficiently small.

Lemma 6.19

For every ε̃ > 0 small, there exists Uε̃ > 0 such that

r(u, v) > r− − 2ε̃

for every (u, v) in J+(γ) ∩ {u < Uε̃}.

Proof. The proof is analogous to the one of lemma 7.2 in [20], where the results on ν and λ exploited in

such a proof can be replaced with those of proposition 6.18.

Corollary 6.20
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Let Uε̃ > 0 be the value provided by lemma 6.19 for some ε̃ < r−
2 . Then:

[0, Uε̃]× [v0,+∞) ⊂ P,

and the estimates of proposition 6.18 hold in J+(γ) ∩ {u < Uε̃}. Moreover, the limit

lim
v→+∞

r(u, v)

exists and is finite for every u ∈ [0, Uε̃], and

lim
u→0

lim
v→+∞

r(u, v) = r−.

Proof. The inclusion follows from the extension criterion (see theorem 5.1) and lemma 6.19. The limits

are well-defined by the monotonicity of r in J+(γ), namely the fact that λ < 0 (see (6.69) and lemma

6.9) and ν < 0. The final limit follows from lemma 6.19.

6.9 A continuous extension

The construction obtained so far allows us to represent the Cauchy horizon CH+ of the dynamical

black hole as the level set of a regular function. The problem of constructing a continuous extension is

well understood (see e.g. [27, 22, 73, 79]), so we only provide an overview.

In particular, let (u, V ) be a new coordinate system defined as follows. Given a sufficiently regular

function f : [v0,+∞) → R such that the limit of its first derivative as v → +∞ exists and such that

df(v)

dv
−→

v→+∞
−2K−, (6.166)

we define

V (v) := 1−
∫ +∞

v

ef(y)dy, ∀ v ∈ [v0,+∞). (6.167)

The choice f(v) = −2K−v was taken into account in [73] to construct a continuous extension in the case

Λ = 0, where the authors studied the evolution of two-ended asymptotically flat initial data. Here, we

are going to consider any function f such that

df(v)

dv
= 2K(uγ(v), v), ∀ v ∈ [v0,+∞), (6.168)

as done in [67]. This gives, specifically,

CH+ = V −1({1}).

The solutions to our IVP expressed in the coordinate system (u, V ) will be denoted by a subscript, e.g.

rV (u, V ) = r(u, v) and λV (u, V ) = ∂V rV (u, V ) = e−f(v)λ(u, v). We designate the smallest value that V

can take by V0 = V (v0).
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In the following, we restrict the range of the ingoing null coordinate to the set [0, U ], where we use

again the letter U to denote a value chosen sufficiently small, so that corollary 6.20 holds for some fixed

ε̃ < r−
2 .

In this context, we show that the metric g and the scalar field ϕ admit a continuous extension beyond

the Cauchy horizon, in the sense of theorem 11.1 in [27]. This is a strong signal for the potential failure

of conjecture 2.1, whose definitive resolution however requires a complementary study of the exterior

problem.

Theorem 6.21 (A C0 extension of g and ϕ)

For every 0 < δU < U , the functions rV , Ω2
V and ϕV admit a continuous extension to the set [δU , U ] ×

[V0, 1]. Moreover, on [δU , U ], the functions rV (·, 1) and Ω2
V (·, 1) are positive.

Proof. We prove the existence of an extension for r, Ω2 and ϕ, in this order.

Extension of r: first, by monotonicity of r in I+(A), the limit

lim
v→+∞

r(u, v) = lim
V→1

rV (u, V ) =: rV (u, 1) (6.169)

exists for every u ∈ [δU , U ]. Moreover, the above convergence is uniform in u. Indeed, due to the decay

of |λ| proved in the late blueshift region (see (6.145)):

∫ 1

V (v)

|λV |(u, V ′)dV ′ =

∫ +∞

v

|λ|(u, v′)dv′ ≤ e−av,

for some a > 0 and for every u ∈ [δU , U ]. So, by the fundamental theorem of calculus:

sup
u∈[δU ,U ]

|rV (u, V )− rV (u, 1)| = sup
u∈[δU ,U ]

∣∣∣∣∫ 1

V

λV (u, V
′)dV ′

∣∣∣∣ −→V→1
0.

Since the function rV (·, 1) is the uniform limit of continuous functions, it is continuous. The above, (6.169)

and an application of the triangle inequality, imply that for every sequence (un, Vn)n∈N ⊂ [δU , U ]× [V0, 1]

such that (un, Vn) → (u∞, V∞) ∈ [δU , U ]× [V0, 1] as n→ +∞, we have

|rV (un, Vn)− rV (u∞, V∞)| −→
n→+∞

0,

i.e. rV is continuous in [δU , U ]× [V0, 1]. We stress that rV (·, 1) > 0, due to lemma 6.19.

Extension of Ω2: in light of the available estimates, we extend the function log Ω2. Using (3.19)

and (3.33), it can be verified that Ω2
V (u, V ) = e−f(v)Ω2(u, v) in [δU , U ]× [V0, 1].

Now, we use the notation

ρ :=
K−

K+
,

equation (3.9) and the estimates of proposition 6.18, to observe that there exists a > 0 such that, for

every (u, v) ∈ J+(γ):

|∂u∂v log Ω2|(u, v) ≲ u−1+ρβ−αe−Cs(u,vγ(u))−av +Ω2(u, v) + u−1+ρβ−αe−av.
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If we integrate the above from the curve γ and use lemma 6.15 and the positivity of ρβ − α (which can

be assumed for a suitable choice of δ and ε, see lemma 6.16), there exists a > 0 (possibly different from

the previous one) such that

|∂v log Ω2(u, v)− ∂v log Ω
2(uγ(v), v)| ≲ e−av, (6.170)

for every (u, v) ∈ J+(γ).

Now, by (6.167) and (6.168), we have

∂V log Ω2
V (u, V ) = e−f(v)∂v

[
log
(
e−f(v)Ω2

)]
(u, v) = e−f(v)

(
∂v log Ω

2(u, v)− 2K(uγ(v), v)
)
.

So, using inequality (6.108), valid along the curve γ, and (6.170):

∫ 1

V (v)

|∂V log Ω2
V |(u, V ′)dV ′ =

∫ +∞

v

|∂v log Ω2(u, v′)− 2K(uγ(v
′), v′)|dv′

≤
∫ +∞

v

|∂v log Ω2(u, v′)− ∂v log Ω
2(uγ(v

′), v′)|dv′

+

∫ +∞

v

|∂v log Ω2(uγ(v
′), v′)− 2K(uγ(v

′), v′)|dv′

≲ e−av,

for some a > 0 and for every (u, v) ∈ [δU , U ]× [v0,+∞). This means that, for every V1 ≥ V0, the following

expression admits a finite limit as V2 → 1:

log Ω2
V (u, V2) = logΩ2

V (u, V1) +

∫ V2

V1

∂V log Ω2
V (u, V

′)dV ′.

