
Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

1. Set Theory

1. A relation on a set A is a subset R ⊂ A × A. We say that x ∈ A is related to y ∈ A if
(x, y) ∈ R, and we write xRy.

2. An equivalence relation is a relation R on a set A satisfying the following three properties:

(i) Reflexivity: xRx for all x ∈ A;

(ii) Symmetry: If xRy the yRx for all x, y ∈ A;

(iii) Transitivity: If xRy and yRz then xRz for all x, y, z ∈ A;

If R is an equivalence relation then we write x ∼ y to mean xRy.

3. If ∼ is an equivalence relation on A and x ∈ A then the equivalence class of x is the set

[x] = {y ∈ A : y ∼ x} ⊂ A.

4. A partition of a set A is a family {Ai}i∈I of subsets of A such that:

(i)
⋃
i∈I Ai = A;

(ii) If i 6= j then Ai ∩Aj = ∅.

5. The equivalence classes of an equivalence relation on A form a partition of A; conversely,
given a partition of A there exists an equivalence relation on A whose equivalence classes
are precisely the subsets of the partition.

6. The quotient set of A by an equivalence relation ∼ is the set A/∼ of its equivalence
classes. The quotient map, or canonical projection, is the map π : A/∼ → A defined as
π(x) = [x] for all x ∈ A.

2. Groups

1. A binary operation on a set A is a map f : A×A→ A. We often write f(x, y) = x·y = xy
for x, y ∈ A.

2. A group is a pair (G, ·), where G is a set and · : G×G→ G is a binary operation satisfying:

(i) Associativity: x · (y · z) = (x · y) · z for all x, y, z ∈ G;

(ii) Existence of identity: There exists e ∈ G such that e · x = x · e = x for all x ∈ G;

(iii) Existence of inverses: For each x ∈ G there exists y ∈ G such that y · x = x · y = e
for all x, y ∈ G.
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3. If (G, ·) is a group then:

(i) The identity element e ∈ G is unique;

(ii) Each element x ∈ G has a unique inverse x−1 ∈ G.

4. A group (G, ·) is called abelian if the group operation · is commutative, that is, if x·y = y ·x
for all x, y ∈ G. In this case we often write x · y = x+ y, e = 0 and x−1 = −x.

5. The order of a group G is the number of elements in G, and is represented as |G|.
6. If A is a set the its permutation group is the set

Sym(A) = {f : A→ A : f is bijective }

with the composition operation.

7. The symmetric group on n ∈ N elements is the group Sn = Sym({1, . . . , n}). It is
nonabelian for n > 2, and |Sn| = n!.

8. A subset H ⊂ G of a group G is called a subgoup if H is itself a group under the group
operation of G, or, equivalently, if:

(i) xy ∈ H for all x, y ∈ H;

(ii) e ∈ H;

(iii) x−1 ∈ H for all x ∈ H.

9. If g ∈ G and H is a subgroup of G then the left coset determined by g and H is the set

gH = {gh : h ∈ H}.

The set G/H of all left cosets forms a partition of G, and the corresponding equivalence
relation is given by

g1 ∼ g2 ⇔ g−11 g2 ∈ H.

10. Lagrange’s Theorem: If G is a finite group and H ⊂ G is a subgroup then |H| is a divisor
of |G|.

11. The index of a subgroup H on a group G is the number [G :H] of left cosets. If G is finite
then [G :H] = |G|/|H|.

12. A subgroup H of a group G is called a normal subgroup if ghg−1 ∈ H for all g ∈ G
and h ∈ H. In that case, the set G/H of cosets forms a group under the operation
(g1H)(g2H) = (g1g2)H for all g1, g2 ∈ G (called the quotient group).

13. For each d ∈ N the group of integers mod d is Zd = Z/dZ. We write a ≡ b (mod d) to
signify that a, b ∈ Z satisfy [a] = [b] in Zd.

