Geometric Mechanics

Homework 7

Due on November 9

- 1. A symmetry of a rigid body is an isometry $S \in O(3)$ which preserves the mass distribution (i.e. m(SA) = m(A) for any measurable set $A \subset \mathbb{R}^3$). Show that:
 - (a) SI = IS, where I is the matrix representation of the inertia tensor;
 - (b) if S is a reflection with respect to a plane then there exists a principal axis orthogonal to the plane;
 - (c) if S is a nontrivial rotation about an axis then that axis is principal;
 - (d) if moreover the rotation is not by π then all axes orthogonal to the rotation axis are principal.
- 2. Consider a rigid body with a fixed point in the absence of exterior forces (**Euler top**). Show that:
 - (a) if $I_1 = I_2 = I_3$ then the rigid body rotates about a fixed axis with constant angular velocity;
 - (b) if $I_1 = I_2 \neq I_3$ then there exist infinitely many principal inertia axes, but only the rotations about e_3 are stable;
 - (c) if $I_1 > I_2 > I_3$ then for a given angular momentum the kinetic energy is minimized by rotations about e_1 .

(Remark: This is why most asteroids rotate about their minor axis: small perturbations due to other bodies in the Solar System conserve angular momentum but tend to dissipate energy).