We define log Ω2
V (u, 1) := limV→1 log Ω

2
V (u, V ) for every u ∈ [δU , U ]. Moreover:

sup
u∈[δU ,U ]

∣∣log Ω2
V (u, V )− log Ω2

V (u, 1)
∣∣ = sup

u∈[δU ,U ]

∣∣∣∣∫ 1

V

∂V log Ω2
V (u, V

′)dV ′
∣∣∣∣ −→V→1

0.

The reasoning used for the extension of rV then gives an extension of log Ω2
V as well. Moreover, since we

proved that log Ω2
V (u, 1) is finite for every u ∈ [δU , U ], it follows that Ω2

V (·, 1) > 0 on the same interval.

Extension of ϕ: By (6.147), there exists a > 0 such that:

∫ 1

V (v)

|∂V ϕV |(u, V ′)dV ′ =

∫ +∞

v

|∂vϕ|(u, v′)dv′ ≲ e−av,

for every (u, v) ∈ [δU , U ] × [v0,+∞). Thus, ϕV (u, 1) := limV→1 ϕV (u, V ) exists and is finite by the

fundamental theorem of calculus. Furthermore:

sup
u∈[δU ,U ]

|ϕV (u, V )− ϕV (u, 1)| = sup
u∈[δU ,U ]

∣∣∣∣∫ 1

V

∂V ϕV (u, V
′)dV ′

∣∣∣∣ −→V→1
0,

for every u ∈ [δU , U ]. As for the case of rV and Ω2
V , this is enough to prove that ϕV is continuous in
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[δU , U ]× [V0, 1].
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Chapter 7

No-mass-inflation scenario and H1

extensions

Heuristics and numerical work (see section 2.4) suggest the validity of the exponential Price law

upper bound (3.49) along the event horizon of a solution asymptotically approaching (in the sense of

section 3.2) a Reissner-Nordström-de Sitter black hole. Compared to the case Λ = 0, however, the exact

asymptotics given by the constant value s in (3.49) play an even more important role, since the redshift

(resp. blueshift) effect is expected to give an exponential contribution to the decay (resp. growth) of the

main dynamical quantities: the value of s then determines the leading exponential contribution. This

has a decisive role in determining the final fate of the dynamical black hole: a dominance of the blueshift

effect is expected to cause geometric quantities such as the renormalized Hawking mass to blow up at

the Cauchy horizon (this is the mass inflation scenario [86, 27, 22]), whereas a sufficiently fast decay

of the scalar field along H+ may allow to extend the dynamical quantities across the Cauchy horizon in

such a way that they are still weak solutions to the Einstein-Maxwell-charged-Klein-Gordon system (we

have, in this case, lack of global uniqueness).

In [22], where the massless, real scalar field model was studied, any positive value of s was allowed

and a further lower bound on the scalar field was assumed along the event horizon.1 There, different

relations between s and the quantity2

ρ :=
K−

K+
> 1 (7.1)

led to different outcomes. The authors found a set in the ρ − s plane for which mass inflation can be

excluded for generic initial data: in this context, an H1 extension of the solution was built and the

so-called Christodoulou-Chruściel version of strong cosmic censorship was called into question. On the

other hand, they found another set in the ρ − s plane, disjoint from the previous one, for which mass

inflation was guaranteed. This suggests that the H1 version of the strong cosmic censorship, in this

spherically symmetric toy model with Λ > 0, does hold if such initial data can be attained when starting

1With respect to our exponential Price law, the work [22] uses a different convention. For every ϵ > 0, they choose initial
data such that e−(SK++ϵ)v ≲ |∂vϕ|(0, v) ≲ e−(SK+−ϵ)v along the event horizon, for some S > 0.

2See also appendix A in [21] for a proof of the positivity of ρ− 1. The case ρ = 1 is associated to extremal black holes.
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the evolution from a suitable spacelike hypersurface.

In the following, by requiring an upper bound (but no lower bound) on the scalar field along the event

horizon (see (3.49)) we prove, despite the lack of many monotonicity results, that mass inflation can be

avoided generically3 also in the massive and charged case. With respect to the case of a real-valued scalar

field, we extend the set of possible values of s for which H1 extensions can be constructed (see Fig. 2.2),

in agreement with the results obtained for the linear problem [18, 60].

Also in this chapter, we set U as the maximum of the ingoing null coordinate, where U is chosen

suitably small, so that corollary 6.20 holds for a fixed ε̃ < r−
2 .

7.1 No mass inflation

Theorem 7.1 (A sufficient condition to prevent mass inflation)

Given the characteristic IVP of section 3.1, choose initial data for which

s > K− and ρ =
K−

K+
< 2 (7.2)

are satisfied. Then, there exists a positive constant C, depending only on the initial data, such that

|ϖ|(u, v) ≤ C, ∀ (u, v) ∈ J+(γ),

provided that the value of U is sufficiently small.

Proof. We first present the main idea of the proof. Here, we choose the constants η, δ, R, ∆, ε, Y and β

introduced in chapter 6 in such a way that the assumptions of proposition 6.18 are satisfied.

Using (3.33), equation (3.26) can be cast as

∂vϖ = −|θ|2

rλ
ϖ +

λ

2
m2r2|ϕ|2 +Qq Im

(
ϕθ
)
+

|θ|2

2λ

(
1 +

Q2

r2
− Λ

3
r2
)
,

and thus, for every (u, v) ∈ J+(γ):

ϖ(u, v) = ϖ(u, vγ(u))e
−

∫ v
vγ (u)

|θ|2
rλ (u,v′)dv′

+ (7.3)

+

∫ v

vγ(u)

[
λ

2
m2r2|ϕ|2 +Qq Im

(
ϕθ
)
+

|θ|2

2λ

(
1 +

Q2

r2
− Λ

3
r2
)]

(u, v′)e−
∫ v
v′

|θ|2
rλ (u,y)dydv′.

We recall that ϖ(u, vγ(u)) → ϖ+ as u→ 0 (see proposition 6.13) and notice that the quantities inside the

above square bracket, except for |θ|2
2λ , either decay or are bounded in L∞ norm (see proposition 6.18). To

control ϖ and extend it continuously to the Cauchy horizon is then sufficient to have a uniform integral

bound on |θ|2
|λ| (see also theorem 6.21, where uniform estimates were used to extend the metric). In the

following, we bootstrap such an integral bound from the curve γ. This allows us to get a lower bound on
3Provided that ρ and s satisfy (7.2). We emphasize that, to study the admissibility of such values of ρ and s, a rigorous

analysis of the exterior problem is required. Although it has been established [40, 7] that the value of s corresponding to
the decay of the (real or complex) scalar field along H+ is determined by the spectral gap of the Laplace-Beltrami operator,
a rigorous determination of such s is still generally lacking.
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|λ|. We are then able to close the bootstrap argument using (6.147) and (7.2). The idea of bootstrapping

such an integral bound is taken from [22], where, however, the expression for ϖ is considerably simpler

and further restrictions on the values of s and β are required since less estimates are available in the

region J+(γ). We now proceed with the detailed proof.

