Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

1. Set Theory

- 1. A **relation** on a set A is a subset $\mathcal{R} \subset A \times A$. We say that $x \in A$ is **related to** $y \in A$ if $(x,y) \in \mathcal{R}$, and we write $x\mathcal{R}y$.
- 2. An equivalence relation is a relation \mathcal{R} on a set A satisfying the following three properties:
 - (i) **Reflexivity:** $x\mathcal{R}x$ for all $x \in A$;
 - (ii) Symmetry: If xRy the yRx for all $x, y \in A$;
 - (iii) **Transitivity:** If xRy and yRz then xRz for all $x, y, z \in A$;

If \mathcal{R} is an equivalence relation then we write $x \sim y$ to mean $x\mathcal{R}y$.

3. If \sim is an equivalence relation on A and $x \in A$ then the **equivalence class** of x is the set

$$[x] = \{ y \in A : y \sim x \} \subset A.$$

- 4. A **partition** of a set A is a family $\{A_i\}_{i\in I}$ of subsets of A such that:
 - (i) $\bigcup_{i \in I} A_i = A$;
 - (ii) If $i \neq j$ then $A_i \cap A_j = \emptyset$.
- 5. The equivalence classes of an equivalence relation on A form a partition of A; conversely, given a partition of A there exists an equivalence relation on A whose equivalence classes are precisely the subsets of the partition.
- 6. The **quotient set** of A by an equivalence relation \sim is the set A/\sim of its equivalence classes. The **quotient map**, or **canonical projection**, is the map $\pi:A/\sim\to A$ defined as $\pi(x)=[x]$ for all $x\in A$.

2. Groups

- 1. A **binary operation** on a set A is a map $f: A \times A \to A$. We often write $f(x,y) = x \cdot y = xy$ for $x,y \in A$.
- 2. A **group** is a pair (G, \cdot) , where G is a set and $\cdot : G \times G \to G$ is a binary operation satisfying:
 - (i) **Associativity:** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for all $x, y, z \in G$;
 - (ii) **Existence of identity:** There exists $e \in G$ such that $e \cdot x = x \cdot e = x$ for all $x \in G$;
 - (iii) **Existence of inverses:** For each $x \in G$ there exists $y \in G$ such that $y \cdot x = x \cdot y = e$ for all $x, y \in G$.

- 3. If (G, \cdot) is a group then:
 - (i) The identity element $e \in G$ is unique;
 - (ii) Each element $x \in G$ has a unique inverse $x^{-1} \in G$.
- 4. A group (G, \cdot) is called **abelian** if the group operation \cdot is commutative, that is, if $x \cdot y = y \cdot x$ for all $x, y \in G$. In this case we often write $x \cdot y = x + y$, e = 0 and $x^{-1} = -x$.
- 5. The **order** of a group G is the number of elements in G, and is represented as |G|.
- 6. If A is a set the its **permutation group** is the set

$$Sym(A) = \{ f : A \to A : f \text{ is bijective } \}$$

with the composition operation.

- 7. The symmetric group on $n \in \mathbb{N}$ elements is the group $S_n = \mathrm{Sym}(\{1, \dots, n\})$. It is nonabelian for n > 2, and $|S_n| = n!$.
- 8. A subset $H \subset G$ of a group G is called a **subgoup** if H is itself a group under the group operation of G, or, equivalently, if:
 - (i) $xy \in H$ for all $x, y \in H$;
 - (ii) $e \in H$;
 - (iii) $x^{-1} \in H$ for all $x \in H$.
- 9. If $g \in G$ and H is a subgroup of G then the **left coset** determined by g and H is the set

$$gH = \{gh : h \in H\}.$$

The set G/H of all left cosets forms a partition of G, and the corresponding equivalence relation is given by

