Geometric Mechanics

Homework 2

Due on October 1

1. Recall that the hyperbolic plane is the upper half plane

$$
H=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}
$$

with the Riemannian metric

$$
\langle\cdot, \cdot\rangle=\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y) .
$$

(a) Use the local coordinate expression of Newton's law to write the geodesic equations.
(b) Determine the Christoffel symbols for the Levi-Civita connection of $(H,\langle\cdot, \cdot\rangle)$ in the coordinates (x, y).
(c) Show that the images of geodesics are either vertical half-lines or half-circles centered on the x-axis. (Hint: Use the conservation of mechanical energy).
2. Let $(M,\langle\cdot, \cdot\rangle)$ be a Riemannian manifold with Levi-Civita connection $\widetilde{\nabla}$, and let $(N,\langle\langle\cdot, \cdot\rangle\rangle)$ be a submanifold endowed with the induced metric, with Levi-Civita connection ∇. Let $\widetilde{X}, \widetilde{Y} \in \mathfrak{X}(M)$ be local extensions of $X, Y \in \mathfrak{X}(N)$.
(a) Show that

$$
\nabla_{X} Y=\left(\widetilde{\nabla}_{\tilde{X}} \widetilde{Y}\right)^{\top}
$$

where ${ }^{\top}:\left.T M\right|_{N} \rightarrow T N$ is the orthogonal projection. (Hint: Use the Koszul formula).
(b) The second fundamental form of N is the map $B: T_{p} N \times T_{p} N \rightarrow\left(T_{p} N\right)^{\perp}$ defined at each point $p \in N$ by

$$
B\left(X_{p}, Y_{p}\right):=\left(\widetilde{\nabla}_{\tilde{X}} \widetilde{Y}\right)_{p}-\left(\nabla_{X} Y\right)_{p}=\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}\right)_{p}^{\perp}
$$

Show that B is well defined, symmetric and bilinear.