In the following, we repeatedly use the boundedness of r. Let n ∈ N0 be fixed and large with respect

to the initial data. We denote by E the set of points q ∈ J+(γ) such that the following inequality holds

for every (u, v) ∈ J−(q) ∩ J+(γ):

∫ v

vY (u)

|θ|2

|λ|
(u, v′)dv′ =

∫ v

vY (u)

r2|∂vϕ|2

|λ|
(u, v′)dv′ ≤ 1

n
. (7.4)

The above holds for every (u, v) ∈ γ, due to (6.110) and (6.132), provided that U and β are sufficiently

small.

Now, let (u, v) ∈ E. Notice that |r− r−| and |Q−Q+| are small in E, provided that U is sufficiently

small, due to the results of proposition 6.18 and to corollary 6.20. Moreover, the reasoning at the

beginning of the current proof shows that |ϖ −ϖ+| is small in E, too. Therefore, by (3.34):

2K(u, v) = −2K− + o(1), (7.5)

where o(1) refers to the limit U → 0.

This gives a lower bound on |λ| as follows. First, notice that (6.97) gives

0 <
ν

1− µ
(u, v) ≤ ν

1− µ
(u, vY (u))

and, by construction, the same relation holds in J−(u, v) ∩ J+(γ). Expressions (6.129), (6.131), (3.33)

and the definition of the curve γ yield

∫ u

uγ(v)

ν

1− µ
(ũ, v)dũ ≤

∫ u

uγ(v)

ν

1− µ
(ũ, vY (ũ))dũ

≲
1

C(Ni.d.) + o(1)

∫ vY (uγ(v))

vY (u)

(
C(Ni.d.) + e−2c(s)v′

)
dv′

≤ v − vγ(u)

(1 + o(1))(1 + β)
, (7.6)

where the notation o(1) refers to the limit U → 0. Thus, if we integrate (6.137) from γ and use (6.132),

(6.110), (7.5), (7.6):

|λ|(u, v) = |λ|(uγ(v), v)e
∫ u
uγ (v)

ν
1−µ (2K−m2r|ϕ|2)(u′,v)du′

≥ C(Ni.d.)e
−(2K−+c1ε)

β
1+β ve−(2K−+O(β)+o(1))(v−vγ(u))

≳ C(u)e−(2K−+c1ε)(1+O(β)+o(1))v, (7.7)

where we defined

C(u) := e2K−(1+O(β)+o(1))vγ(u).
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We now close the bootstrap argument. Using (7.7) and (6.147):

∫ v

vγ(u)

|θ|2

|λ|
(u, v′)dv′ ≲

1

C(u)

∫ v

vγ(u)

e(−2c(s)+2K−+C(β,ε)+o(1))v′
dv′,

for some C(β, ε) > 0 that goes to zero as β → 0 or as ε → 0. Under our assumptions, the last exponent

is negative. Indeed, given s and ρ as in (7.2), there exists δϖ > 0 and we can choose η sufficiently small

in proposition 6.7 (see also remark 6.1), so that

s > K− + δϖ and ρ < 2− δϖ + η

K+
. (7.8)

Therefore, by (6.27) we have:

c(s) > K− + δϖ.

Based on the initial data, we can choose β, ε and U suitably small so that C(β, ε) < δϖ. Thus, if U

is sufficiently small, there exists a > 0 such that:

∫ v

vγ(u)

|θ|2

|λ|
(u, v′)dv′ ≤ C(Ni.d.)e

−avγ(u),

and bootstrap inequality (7.4) closes, possibly after choosing an even smaller value of U .

Remark 7.2

The linear analysis performed in [18] shows the analogue of a no-mass-inflation regime in the entire

region K− < min{s, 2K+}. This coincides with the region of the ρ − s plane given in theorem 7.1 (see

also Fig. 2.2). The linear analysis in [60] presents, using different techniques, an analogous result where

the regularity of the extension depends on the decay of the initial data.

Remark 7.3 (On mass inflation)

In [22], sufficient conditions to show the presence of mass inflation were found. By assuming a lower

bound on the scalar field along the event horizon, namely by requiring

e−(SK++ε)v ≲ |∂vϕ|(0, v) ≲ e−(SK+−ε)v,

for 0 < S < min{ρ, 2} and ε > 0, it was possible to show that limv→+∞ |ϖ|(u, v) = +∞, for every

u ∈]0, U ].

In the charged scalar field case, oscillations affect this scenario and integral bounds for |∂vϕ| are

expected to be more relevant. Furthermore, the monotonicity of the quantities ϖ, θ, ζ and κ play a

prominent role in the proof of the above result in the real, massless case. In particular, in [22], it was

possible to prove that the mass inflation scenario is strongly related with the behaviour of the integral in

(7.4). In particular, in the real and massless case:

1. The convergence of the integral in (7.4) implies

∫ v

vγ(u)

|θ|2

|λ|
(u, v′)dv′ → 0, as u→ 0,

92



whereas in the current case it is not even clear if the limit is well-defined. Even working with

subsequences does not allow to immediately control the quantity ϖ.

2. The lower bound on the scalar field can be propagated from the event horizon to J+(γ), due to the

positivity of ζ and θ in J+(A). In the current case, on the other hand, the system does not include

such explicit monotonicity properties (for instance we recall that ζ, θ and ϕ are complex-valued

quantities).

7.2 Construction of an H1 extension

By prescribing initial data such that conditions (7.2) are satisfied, we proved that the solution to the

Einstein-Maxwell-charged-Klein-Gordon system admits a non-trivial Cauchy horizon CH+, along which

|ϖ| remains bounded. In this context, we now prove that such a solution further admits an H1
loc extension

up to its Cauchy horizon, namely we show that all PDE variables of the IVP (except possibly for the

ones corresponding, in a different coordinate system, to θ and κ) admit a continuous extension, that the

Christoffel symbols can be extended in L2
loc and that ϕ can be extended in H1

loc.

Extensions in such a class represent the minimal requirement to understand the extended spacetimes

as weak solutions to the Einstein equations. We stress that we required enough regularity so that the

second-order PDE system under consideration is equivalent to the first-order system (3.20)–(3.33) (see

also remark 4.5). It is interesting to notice that, if less regularity is demanded, it is a priori possible

to construct metric extensions beyond the Cauchy horizon that solve the first-order system but not the

second-order system of PDEs.

In the current case, the fact that our extensions solve the second-order system of PDEs in a weak

sense beyond CH+ is a corollary of previous work [49], see already corollary 7.7.

To construct the H1
loc extension, we first introduce the coordinate

ṽ(v) := r(U, vA(U))− r(U, v),

where vA(U) := max{v : λ(U, v) = 0} (see also corollary 6.11 for a localization and the main properties of

the apparent horizon). We provide a further C0 extension in the (u, ṽ) coordinate system, which will be

used to construct an H1
loc extension. We will denote the solutions to our IVP in the coordinate system

(u, ṽ) by a tilde, e.g. r̃(u, ṽ) = r(u, v) and λ̃(u, ṽ) = ∂ṽ r̃(u, ṽ) = − λ(u,v)
λ(U,v) . In this coordinate system, the

Cauchy horizon can be expressed as a level set: CH+ = ṽ−1(Ṽ ), for some positive constant Ṽ . Moreover,

we denote ṽ0 := ṽ(v0).