$$g_1 \sim g_2 \Leftrightarrow g_1^{-1}g_2 \in H.$$

- 10. Lagrange's Theorem: If G is a finite group and $H \subset G$ is a subgroup then |H| is a divisor of |G|.
- 11. The **index** of a subgroup H on a group G is the number [G:H] of left cosets. If G is finite then [G:H] = |G|/|H|.
- 12. A subgroup H of a group G is called a **normal subgroup** if $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. In that case, the set G/H of cosets forms a group under the operation $(g_1H)(g_2H) = (g_1g_2)H$ for all $g_1, g_2 \in G$ (called the **quotient group**).
- 13. For each $d \in \mathbb{N}$ the group of **integers mod** d is $\mathbb{Z}_d = \mathbb{Z}/d\mathbb{Z}$. We write $a \equiv b \pmod{d}$ to signify that $a, b \in \mathbb{Z}$ satisfy [a] = [b] in \mathbb{Z}_d .
- 14. A map $\varphi: G \to H$ between two groups is called a **homomorphism** if $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$ for all $g_1, g_2 \in G$. An **isomorphism** is a bijective homomorphism. If $\varphi: G \to H$ is an isomorphism then G and H are said to be **isomorphic**.
- 15. If $\varphi:G\to H$ is a homomorphism then:
 - (i) $\varphi(e_G) = (e_H)$;
 - (ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$.
- 16. The composition of homomorphisms is again a homomorphism.
- 17. **Isomorphism Theorem:** If $\varphi: G \to H$ is a homomorphism then:

- (i) $\operatorname{Im} \varphi$ is a subgroup of H;
- (ii) $\ker \varphi$ is a normal subgroup of G;
- (iii) The map $\tilde{\varphi}: G/\ker \varphi \to \operatorname{Im} \varphi$ defined by $\tilde{\varphi}([g]) = \varphi(g)$ is an isomorphism.
- 18. If G is a group and $g \in G$ then the subgroup generated by g is

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}$$

(where g^n has the obvious meaning). The **order** of g is $\operatorname{ord}(g) = |\langle g \rangle|$. If $\operatorname{ord}(g) = d$ then $\langle g \rangle \cong \mathbb{Z}_d$, and if $\operatorname{ord}(g) = \infty$ then $\langle g \rangle \cong \mathbb{Z}$. If $G = \langle g \rangle$ for some $g \in G$ then G is said to be **cyclic**.

19. If G and H are groups then $G \times H$ is also a group with the operation defined by the formula $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$.

3. Rings and number theory

- 1. A **ring** $(R, +, \cdot)$ is a set equipped with two binary operations such that (R, +) is an abelian group and \cdot is associative, has an identity 1 and is **distributive** with respect to +, that is, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in R$.
- 2. A ring $(R, +, \cdot)$ is called **commutative** if \cdot is commutative.
- 3. On a ring $(R, +, \cdot)$ we have $a \cdot 0 = 0 \cdot a = 0$, for any $a \in R$. If $a, b \in R \setminus \{0\}$ are such that ab = 0 then a and b are called **zero divisors**.
- 4. An element $a \in R$ on a ring $(R,+,\cdot)$ is called **invertible** if there exists $b \in R$ such that ab=ba=1, in which case we write $b=a^{-1}$. The set R^* of all invertible elements is a group for the multiplication.
- 5. A **field** is a commutative ring $(R, +, \cdot)$ such that $R^* = R \setminus \{0\}$.
- 6. $(\mathbb{Z}_d, +, \cdot)$ is a commutative ring for the multiplication given by $[m] \cdot [n] = [mn]$.
- 7. $\mathbb{Z}_d^* = \{[n] : \gcd(n, d) = 1\}$. In particular, \mathbb{Z}_d is a field if and only if d is prime.
- 8. The **Euler function** $\varphi : \mathbb{N} \to \mathbb{N}$ is defined as

$$\varphi(n) = |\{m \in \mathbb{N} : m \le n \text{ and } \gcd(m, n) = 1\}|,$$

so that $|\mathbb{Z}_d^*| = \varphi(d)$. If $\gcd(m,n) = 1$ then $\varphi(m,n) = \varphi(m)\varphi(n)$, and so if $n = p_1^{r_1} \cdots p_k^{r_k}$ with p_1,\ldots,p_k distinct prime numbers then $\varphi(n) = (p_1^{r_1} - p_1^{r_1-1}) \cdots (p_k^{r_k} - p_1^{r_k-1})$.