14. A map ϕ : G→ H between two groups is called a homomorphism if ϕ(g1g2) = ϕ(g1)ϕ(g2)
for all g1, g2 ∈ G. An isomorphism is a bijective homomorphism. If ϕ : G → H is an
isomorphism then G and H are said to be isomorphic.

15. If ϕ : G→ H is a homomorphism then:

(i) ϕ(eG) = (eH);

(ii) ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

16. The composition of homomorphisms is again a homomorphism.

17. Isomorphism Theorem: If ϕ : G→ H is a homomorphism then:
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(i) Imϕ is a subgroup of H;

(ii) kerϕ is a normal subgroup of G;

(iii) The map ϕ̃ : G/ kerϕ→ Imϕ defined by ϕ̃([g]) = ϕ(g) is an isomorphism.

18. If G is a group and g ∈ G then the subgroup generated by g is

〈g〉 = {gn : n ∈ Z}

(where gn has the obvious meaning). The order of g is ord(g) = |〈g〉|. If ord(g) = d then
〈g〉 ∼= Zd, and if ord(g) = ∞ then 〈g〉 ∼= Z. If G = 〈g〉 for some g ∈ G then G is said to
be cyclic.

19. If G and H are groups then G×H is also a group with the operation defined by the formula
(g1, h1) · (g2, h2) = (g1g2, h1h2).

3. Rings and number theory

1. A ring (R,+, ·) is a set equipped with two binary operations such that (R,+) is an abelian
group and · is associative, has an identity 1 and is distributive with respect to +, that is,
a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

2. A ring (R,+, ·) is called commutative if · is commutative.

3. On a ring (R,+, ·) we have a · 0 = 0 · a = 0, for any a ∈ R. If a, b ∈ R \ {0} are such that
ab = 0 then a and b are called zero divisors.

4. An element a ∈ R on a ring (R,+, ·) is called invertible if there exists b ∈ R such that
ab = ba = 1, in which case we write b = a−1. The set R∗ of all invertible elements is a
group for the multiplication.

5. A field is a commutative ring (R,+, ·) such that R∗ = R \ {0}.
6. (Zd,+, ·) is a commutative ring for the multiplication given by [m] · [n] = [mn].

7. Z∗d = {[n] : gcd(n, d) = 1}. In particular, Zd is a field if and only if d is prime.

8. The Euler function ϕ : N→ N is defined as

ϕ(n) = |{m ∈ N : m ≤ n and gcd(m,n) = 1}|,

so that |Z∗d| = ϕ(d). If gcd(m,n) = 1 then ϕ(m,n) = ϕ(m)ϕ(n), and so if n = pr11 · · · p
rk
k

with p1, . . . , pk distinct prime numbers then ϕ(n) = (pr11 − p
r1−1
1 ) · · · (prkk − p

rk−1
1 ).

9. Euler’s Theorem: If gcd(a, d) = 1 then aϕ(d) ≡ 1 (mod d).

10. Chinese Remainder Theorem: If n1, . . . , nk are coprime and N = n1 · nk then the map

ZN 3 [m] 7→ ([m], . . . , [m]) ∈ Zn1 × . . .× Znk

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order |G| =
pr11 · · · p

rk
k with p1, . . . , pk distinct prime numbers then

G ∼= G1 × · · · ×Gk,

where |Gi| = prii for each i ∈ {1, . . . , k}. Moreover, there exists a unique nondecreasing
sequence a1i , . . . , a

`
i ∈ N with a1i + · · ·+ a`i = ri such that

Gi ∼= Za1i × · · · × Za`i .
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12. RSA public key encryption: Two (large) distinct prime numbers p and q are chosen, and
the number N = pq is published, along with an encryption exponent e, chosen such that
gcd(ϕ(N), e) = 1. To encrypt a message [X] ∈ ZN the sender simply computes [X]e. To
decrypt the message the receiver uses the fact that ([X]e)d = [X], where the decryption
exponent d is such that [d] = [e]−1 in Zϕ(N). The security of this system relies on the
fact that obtaining the descryption exponent requires knowledge of ϕ(N) = (p− 1)(q− 1),
which would involve factorizing N , a very hard task for p and q large enough.