In order to establish an H1
loc extension, we use a further coordinate v̊ defined by the equality

Ω̊2(U, v̊) ≡ 1, (7.9)

where the circle superscript is used here and in the following to denote PDE variables expressed in this
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newly-defined coordinate. Expression (7.9), together with (3.19) and (3.33), entails, in particular, that

d̊v

dv
= Ω2(U, v).

Similarly to the previous cases, we denote v̊0 := v̊(v0).

The coordinate systems (u, ṽ) and (u, v̊) were used in [22, section 12], where their C1-compatibility

up to the Cauchy horizon and the finiteness of V̊ := v̊(Ṽ ) were shown.4

Theorem 7.4

Suppose that the assumptions of theorem 7.1 hold. Then, for every 0 < δU < U , the functions λ̃, ϖ̃, ϕ̃,

Q̃, r̃, ν̃, ζ̃, Ãu (but not necessarily θ̃ or κ̃) admit a continuous extension to [δU , U ]× [0, Ṽ ].

Proof. As observed in the proof of theorem 6.21, to prove that a dynamical quantity q̃ ∈ {λ̃, ϖ̃, ϕ̃, Q̃, r̃,

ν̃, ζ̃, Ãu} can be extended continuously, it will be enough to show that

q̃(u, Ṽ ) := lim
ṽ→Ṽ

q̃(u, ṽ)

exists, is finite and that ∣∣∣q̃(u, ṽ)− q̃(u, Ṽ )
∣∣∣ −→
ṽ→Ṽ

0 uniformly in [δU , U ].

Alternatively, it is sufficient to show that q̃ can be expressed in terms of quantities that can be extended.

For the sake of convenience, we define

f(v) := ṽ(v) = r(U, vA(U))− r(U, v), (7.10)

for every v ∈ [v0,+∞). To extend r̃, we first observe that r̃(·, Ṽ ) is well-defined by monotonicity.

Moreover, for every u ∈ [δU , U ], (6.145) implies

∫ Ṽ

ṽ

|λ̃|(u, z)dz =
∫ +∞

f−1(ṽ)

|λ|(u, z)dz −→
ṽ→Ṽ

0,

uniformly in [δU , U ]. Due to the fundamental theorem of calculus, this entails that r̃(·, ṽ) converges to

r̃(·, Ṽ ) uniformly in [δU , U ].

Let us now deal with ϖ̃. By (7.3) and due to the estimates of proposition 6.18, it is clear that we only

need to verify the convergence of
∫ |θ̃|2

|λ̃| (u, z)dz. In particular, using the bound (7.4), which was seen to

hold in J+(γ), we have ∫ Ṽ

ṽ

|θ̃|2

|λ̃|
(u, z)dz =

∫ +∞

f−1(ṽ)

|θ|2

|λ|
(u, z)dz −→

ṽ→Ṽ
0, (7.11)

uniformly in u (in fact, |θλ−1| is a geometric quantity and the factor coming from θ̃ cancels out with the

Jacobian of the change of variables). Thus, ϖ̃(·, Ṽ ) is well-defined and, by the same estimate, ϖ̃(·, ṽ)

converges to ϖ̃(·, Ṽ ) as ṽ → Ṽ , uniformly in u.

4In particular, every C0 extension in the (u, ṽ) coordinate system gives rise to a C0 extension in the (u, v̊) coordinate
system, and vice versa.
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The charge Q̃ can be extended in a similar way: by (3.31) we have

Q̃(u, Ṽ ) = Q̃(u, ṽ) + q

∫ Ṽ

ṽ

r̃ Im
(
ϕ̃θ̃
)
(u, z)dz.

By the boundedness of r̃ and due to the estimates proved in proposition 6.18:

∫ Ṽ

ṽ

|ϕ̃θ̃|(u, z)dz =
∫ +∞

f−1(ṽ)

|ϕθ|(u, z)dz −→
ṽ→Ṽ

0,

uniformly in u. Thus, Q̃(·, Ṽ ) is well-defined and Q̃ admits a C0 extension to the Cauchy horizon.

Analogously, we can integrate (3.23) to obtain

ϕ̃(u, Ṽ ) = ϕ̃(u, ṽ) +

∫ Ṽ

ṽ

θ̃

r̃
(u, z)dz.

We can again exploit the boundedness of r̃ and the estimates holding in J+(γ) to observe that

∫ Ṽ

ṽ

|θ̃|(u, z)dz =
∫ +∞

f−1(ṽ)

|θ|(u, z)dz −→
ṽ→Ṽ

0, (7.12)

uniformly in [δU , U ].

Now, ν̃
1−µ̃ (·, Ṽ ) is well-defined in [δU , U ], due to the monotonicity of equation (6.97) for ṽ large.

Integrating the latter and using (7.11), we also have:

sup
u∈[δU ,U ]

∣∣∣∣ ν̃

1− µ̃
(u, ṽ)− ν̃

1− µ̃
(u, Ṽ )

∣∣∣∣ −→
ṽ→Ṽ

0, (7.13)

i.e. ν̃
1−µ̃ admits a continuous extension. Moreover, equation (6.97), the finiteness of

∫ |θ|2
|λ| (see (7.11))

and the estimates (6.70), (6.31) and (6.93) obtained along ΓY show that there exists C > 0 such that

ν̃

1− µ̃
(u, Ṽ ) ≳

ν̃

1− µ̃
(u, ṽ(vY (u))) =

ν

1− µ
(u, vY (u)) ≥ C > 0,

for every u in [δU , U ]. We can use this quantity to extend λ̃. In fact, exploiting (3.33), the fact that

λ̃(U, ṽ) = −1 for ṽ large and (3.35), we have:

λ̃(u, ṽ) = − exp

(
−
∫ U

u

ν̃

1− µ̃

(
2K̃ −m2r|ϕ̃|2

)
(u′, ṽ)du′

)
.

Let us now focus on the quantities under the last integral sign. By (3.34) and by the previous steps of

the current proof, all these quantities admit a C0 extension. Thus, λ̃ does as well. Moreover, λ̃(·, Ṽ ) is a

negative function.

We can use the above, (3.19) and (3.33) to observe that

Ω̃2 = −4ν̃κ̃ = −4λ̃
ν̃

1− µ̃
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extends continuously and is positive on the Cauchy horizon.