- 9. **Euler's Theorem:** If gcd(a, d) = 1 then $a^{\varphi(d)} \equiv 1 \pmod{d}$.
- 10. Chinese Remainder Theorem: If n_1, \ldots, n_k are coprime and $N = n_1 \cdot n_k$ then the map

$$\mathbb{Z}_N \ni [m] \mapsto ([m], \dots, [m]) \in \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_k}$$

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order $|G| = p_1^{r_1} \cdots p_k^{r_k}$ with p_1, \ldots, p_k distinct prime numbers then

$$G \cong G_1 \times \cdots \times G_k$$

where $|G_i|=p_i^{r_i}$ for each $i\in\{1,\ldots,k\}$. Moreover, there exists a unique nondecreasing sequence $a_i^1,\ldots,a_i^\ell\in\mathbb{N}$ with $a_i^1+\cdots+a_i^\ell=r_i$ such that

$$G_i \cong \mathbb{Z}_{a_i^1} \times \cdots \times \mathbb{Z}_{a_i^{\ell}}.$$

12. **RSA public key encryption:** Two (large) distinct prime numbers p and q are chosen, and the number N=pq is published, along with an **encryption exponent** e, chosen such that $\gcd(\varphi(N),e)=1$. To encrypt a message $[X]\in\mathbb{Z}_N$ the sender simply computes $[X]^e$. To decrypt the message the receiver uses the fact that $([X]^e)^d=[X]$, where the **decryption exponent** d is such that $[d]=[e]^{-1}$ in $\mathbb{Z}_{\varphi(N)}$. The security of this system relies on the fact that obtaining the descryption exponent requires knowledge of $\varphi(N)=(p-1)(q-1)$, which would involve factorizing N, a very hard task for p and q large enough.

4. Group actions

- 1. An **action** $G \overset{\varphi}{\curvearrowright} M$ of a group G on a set M is a homomorphism $\varphi : G \to \operatorname{Sym}(M)$ (we write $\varphi(g) = \varphi_g$). The action is called **effective** if $\ker(\varphi) = \{e\}$.
- 2. If $G \stackrel{\varphi}{\sim} M$ is an action of a group G on a set M then:
 - (i) The **orbit** of a point $x \in M$ is the set

$$\varphi_G(x) = \{ \varphi_g(x) : g \in G \}.$$

The set of all orbits is denoted M/G, and is a partition of M.

(ii) The **stabilizer** of a set $X \subset M$ is the subgroup of G defined by

$$G_X = \{ g \in G : \varphi_g(X) = X \}.$$

The **isotropy subgroup** of $x \in M$ is just $G_x = G_{\{x\}}$.

- (iii) A point $x \in M$ is called a **fixed point** of the action if $G_x = G$. The set of all fixed points of the action is denoted by M^G .
- 3. The **dihedral group on order** n is the group D_n defined by two generators r and s together with the relations

$$r^n = e, \qquad s^2 = e, \qquad rs = sr^{-1}.$$

We have $|D_n| = 2n$, since

$$D_n = \{e, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}.$$

- 4. An action $G \overset{\varphi}{\sim} M$ is called:
 - (i) Free if $G_x = \{e\}$ for all $x \in M$;
 - (ii) Transitive if $\varphi_G(x) = M$ for some (thus all) $x \in M$.
- 5. The **canonical action** of a group G on a space of left cosets G/H is the action $G \overset{\varphi^{\operatorname{can}}}{\curvearrowleft} G/H$ defined by $\varphi_q^{\operatorname{can}}([g_1]) = [gg_1]$.
- 6. If $G \overset{\varphi}{\sim} M$ and $G \overset{\varphi'}{\sim} M'$ are G-actions then a map $T: M \to M'$ is called:
 - (i) G-equivariant if $T(\varphi_g(x)) = \varphi_g'(T(x))$ for all $g \in G$ and $x \in M$.
 - (ii) An equivalence of G-actions if it is a G-equivariant bijection.
- 7. Any transitive action $G \overset{\varphi}{\curvearrowright} M$ is equivalent to $G \overset{\varphi^{\operatorname{can}}}{\curvearrowright} G/G_{x_0}$, where G_{x_0} is the isotropy subgroup of any point $x_0 \in M$ and $T_{x_0} : G/G_{x_0} \to M$ given by $T_{x_0}([g]) = \varphi_g(x_0)$ is an equivalence of G-actions.

