Geometric Mechanics

Homework 9

Due on November 22

- 1. Let (M, ω) be a symplectic manifold. Show that:
 - (a) M is orientable;
 - (b) If M is compact then ω cannot be exact;
 - (c) The only sphere that admits a symplectic structure is S^2 .
- 2. Let $(M, \{\cdot, \cdot\})$ be a Poisson manifold, B the Poisson bivector and (x^1, \ldots, x^n) local coordinates on M. Show that:
 - (a) B can be written in these local coordinates as

$$B = \sum_{i,j=1}^{n} B^{ij} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}},$$

where $B^{ij} = \{x^i, x^j\}$ for i, j = 1, ..., n;

(b) The Hamiltonian vector field generated by $F \in C^{\infty}(M)$ can be written as

$$X_F = \sum_{i,j=1}^p B^{ij} \frac{\partial F}{\partial x^i} \frac{\partial}{\partial x^j};$$

(c) The components of B must satisfy

$$\sum_{l=1}^{n} \left(B^{il} \frac{\partial B^{jk}}{\partial x^{l}} + B^{jl} \frac{\partial B^{ki}}{\partial x^{l}} + B^{kl} \frac{\partial B^{ij}}{\partial x^{l}} \right) = 0$$

for all $i, j, k = 1, \ldots, n$;

- (d) If $\{\cdot, \cdot\}$ arises from a symplectic form ω then $(B^{ij}) = -(\omega_{ij})^{-1}$;
- (e) If B is nondegenerate then it arises from a symplectic form.