To extend ν̃, we observe that ν̃(·, Ṽ ) is well-defined by monotonicity. Indeed, under the assumptions

of theorem 7.1 and for U sufficiently small, K is sufficiently close to −K− in J+(γ) and thus ∂vν > 0 by

(3.35). The latter equation, together with (3.19) and the fact that Ω̃2, K̃ and ϕ̃ are continuous in the

compact set [δU , U ]× [ṽ0, Ṽ ], gives

∣∣∣ν̃(u, ṽ)− ν̃(u, Ṽ )
∣∣∣ = ∣∣∣∣∣

∫ Ṽ

ṽ

Ω̃2

4

(
2K̃ −m2r̃|ϕ̃|2

)
(u, z)dz

∣∣∣∣∣ −→ṽ→Ṽ
0,

uniformly in u. An integration of (3.32), the relation Ω̃2 = −4ν̃κ̃ and a similar procedure also show the

continuous extension of Au.

Finally, for every u ∈ [δU , U ], we integrate (3.28) to write

ζ̃(u, Ṽ ) = ζ̃(u, ṽ)−
∫ Ṽ

ṽ

(
θ̃

r̃
ν̃ +

Ω̃2ϕ̃

4r̃

(
m2r̃2 + iqQ̃

))
(u, z)dz.

The term multiplied by Ω̃2 under the last integral sign was shown to be continuous in the compact set

[δU , U ]× [ṽ0, Ṽ ]. Moreover, ν̃ and r̃ admit a continuous extensions, and the latter is bounded away from

zero on the Cauchy horizon. To prove that ζ̃(·, Ṽ ) is well-defined, we are left to prove the convergence

of
∫ Ṽ

ṽ
|θ̃|(u, z)dz. This follows from (7.12), which is a stronger result and is also sufficient to prove the

uniform convergence of ζ̃(·, ṽ) to ζ̃(·, Ṽ ), as ṽ goes to Ṽ .

Theorem 7.5 (An H1
loc extension)

Suppose that the assumptions of theorem 7.1 hold. Then, for every 0 < δU < U , there exists a continuous

extension of the metric g to the set D = [δU , U ]× [ṽ0, Ṽ ], with Christoffel symbols in L2(D) and such that

ϕ ∈ H1(D).

Proof. Theorem 7.4 gives a continuous extension in the (u, ṽ) coordinate system. Since (u, ṽ) and (u, v̊)

correspond to C1–compatible local charts (see [22, section 12]), a continuous extension in the latter

coordinate system promptly follows. We will work in the (u, v̊) system throughout the remaining part of

the proof.

The Christoffel symbols are given explicitly in appendix C. Due to the fact that r̃ and Ω̃2 are strictly

positive on the Cauchy horizon (see the proof of theorem 7.4), we only need to check that Γu
uu and Γv̊

v̊v̊

are in L2
loc. The proof of this result is completely analogous to the proof of theorem 12.3 in [22].

To show that ∥ϕ∥H1(D) is bounded, with D = [δU , U ]× [ṽ0, Ṽ ], we notice two key results:

• Due to the continuous extensions of ϕ̊, ζ̊ and Åu, there exists C > 0, depending uniquely on the

initial data, such that ∫ V̊

v̊0

(
|ϕ|2 + |∂uϕ|2

)
(u, z)dz ≤ C,

for every u ∈ [δU , U ].

96



• In the proof of theorem 7.1 we showed that there exists a > 0 such that

|θ|2

|λ|
(u, v) ≲

e−av

C̃(u)
, ∀ (u, v) ∈ J+(γ),

for some constant C̃(u) > 0 depending on u. We obtained such a result using the lower bound

(7.7). The same bound also gives

|θ|2(u, v)
|λ|(U, v)

≲
e−av

C̃(U)
, ∀ (u, v) ∈ J+(γ).

So, using the latter, using the fact that:5

Ω2

|λ|
(U, v) = 4

ν

1− µ
(U, v) = 4

ν̃

1− µ̃
(U, ṽ(v)) = Ω̃2(U, ṽ(v)) ≥ C > 0, ∀ v ≥ v0,

and, finally, exploiting the relation θ̊(u, v̊) = Ω−2(U, v(̊v))θ(u, v(̊v)), we have:

∫ V̊

v̊0

|̊θ|2(u, z)dz =
∫ +∞

v0

|θ|2(u, z)
Ω2(U, z)

dz ≲
∫ +∞

v0

|θ|2(u, z)
|λ|(U, z)

dz ≤ C,

for some C > 0 depending uniquely on the initial data.

Corollary 7.6

Let M0 be the preimage of (0, U ]× [̊v0, V̊ ] via the coordinate functions (u, v̊). Then, the pull-backed scalar

field and Christoffel symbols on M0 are, respectively, in H1
loc(M0) and L2

loc(M0).

Proof. For every 0 < δU < U , we denote by Mδ the preimage of [δU , U ] × [̊v0, V̊ ] via the coordinate

functions (u, v̊). The volume form on Mδ is

dV4 =
Ω̊2

2
r̊2dud̊v.

Since r̊ and Ω̊2 are continuous in the compact set [δU , U ]× [̊v0, V̊ ], the results of theorem 7.5 are sufficient

to conclude the proof.

The following is a consequence of [49, Section 10], where the asymptotically flat case was considered for

extremal black holes. We recall that we have defined a coordinate chart (u, v̊) that allows to parametrize

the Cauchy horizon as CH+ = v̊−1(V̊ ), with 0 < V̊ < +∞.

Corollary 7.7 (Extensions beyond the Cauchy horizon as weak solutions)

For every 0 < δU < U , there exists ϵ = ϵ(δU ) > 0 such that there exist infinitely many inequivalent

extensions of the metric g to the region

D := P ∪
(
[δU , δU + ϵ]× [V̊ , V̊ + ϵ]

)
,

with Christoffel symbols in L2(D), ϕ ∈ H1(D) and such that the extensions satisfy the second-order
5We notice that |λ̃|(U, ·) ≡ 1 and that Ω̃2 is positive up to the Cauchy horizon, see the proof of theorem 7.4.
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system of PDEs in an integrated sense.

Proof. The same procedure of [49, Section 10] can be applied in our case, since the presence of the

cosmological constant Λ in our second-order system (3.6)–(3.10), (3.30)–(3.32) does not represent an

obstruction to the reasoning of [49], and neither does the sub-extremality condition.

To summarize, the proof requires a local well-posedness result similar to that in chapter 4, where

however local existence is now proved for solutions6 (ϕ,Ω2, r, A,Q) to the second-order system and

the quantities ∂vϕ and ∂v log Ω
2 are assumed to be only square-integrable in the v–direction, along

the initial hypersurface. In the low-regularity local well-posedness result that we are considering, the

Raychaudhuri equations and the Maxwell equations are treated as constraints. The equation (3.32) for

the electromagnetic potential A is satisfied classically, whereas the wave equations for r, ϕ and log Ω2

(see (3.8), (3.10) and (3.9)) are satisfied in an integrated sense.

The next step is to extend the outgoing null cone {u = δU} ⊂ P up to the Cauchy horizon CH+.