- 8. The **conjugation action** $G \overset{\varphi^c}{\curvearrowright} G$ is the action of G on itself given by $\varphi_g^c(h) = ghg^{-1}$. The orbits of this action are called **conjugacy classes**. The set Z(G) of fixed points of this action is called the **center** of G, and is a subgroup (subgroup of the elements in G which commute with every other element). The isotropy subgroup Z(g) of a given element $g \in G$ is called the **centralizer** of G (largest subgroup of G which has G in its center). The stabilizer G of a subgroup G is called the **normalizer** of G (largest subgroup of G which contains G as a normal subgroup).
- 9. If $\{j_1,\ldots,j_k\}\subset\{1,\ldots,n\}$ then $\sigma=(j_1\cdots j_k)\in S_n$ (called a **k-cycle**) represents the permutation defined by $\sigma(j_r)=j_{r+1}$ for $r\in\{1,\ldots,k-1\}$, $\sigma(j_k)=j_1$ and $\sigma(j)=j$ for $j\not\in\{j_1,\ldots,j_k\}$. This representation is not unique, as $(j_1\,j_2\cdots j_k)=(j_k\,j_1\cdots j_{k-1})$. If $\{j_1,\ldots,j_k\}\cap\{j_k,\ldots,j_r\}=\{j_k\}$ then $(j_1\cdots j_k)\circ(j_k\cdots j_r)=(j_1\cdots j_r)$. Every permutation is the product of unique disjoint cycles.
- 10. A 2-cycle is called a **transposition**. A transposition (ij) is called **simple** if |i-j|=1. The set of simple transpositions generates S_n .
- 11. S_n is isomorphic to the group with n-1 generators s_1, \ldots, s_{n-1} subject to the following relations:
 - (i) $s_i^2 = e$ for i = 1, ..., n-1;
 - (ii) $s_i s_j = s_j s_i$ if $|i j| \ge 2$;
 - (iii) $s_i s_{i+1}$ has order 3 for $i = 1, \ldots, n-2$.
- 12. The **sign** of a perturbation $\sigma \in S_n$ is $\operatorname{sgn}(\sigma) = (-1)^{n(\sigma)}$, where $n(\sigma)$ is the number of transpositions on any decomposition of σ as a product of transpositions. The map $\operatorname{sgn}: S_n \to \mathbb{Z}^*$ is a group homomorphism, and its kernel A_n is called the **alternating group** (normal subgroup of order n!/2).
- 13. A partition of $n \in \mathbb{N}$ is a k-tuple $(i_1, \ldots, i_k) \in \mathbb{N}^k$ where $i_1 \geq \ldots \geq i_k$ and $i_1 + \ldots + i_k = n$.
- 14. The conjugacy classes of S_n are in 1 to 1 correspondence with the partitions of n via

$$D_{(i_1,\ldots,i_k)}=\{\sigma_1\circ\cdots\circ\sigma_k:\sigma_1,\ldots,\sigma_k \text{ are disjoint cycles of lengths } i_1,\ldots,i_k\}.$$

15. Burnside's Counting Theorem: Let $G \stackrel{\varphi}{\sim} M$ be an action of a finite group G on a finite set M. Then the number of orbits is

$$|M/G| = \frac{1}{|G|} \sum_{g \in G} |M^g|,$$

where M^g is the set of points in M that are fixed by g:

$$M^g = \{ x \in M : \varphi_q(x) = x \} .$$

5. Representations of finite groups

1. A **representation** of a group G is an action $G \overset{\varphi}{\curvearrowright} V$ on a complex vector space V by linear maps. The **degree** of the representation is $\deg \varphi = \dim V$. If V is finite-dimensional and has an inner product then the representation is called **unitary** if the maps φ_g are unitary for all $g \in G$.

- 2. An **intertwining map** bewteen two representations $G \overset{\varphi}{\curvearrowright} V$ and $G \overset{\varphi'}{\curvearrowright} V'$ is a linear equivariant map $T: V \to V'$. If T is invertible then the representations are said to be **equivalent**.
- 3. An **invariant subspace** for a representation $G \overset{\varphi}{\sim} V$ is a subspace $W \subset V$ such that $\varphi_g(W) \subset W$ for all $g \in G$. If the representation is unitary and W is an invariant subspace then W^{\perp} is also an invariant subspace.
- 4. The **direct sum** of two given representations $G \overset{\varphi}{\curvearrowright} V$ and $G \overset{\varphi'}{\curvearrowright} V'$ is the representation $G \overset{\varphi \oplus \varphi'}{\curvearrowright} V \oplus V'$ defined as

$$(\varphi \oplus \varphi')_g(v,v') = (\varphi_g(v), \varphi'_g(v')).$$

- 5. A representation $G \stackrel{\varphi}{\wedge} V$ is said to be **irreducible** if its only invariant subspaces are $\{0\}$ and V
- 6. **Maschke's Theorem:** Every finite-dimensional representation of a finite group is equivalent to a direct sum of irreducible representations.
- 7. **Schur's Lemma:** Let $G \overset{\varphi}{\curvearrowright} V$ and $G \overset{\psi}{\curvearrowright} W$ be two irreducible finite-dimensional representations of the finite group G, and let $T:V \to W$ be an intertwining map. Then either T=0 of T is invertible. Moreover, if the two representations coincide then $T=\lambda\operatorname{id}_V$ for some $\lambda\in\mathbb{C}$.
- 8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.
- 9. The **regular representation** of a finite group G on $L(G) = \{f : G \to \mathbb{C}\}$ is defined as

$$(\varphi_g^{(r)}(f))(h)=f(g^{-1}h)$$

for all $g, h \in G$. This representation is unitary for the inner product

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

- 10. Schur's orthogonality relations: Let G be a finite group and let $\varphi:G\to U(n)$ and $\rho:G\to U(m)$ be two inequivalent irreducible representations. Then:
 - (i) $\langle \varphi_{ij}, \rho_{kl} \rangle = 0$.
 - (ii) $\langle \varphi_{ij}, \varphi_{kl} \rangle = \frac{1}{n} \delta_{ik} \delta_{jl}$.
- 11. The **character** of a finite-dimensional representation $G \overset{\varphi}{\sim} V$ of a finite group G is the map $\chi_{\varphi} \in L(G)$ defined by $\chi_{\varphi}(g) = \operatorname{tr}(\varphi_g)$. In particular, $\chi_{\varphi}(e) = \deg(\varphi)$.
- 12. The character χ_{φ} of a finite-dimensional representation $G \overset{\varphi}{\curvearrowright} V$ of a finite group is a **class** function, that is, $\chi_{\varphi}(hgh^{-1}) = \chi_{\varphi}(g)$ for all $g,h \in G$. We represent by $Z(L(G)) \subset L(G)$ the set of class functions.
- 13. If $G \overset{\varphi}{\curvearrowright} V$ and $G \overset{\psi}{\curvearrowright} W$ are irreducible finite-dimensional representations of a finite group G then

$$\langle \chi_{\varphi}, \chi_{\psi} \rangle = \begin{cases} 1 \text{ if } \varphi \sim \psi \,, \\ 0 \text{ if } \varphi \not\sim \psi \,. \end{cases}$$

14. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $G \overset{\rho}{\sim} V$ be a finite-dimensional representation of G,

$$\rho \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},$$

where

$$m_i \varphi^{(i)} = \overbrace{\varphi^{(i)} \oplus \ldots \oplus \varphi^{(i)}}^{m_i}.$$