Then, a sequence of initial value problems is considered, with initial data on

[δU , δU + ϵ]× {̊vn} ∪ {δU} × [̊vn, v̊n + ϵ],

where (̊vn)n∈N ⊂ [̊v0, V̊ ) and v̊n → V̊ as n→ +∞. To prescribe the initial data for (ϕ̊, Ω̊2, r̊, Å) along the

Cauchy horizon, we notice the following:

• Ω̊2(δU , v̊) is continuous and locally square-integrable in the v̊-coordinate, and is bounded away from

zero up to the Cauchy horizon (see theorem 7.5). Therefore, we can extend Ω̊2 to a subset of

{(δU , v̊) : v̊ > V̊ },

in such a way that Ω̊2 is still continuous, locally square-integrable, bounded and bounded away

from zero.

• the functions ϕ̊ and Å can be extended by following a procedure analogous to that for Ω̊2. The same

can be said for r̊, which however has to satisfy a constraint given by the Raychaudhuri equation in

the v̊ direction.

Assume that we extended the PDE variables that play the role of the initial data beyond the Cauchy

horizon, up to the value v̊ = V̊ + a, for some a > 0 small. The local existence theorem then provides an

integrated solution in

[δU , δU + ϵ]× [̊vn, v̊n + ϵ],

for every n, for a small 0 < ϵ < a that depends on the L2 and L∞ norms of the initial data on

[δU , δU + ϵ]× {̊vn} ∪ {δU}× [̊vn, V̊ + a], that does not depend on the value of n.7 For n sufficiently large,

this gives a metric solution of H1 regularity beyond the Cauchy horizon.

6Here, we are considering solutions in an integrated sense, in the language of [49].
7Notice that the initial data in the region v̊ ≤ V̊ are given by the solution that we constructed in the previous sections.

On the other hand, the norms of such solution depend on the initial data on [0, U)× {v0} ∪ {0} × [v0,+∞).
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Appendix A

Bootstrap

It is often the case in the realm of non-linear PDEs that the solution to an initial value problem, let

it be called f , satisfies an estimate in terms of f itself, or one of its norms. Although this may seem to

lead to a circular reasoning, there is a way for such an estimate to prove useful, provided that we have

some form of control on f at the beginning of the dynamics and that the expression relating the f with

itself allows us to improve such a control at later times.

Indeed, the bootstrap method or continuity method, which can be thought of as a continuous analogue

of mathematical induction [98], is a formalization of such a reasoning. A particular formulation, which

is relevant for the present work, is the following.

Proposition A.1 (A boostrap argument in Rn)

Let D ⊂ Rn, for some n ∈ N0, be a connected set and let f : D → R be a continuous function. For every

C > 0, we define the set

BC := {x ∈ D : |f |(x) ≤ C}.

Consider the following two properties:

B0: There exists C0 > 0 such that BC0
̸= ∅,

B1: If |f |(x) ≤ C for some x ∈ D and for some C > 0, then there exists 0 < c < C such that |f |(x) ≤ c.

If B0 and B1 hold, then:

|f |(x) ≤ C0, ∀x ∈ D.

Proof. By continuity of f , the set BC0
is closed. Now, due to B1 and to the continuity of f , for every

x0 ∈ BC0 , there exists an open neighbourhood A0 ∋ x0 such that |f |(y) ≤ C0 for every y ∈ A0. By

definition of BC0 , it follows that A0 ⊂ BC0 . This implies that BC0 is an open set. Since BC0 is non-empty

(by B0), the connectedness of D entails that BC0
= D.

The above proof can be easily modified for the case in which f is not a priori defined in the entire set

D, but can be extended due to some additional property, e.g. due to a local existence result.
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Proposition A.2 (A bootstrap argument in Rn – local existence version)

Let D ⊂ Rn be a connected set, and let E ⊂ D. Consider the function f : E → R, assumed to be

continuous. For every C > 0, we define the set

BC := {x ∈ D : |f |(x) ≤ C}.

Suppose that the properties B0 and B1 of proposition A.1 hold, and further assume that the following

property is valid:

LE: If there exists a C > 0 such that supE |f | < C, then there exists a unique continuous extension

f̃ : Ẽ → R, with E ⊂ Ẽ, such that f̃|E = f .

Then: there exists a unique extension f̃ of f defined on the entire set D such that

|f̃ |(x) ≤ C0, ∀x ∈ D.

It is easy to see that the assumptions B1 and LE can be replaced by more general norm bounds and

local existence theorems, and the same proof follows in an analogous fashion.

In general, the assumptions on the continuity of f can also be dropped and replaced, for instance,

by assuming that f ∈ Lp(D) for some 1 ≤ p ≤ +∞. By defining BC as a sublevel set with respect to

the Lebesgue norm, the same results follow due to the fact that BC is closed in the topology induced by

norm itself.
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Appendix B

Elements of gauge theory

In the following, M will be a smooth manifold and G a Lie group (see also [71]).

Definition B.1 (Principal G-bundle)

A principal G-bundle over M is a smooth manifold P endowed with the canonical projection P
π→ M

such that:

1. There exists a right action

P ×G→ P

(u, g) 7→ u · g = Rgu,

which is free,

2. M = P/G, where u1 ∼ u2 in P if there exists g ∈ G such that u1 · g = u2,

3. P is locally trivial, i.e. for every x ∈ M we can find a neighbourhood U ∋ x such that π−1(U) ∼=

U × G, where the latter diffeomorphism is given by a G-equivariant map ψ: ψ(u) = (π(u), φ(u)),

for some φ : π−1(U) → G such that φ(u · g) = φ(u) · g for every u ∈ π−1(U), g ∈ G.

We will denote a principal G-bundle by the notation P
π→M (“P over M”).

We notice that each fiber of the principal bundle is homeomorphic to G, via the right action. To each

principal G-bundle, we can associate a vector bundle arising from a representation of the Lie group G.

Definition B.2 (Associated vector bundle)

Given a vector space V and a principal G-bundle P π→ M , let ρ : G → AutV be a representation of G.

Then:

E := (P × V )⧸∼ =: P ×G V

endowed with the projection map πE([p, v]) = π(p) is a vector bundle over M . Here, ∼ denotes the

equivalence relation E ∋ (p, v) ∼ (p · g, ρ(g−1)v) for every g ∈ G.
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An important example is given by the adjoint representation1 Ad : G → AutLie(G), which gives the

vector bundle AdP = P ×G Lie(G). Even though principal bundles do not come equipped, in general,

with any linear structure, we can define a connection by using distributions (in the sense of Frobenius’s

theorem).

Definition B.3 (Connection on a principal bundle)

A connection Γ on a principal G-bundle P π→M is a (smooth) distribution

Γ: P ∋ u 7→ Hu ⊂ TuP

such that

1. For every u in P:

TuP = Hu ⊕ Vu,

where Vu is the subspace of Tup made of vectors tangent to the fibre through u (Vu is a vertical

subspace) and Hu is called a horizontal subspace,

2. The distribution Γ is G-invariant, i.e.

Hu·g = (Rg)∗Hu

for every g ∈ G, u ∈ P .

In particular, for every vector field X ∈ P, we can decompose it as X = Xh ⊕Xv, with Xh(u) ∈ Hu

and Xv(u) ∈ Vu for every u ∈ U .

It is interesting to notice that there is a Lie algebra isomorphism

Lie(G) → P

A 7→ XA,

with XA fundamental vector field (i.e. infinitesimal generator) corresponding to A, and such a homo-

morphism is determined by the G-action. Moreover, it can be showed that the vertical subspace of each

tangent space of a principal bundle is given by the fundamental vector fields:

Vu = {XA(u) |A ∈ Lie(G)} ∀u ∈ P.

Definition B.4 (Connection form)

Given a connection Γ on a G-principal bundle P , we define the (global) Lie(G)-valued 1-form ω by the

condition of “killing the horizontal part of the vector fields”, i.e.

ω(X)|v = A ∈ Lie(G) ∀ v ∈ P,

1We recall that, if G = GL(n) for some integer n > 0, the map Ad just gives a matrix conjugation: Ad(A)B = ABA−1

for every A,B ∈ GL(n).
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where Xv = Xa ⊕Xh.

Proposition B.5 (Relation between connections and connection forms)

Let ω be a connection form for the connection Γ defined on the principal G-bundle P . Then:

1. ω(XA) = A ∈ Lie(G) for every A ∈ Lie(G),

2. R∗
gω = Ad(g−1)ω for every g ∈ G.

Conversely, any ω ∈ Ω1(P,Lie(G)) satisfying (1) and (2) defines a connection Γ on P .

This connection Γ can be used to define cohomology classes that describe topologically-invariant

properties of the principal bundle. A prerequisite for this is a suitable exterior derivative, which is also

covariant (i.e. allows us to compare quantities defined on different fibers of the principal bundle).

Definition B.6 (Exterior covariant derivative, Curvature)

The exterior covariant derivative associated to Γ is

D : Ωk(P,Lie(G)) → Ωk+1(P,Lie(G))

θ 7→ d ◦ h(θ),

where d is the usual exterior derivative and h is the horizontal projection (i.e. h(X) = Xh for every

vector field X). Alternatively, we can write

Dθ(X1, . . . , Xk+1) = dθ(h(X1), . . . , h(Xk+1)), Xj ∈ P.

The curvature 2-form Ω ∈ Ω2(P,Lie(G)) of Γ is defined as Ω := Dω.

We notice that property (2) of connection forms in proposition B.5 is also satisfied by the curvature:

R∗
gΩ = Ad(g−1)Ω.

We will now consider a covering {Uα}α of our manifold M and choose local sections {sα : M → P}α.

The local trivializations of the principal bundle determine the transitions functions gαβ : Uα ∩ Uβ → M

that relate two different sections on the intersection of their domains:

sβ = sαgαβ on Uα ∩ Uβ .

Let us choose a local section sα (a local gauge) for some α. We define the local connection and curvature

forms as ωα := s∗αω and Ωα := s∗αΩ on Uα.

Proposition B.7

On Uα ∩ Uβ, we have ωβ = Ad(g−1
αβ )ωα + g−1

αβdgαβ ,

Ωβ = Ad(g−1
αβ )Ωα.
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Similarly, we can construct local connections and curvature forms on the vector bundle associated to

a principal bundle, by considering {ρ∗(ωα)}α and {ρ∗(Ωα)}α, where ρ is the respective representation of

the Lie group.

Theorem B.8 (Structure equations and Bianchi identity)

We have: Ω = dω + 1
2 [ω, ω] (Structure equations)

DΩ = 0 (Bianchi identity).

This entire machinery is able to describe the particles of the Standard Model of modern physics.

In particular, given a manifold M , suitable to describe a spacetime, we can relate particles to sections

of the vector bundle associated (with respect to some representation ρ of G) to the G-principal bundle

P → M , where G is the Lie group describing the symmetries of the particle. We will now analyse the

case G = U(1), that is of relevance for the Einstein-Maxwell-Klein-Gordon model.

Let us consider a 4-dimensional spacetime (M, g) as the base space of a principal U(1)-bundle P π→M .

We can define a connection Γ on the principal bundle, and associate to it the global u(1)-valued connection

ω. We denote the exterior covariant derivative associated to Γ by dΓ ≡ d. The 2-form F = dω is the

corresponding curvature form. If we consider a local section (local gauge) s : U ⊂ M → π−1(U), we can

define on U the u(1)-valued forms Ã = s∗ω and F̃ = s∗F = dÃ. Then

F = −iF̃

is a global, R-valued 2-form. The former property follows from the fact that U(1) is Abelian and thus F

is “invariant under gauge transformations” by proposition B.7. The latter is implied by the isomorphism

u(1) ∼= iR. The form F satisfies two of the Maxwell equations since it is a closed form. It turns out that it

also satisfies the remaining two Maxwell equations stemming from the Yang-Mills expression d ⋆F = ⋆J ,

for a current J given by the Lagrangian of a charged scalar field. For this reason, we will identify F with

the electromagnetic field strength permeating the spacetime manifold.

A scalar field ϕ with charge q ∈ Z (the integer nature of the charge follows from Dirac quantization

or, in the mathematical formalism, can be deduced by the fact that the Chern numbers associated to our

principal bundle are integers) is a map ϕ : P → C which is U(1)-equivariant i.e.

ϕ(p · g) = ρ(g)−1ϕ(p) ∀ p ∈ P, g ∈ U(1),

for a given representation ρ : U(1) → GL(1,C) defined as ρ(g) = gq for every g ∈ U(1). This scalar

field can also be seen as a global section to the associated vector bundle P ×ρ C. As we have already

seen, we can define a connection form on this associated complex line bundle by setting ωρ := ρ∗ω. This

1-form is u(1)-valued. If we choose the local gauge s : U ⊂ M → π−1
ρ (U), we can define the 1-form
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Ãρ := s∗ωρ = s∗ρ∗ω = iqA. It can be verified that the exterior covariant derivative on P ×ρ C is

D = d+ iqA.