Then

$$m_i = \langle \chi_{\rho}, \chi_{\varphi^{(i)}} \rangle.$$

15. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $d_i = \deg(\varphi^{(i)})$. Then

$$d_1^2 + \ldots + d_s^2 = |G|.$$

- 16. Let $[\varphi^{(1)}],\ldots,[\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G. Then $\{\chi_{\varphi^{(1)}},\ldots,\chi_{\varphi^{(s)}}\}$ is an orthonormal basis of the space Z(L(G)) of class functions. In particular, there are as many irreducible representations as conjugacy classes.
- 17. If $G \overset{\varphi}{\sim} V$ is a finite-dimensional representations of the finite group G and $f \in L(G)$ then

$$\varphi_f = \sum_{g \in G} f(g)\varphi_g.$$

18. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $d_i = \deg(\varphi^{(i)})$ and $\chi_i = \chi_{\varphi^{(i)}}$. If a given finite-dimensional representation $G \overset{\varphi}{\curvearrowright} V$ decomposes as

$$\varphi \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},$$

corresponding to the orthogonal decomposition

$$V = V_1 \oplus \ldots \oplus V_s$$
,

then the orthogonal projection $P_i:V\to V_i$ is

$$P_i = \frac{d_i}{|G|} \varphi_{\overline{\chi}_i}.$$

19. A structure with n degrees of freedom near equilibrium is described by the symmetric positive (semi-)definite $n \times n$ mass matrix M and the symmetric $n \times n$ stiffness matrix K. The frequencies ω of small oscillations of the structure satisfy

$$\omega^2 M u = K u$$

for some $u \in \mathbb{R}^n \setminus \{0\}$. If the structure admits a symmetry group acting linearly, $G \overset{\varphi}{\curvearrowright} \mathbb{R}^n$, then M and K are intertwiners for φ , and so they are block diagonal with respect to the decomposition of φ into irreducible representations. Moreover, if a given irreducible representation occurs only once then M and K are multiples of the identity on the corresponding block (but this is not true if the irreducible representation occurs more than once).

6. Topology

- 1. A distance function (or metric) on a set M is a function $d: M \times M \to \mathbb{R}$ satisfying:
 - (i) **Positivity:** $d(x,y) \ge 0$ for all $x,y \in M$, and $d(x,y) = 0 \Rightarrow x = y$;
 - (ii) Symmetry: d(x,y) = d(y,x) for all $x, y \in M$;
 - (iii) Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in M$.

If d is a distance then (M, d) is said to be a **metric space**.

2. If (M,d) is a metric space and $x\in M$ then the **open ball** with center x and radius r>0 is the set

$$B_r(x) = \{ y \in M : d(x, y) < r \}.$$

- 3. If (M,d) is a metric space then a subset $U\subset M$ is called **open** if for each $x\in U$ there exists r>0 such that $B_r(x)\subset U$. A subset $F\subset M$ is called **closed** if $M\setminus F$ is open.
- 4. Open balls are open sets.
- 5. The family \mathcal{T}_d of open sets on a metric space (M,d) satisfies the following properties:
 - (i) $\varnothing, M \in \mathcal{T}_d$;
 - (ii) If $\{U_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}_d$ then $\bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{T}_d$;
 - (iii) If $U_1, \ldots, U_n \in \mathcal{T}_d$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.
- 6. A **topology** on a set M is a family \mathcal{T} of subsets of M satisfying the following properties:
 - (i) $\varnothing, M \in \mathcal{T}$;
 - (ii) If $\{U_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$ then $\bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{T}$;
 - (iii) If $U_1, \ldots, U_n \in \mathcal{T}$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

The sets $U \in \mathcal{T}$ are called **open sets**, and the sets $F \subset M$ such that $M \setminus F \in \mathcal{T}$ are called **closed sets**. An open set containing $x \in M$ is called a **neighborhood** of x. If \mathcal{T} is a topology on M the (M,\mathcal{T}) is said to be a **topological space**.

- 7. A topological space (M,\mathcal{T}) is said to be **Hausdorff** if given $x,y\in M$ with $x\neq y$ there exist $U,V\in\mathcal{T}$ with $U\cap V=\varnothing$ such that $x\in U$ and $y\in V$.
- 8. A subfamily $\mathcal{B} \subset \mathcal{T}$ of open sets is said to be a **basis** for the topology \mathcal{T} on M is it satisfies any of the following equivalent properties:
 - (i) For each $U \in \mathcal{T}$ there exists $\mathcal{B}_U \subset \mathcal{B}$ such that $U = \bigcup_{V \in \mathcal{B}_U} V$.
 - (ii) For each $U \in \mathcal{T}$ and each $x \in U$ there exists $U_x \in \mathcal{B}$ such that $x \in U_x \subset U$.
- 9. If (M, \mathcal{T}) is a topological space and $N \subset M$ then $\mathcal{T}_N = \{U \cap N : U \in \mathcal{T}\}$ is a topology in N (subspace topology).
- 10. A map $f: M \to N$ between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is said to be **continuous** if $f^{-1}(U) \in \mathcal{T}_M$ for all $U \in \mathcal{T}_N$.
- 11. The composition of continuous maps is continuous.
- 12. A **homeomorphism** between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is a continuous bijection $f: M \to N$ with continuous inverse. If such a map exists then (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are said to be **homeomorphic**.
- 13. If (M, \mathcal{T}) is a topological space, \sim is an equivalence relation on M and $\pi: M \to M/\sim$ is the canonical projection then the **quotient topology** on M/\sim is

$$\mathcal{T}_{\pi} = \{ U \in M / \sim : \pi^{-1}(U) \in \mathcal{T} \}.$$

14. An **open cover** for a subset $N\subset M$ of a topological space (M,\mathcal{T}) is a collection $\mathcal{O}\subset\mathcal{T}$ such that

$$N \subset \bigcup_{U \in \mathcal{O}} U.$$

A **subcover** is a subcollection $\mathcal{O}' \subset \mathcal{O}$ which is still an open cover of N. A set N is said to be **compact** if every open cover of N admits a finite subcover.

- 15. If (M, \mathcal{T}) is Hausdorff and $N \subset M$ is compact then N is closed.
- 16. **Heine-Borel theorem:** a subset $K \subset \mathbb{R}^n$ is compact (for the usual topology) if and only if it is closed and bounded.
- 17. Continuous maps carry compact sets to compact sets.
- 18. A topological space is said to be **connected** if the only subsets of M which are simultaneously open and closed are \varnothing and M. A subset $N \subset M$ is said to be a **connected subset** if it is a connected topological space for the subspace topology.
- 19. A subset of \mathbb{R} with the usual topology is connected if and only if it is an interval.
- 20. Continuous maps carry connected sets to connected sets.

7. Differential geometry

- 1. A topological manifold of dimension n is a topological space (M, \mathcal{T}) such that:
 - (i) \mathcal{T} is Hausdorff.
 - (ii) \mathcal{T} has a countable basis.
 - (iii) For each $x \in M$ there exists $U \in \mathcal{T}$ with $x \in U$ and a homeomorphism $\varphi : U \to V$ for some open set $V \subset \mathbb{R}^n$.

The pair (U, φ) is called a **local chart**.