113



114



Appendix C

Useful expressions

Let us consider the metric for a spherically symmetric spacetime. It is always possible to locally

express such a metric using null coordinates (u, v) as

g = −Ω2(u, v)dudv + r2(u, v)σS2 . (C.1)

The respective Christoffel symbols are

Γu
uu = ∂u log Ω

2, Γu
θθ =

Γu
φφ

sin2 θ
=

2r

Ω2
∂vr,

Γv
vv = ∂v log Ω

2, Γv
θθ =

Γv
φφ

sin2 θ
=

2r

Ω2
∂ur,

Γθ
uθ = Γφ

uφ =
1

r
∂ur, Γθ

vθ = Γφ
vφ =

1

r
∂vr

Γθ
φφ = − cos θ sin θ, Γφ

θφ = cot θ,

where the remaining symbols are either zero or can be obtained by symmetries. We used the xAct package

suite [74] in Mathematica for the following computations. The non-zero components of the Ricci tensor

are:

Ruu =
2

rΩ

(
2∂ur∂uΩ− Ω∂2ur

)
,

Ruv = Rvu = −2∂u∂vr

r
+

2

Ω2
(∂vΩ∂uΩ− Ω∂u∂vΩ) ,

Rvv =
2

rΩ

(
2∂vr∂vΩ− Ω∂2vr

)
,

Rθθ = 1 +
4

Ω2
(∂vr∂ur + r∂u∂vr) ,

Rφφ = sin2 θRθθ,

and the Ricci scalar is given by

R =
2

r2
− 8∂vΩ∂uΩ

Ω4
+

8

r2Ω2
(∂vr∂ur + 2r∂u∂vr) +

8

Ω3
∂u∂vΩ.
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Finally, the non-zero components of the Einstein tensor are

Guu =
4∂ur∂uΩ

rΩ
− 2

r
∂2ur,

Guv = Gvu =
Ω2

2r2
+

2∂vr∂ur

r2
+

2∂u∂vr

r
,

Gvv =
4

rΩ
∂vr∂vΩ− 2

r
∂2vr,

Gθθ = − 4r

Ω2
∂u∂vr +

4r2

Ω4
∂vΩ∂uΩ− 4r2

Ω3
∂u∂vΩ,

Gφφ = sin2 θGθθ.

To study the system of equations (2.1), we also report the components of the energy-momentum tensor

TEM:

TEM
uu = TEM

vv = 0,

TEM
uv =

Ω2Q2

4r4
,

TEM
θθ =

TEM
φφ

sin2 θ
=
Q2

2r2
,

and of Tϕ:

Tϕ
uu = |Duϕ|2, Tϕ

vv = |Dvϕ|2,

Tϕ
uv =

m2Ω2

4
|ϕ|2, Tϕ

θθ =
Tϕ
φφ

sin2 θ
=

2r2

Ω2
Re
(
DuϕDvϕ

)
− 1

2
m2r2|ϕ|2.

A short computation also gives (see (3.2) and (3.4)):

⋆F = −Q(u, v) sin θdθ ∧ dφ

and

⋆J = qr2 sin θ
(
Im
(
ϕDuϕ

)
du ∧ dθ ∧ dφ+ Im

(
ϕDvϕ

)
dv ∧ dθ ∧ dφ

)
.
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Appendix D

The Reissner-Nordström-de Sitter

solution and the choice of

coordinates

In this short section we review the main properties of spherically symmetric charged black holes. At

the same time, we establish the relation between the null coordinates employed in this work and some

Eddington-Finkelstein coordinates commonly adopted for the Reissner-Nordström-de Sitter solution.

The (sub-extremal, or non-degenerate) Reissner-Nordström-de Sitter metric is the unique static, spher-

ically symmetric solution of the electro-vacuum Einstein equations

Ricµν(g)−
1

2
R(g)gµν + Λgµν = 2gαβFαµFβν − 1

2
gµνF

αβFαβ ,

for a positive cosmological constant Λ. Here, the strength field tensor F satisfies the Maxwell equations

dF = 0 and d ⋆ F = 0. This solution is denoted by the three real constants ϖ+ > 0 (mass parameter),

Q+ (charge parameter) and Λ.1 To such values, we associate the function

1− f(r) := 1− 2ϖ+

r
+
Q2

+

r2
− Λ

3
r2,

required to have three distinct real roots r−, r+ and rC , with r− < r+ < rC (sub-extremality as-

sumption). In general, 1− f may possess a fourth distinct (negative) root, which we denote by rn. The

Reissner-Nordström-de Sitter metric, able to describe a black hole spacetime in an expanding cosmological

scenario, can be written in coordinates (t, r) ∈ R× (r−, r+) as

gRNdS = −(1− f(r))dt2 +
1

1− f(r)
dr2 + r2σS2 , (D.1)

where σS2 is the standard metric on the unit round sphere. We refer the reader to [18, 24] for an overview
1This notation for the mass and charge is not standard, but we adopt it here to draw a comparison with our work on

the Einstein-Maxwell-charged-Klein-Gordon system.
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on this spacetime, on the different coordinate systems to resolve the coordinate singularities at r = r+

(corresponding to the event horizon H+
RNdS) and r = r− (corresponding to the Cauchy horizon CH+

RNdS),

and on the failure of determinism inherent in this non-generic solution.

We now show that the outgoing null coordinate chosen in section 3.2 for our Einstein-Maxwell-charged-

Klein-Gordon system is strictly related to the outgoing Eddington-Finkelstein coordinate

ṽ =
r∗ + t

2
, with r∗ :=

∫
dr

1− f(r)
, (D.2)

that can be used to describe regions of the Reissner-Nordström-de Sitter spacetime close to the event

horizon H+
RNdS. As we will see, this result implies that the v coordinate in the exponential Price

law upper bound (3.49) is half of the outgoing Eddington-Finkelstein coordinate adopted

for the linear analyses [18] and [60]. This is of particular interest in the cosmological scenario, since

different coordinate choices could lead to different exponential behaviours of the scalar field along the

event horizon H+ of the dynamical black hole.

In particular, using the Eddington-Finkelstein coordinates

ũ =
r∗ − t

2
, ṽ =

r∗ + t

2
,

and then the coordinate

u =
1

2K+
e2K+ũ,

where K+ is the surface gravity of H+
RNdS, we can write (D.1) as

gRNdS = 4
(
1− f(r(ũ, ṽ))

)
dũdṽ + r2(ũ, ṽ)σS2

= 4e−2K+ũ(u)
(
1− f(r(u, ṽ))

)
dudṽ + r2(u, ṽ)σS2

=: −Ω2
RNdS(u, ṽ)

2dudṽ + r2(u, ṽ)σS2 .

Notice that 1 − f(r(u, ṽ)) is non-positive for r(u, ṽ) ∈ [r−, r+] (see [20, section 3]), and that H+
RNdS =

{ũ = −∞} = {u = 0}. We observe that:

ṽ + ũ = r∗ =
1

2K+
log |r − r+|+O(1),

for r close to r+. So, by decomposing 1− f into the product of its roots, we have

1− f(r) ∼ −e2K+(ṽ+ũ), as r ↗ r+.

Therefore:

Ω2
RNdS ∼ e2K+ṽ, as r ↗ r+. (D.3)
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We now compare this expression with (3.3). Assumption (A) in section 3.2, (3.19) and (6.4) give

Ω2(0, v) = −4ν(0, v) ∼ e2K+v, ∀ v ≥ v0. (D.4)

This result holds for all initial data satisfying the assumptions of section 3.2 and also for Reissner-

Nordström-de Sitter initial data2 for the characteristic IVP of section 3.1. Indeed, the proof of proposition

6.2 can be easily extended to the case λ|H ≡ 0. In particular, we have v = ṽ.

2Namely the case in which ϖ0 ≡ ϖ+, r(0, v) ≡ r+, Q0 ≡ Q+, λ0 ≡ 0, κ0 ≡ 1 and Ω2(0, v) = 4e2K+v . See also [19].
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