- 2. Two local charts (U,φ) and (V,ψ) on an n-dimensional topological manifold M are said to be **compatible** if the maps $\psi \circ \varphi^{-1} : \varphi(U \cap V) \subset \mathbb{R}^n \to \psi(U \cap V) \subset \mathbb{R}^n$ and $\varphi \circ \psi^{-1} : \psi(U \cap V) \subset \mathbb{R}^n \to \varphi(U \cap V) \subset \mathbb{R}^n$ are smooth. An **atlas** for M is a family $\mathcal{A} = \{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$ of compatible local charts such that $M = \bigcup_{\alpha \in A} U_\alpha$. Two atlases \mathcal{A} and \mathcal{A}' are said to be **equivalent** if $\mathcal{A} \cup \mathcal{A}'$ is still an atlas. A **differentiable structure** on M is a choice of an equivalence class of atlases. Finally, a **differentiable manifold of dimension** n is a topological manifold of dimension n with a choice of differentiable structure.
- 3. A map $f: M \to N$ between differentiable manifolds is said to be **differentiable**, or **smooth**, if for any choices of local charts (U, φ) on an atlas for M and (V, ψ) on an atlas for N the map $\psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V) \cap U) \subset \mathbb{R}^m \to \psi(V) \subset \mathbb{R}^n$ is smooth. The set of differentiable maps between the differentiable manifolds M and N is represented as $C^{\infty}(M, N)$, and one usually writes $C^{\infty}(M) = C^{\infty}(M, \mathbb{R})$.
- 4. A **diffeomorphism** between two differentiable manifolds M and N is a smooth bijection $f:M\to N$ with a smooth inverse. A **local diffeomorphism** between two differentiable manifolds M and N is a smooth map $f:M\to N$ such that for each $x\in M$ there exist open sets $U\ni x$ and $V\ni f(x)$ such that $f|_U:U\to V$ is a diffeomorphism.

5. A **tangent vector** to a differentiable manifold M at a point $p \in M$ is a differential operator $\dot{c}(0): C^{\infty}(M) \to \mathbb{R}$ of the form

$$\dot{c}(0) \cdot f = \frac{d}{dt} \int_{t=0}^{t} f(c(t)),$$

where $c: \mathbb{R} \to M$ is a differentiable curve with c(0) = p.

6. The set T_pM of all tangent vectors to the n-dimensional differentiable manifold M at the point $p \in M$ is a vector space of dimension n, called the **tangent space** to M at p. If (U,φ) is a local chart with $p \in U$, corresponding to the local coordinates (x^1,\ldots,x^n) , a basis for T_pM is

$$\left\{\frac{\partial}{\partial x^1}\Big|_{n}, \dots, \frac{\partial}{\partial x^n}\Big|_{n}\right\},$$

where

$$\frac{\partial}{\partial x^i}\Big|_p = \dot{c}_i(0), \qquad c_i(t) = \varphi^{-1}(x^1(p), \dots, x^i(p) + t, \dots, x^n(p)).$$

If $\dot{c}(0) \in T_pM$ is a tangent vector with $\varphi(c(t)) = (x^1(t), \dots, x^n(t))$ then

$$\dot{c}(0) = \sum_{i=1}^{n} \dot{x}^{i}(0) \frac{\partial}{\partial x^{i}}_{|_{p}}.$$

7. If $f:M\to N$ is a differentiable map then the **derivative** of f at the point $p\in M$ is the linear map $(df)_p:T_pM\to T_{f(p)}N$ given by

$$(df)_p(\dot{c}(0)) = \frac{d}{dt}_{|_{t=0}} f(c(t)).$$

If (U,φ) is a local chart on M with $p\in U$, corresponding to the local coordinates (x^1,\ldots,x^n) , and (V,ψ) is a local chart on N with $f(p)\in V$, corresponding to the local coordinates (y^1,\ldots,y^m) , then

$$(df)_p \left(\sum_{i=1}^n v^i \frac{\partial}{\partial x^i}|_p \right) = \sum_{j=1}^m \left(\sum_{i=1}^n \frac{\partial \hat{f}^j}{\partial x^i} v^i \right) \frac{\partial}{\partial y^j}|_{f(p)},$$

where $\hat{f}=\psi\circ f\circ \varphi^{-1}$ is the local representation of f in the local coordinates (x^1,\ldots,x^n) on M and (y^1,\ldots,y^m) on N.

8. The **cotangent space** to an n-dimensional differentiable manifold M at as point $p \in M$ is

$$T_p^*M = (T_pM)^* = \{\alpha : T_pM \to \mathbb{R} : \alpha \text{ is linear } \}.$$

 T_p^*M is itself an *n*-dimensional vector space, with basis

$$\left\{ (dx^1)_p, \dots, (dx^n)_p \right\}$$

satisfying

$$(dx^i)_p \left(\frac{\partial}{\partial x^j}\Big|_p\right) = \delta_{ij}$$

(dual basis).