4. Group actions

1. An action G
ϕ
y M of a group G on a set M is a homomorphism ϕ : G → Sym(M) (we

write ϕ(g) = ϕg). The action is called effective if ker(ϕ) = {e}.

2. If G
ϕ
yM is an action of a group G on a set M then:

(i) The orbit of a point x ∈M is the set

ϕG(x) = {ϕg(x) : g ∈ G}.

The set of all orbits is denoted M/G, and is a partition of M .

(ii) The stabilizer of a set X ⊂M is the subgroup of G defined by

GX = {g ∈ G : ϕg(X) = X}.

The isotropy subgroup of x ∈M is just Gx = G{x}.

(iii) A point x ∈ M is called a fixed point of the action if Gx = G. The set of all fixed
points of the action is denoted by MG.

3. The dihedral group on order n is the group Dn defined by two generators r and s together
with the relations

rn = e, s2 = e, rs = sr−1.

We have |Dn| = 2n, since

Dn = {e, r, . . . , rn−1, s, sr, . . . , srn−1}.

4. An action G
ϕ
yM is called:

(i) Free if Gx = {e} for all x ∈M ;

(ii) Transitive if ϕG(x) =M for some (thus all) x ∈M .

5. The canonical action of a group G on a space of left cosets G/H is the action G
ϕcan

y G/H
defined by ϕcan

g ([g1]) = [gg1].

6. If G
ϕ
yM and G

ϕ′

yM ′ are G-actions then a map T :M →M ′ is called:

(i) G-equivariant if T (ϕg(x)) = ϕ′g(T (x)) for all g ∈ G and x ∈M .

(ii) An equivalence of G-actions if it is a G-equivariant bijection.

7. Any transitive action G
ϕ
y M is equivalent to G

ϕcan

y G/Gx0 , where Gx0 is the isotropy
subgroup of any point x0 ∈ M and Tx0 : G/Gx0 → M given by Tx0([g]) = ϕg(x0) is an
equivalence of G-actions.
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8. The conjugation action G
ϕc

y G is the action of G on itself given by ϕcg(h) = ghg−1.
The orbits of this action are called conjugacy classes. The set Z(G) of fixed points of
this action is called the center of G, and is a subgroup (subgroup of the elements in G
which commute with every other element). The isotropy subgroup Z(g) of a given element
g ∈ G is called the centralizer of g (largest subgroup of G which has g in its center). The
stabilizer N(H) of a subgroup H ⊂ G is called the normalizer of H (largest subgroup of
G which contains H as a normal subgroup).

9. If {j1, . . . , jk} ⊂ {1, . . . , n} then σ = (j1 · · · jk) ∈ Sn (called a k-cycle) represents the
permutation defined by σ(jr) = jr+1 for r ∈ {1, . . . , k − 1}, σ(jk) = j1 and σ(j) = j for
j 6∈ {j1, . . . , jk}. This representation is not unique, as (j1 j2 · · · jk) = (jk j1 · · · jk−1). If
{j1, . . . , jk} ∩ {jk, . . . , jr} = {jk} then (j1 · · · jk) ◦ (jk · · · jr) = (j1 · · · jr). Every permu-
tation is the product of unique disjoint cycles.

10. A 2-cycle is called a transposition. A transposition (ij) is called simple if |i− j| = 1. The
set of simple transpositions generates Sn.

11. Sn is isomorphic to the group with n − 1 generators s1, . . . , sn−1 subject to the following
relations:

(i) s2i = e for i = 1, . . . , n− 1;

(ii) sisj = sjsi if |i− j| ≥ 2;

(iii) sisi+1 has order 3 for i = 1, . . . , n− 2.

12. The sign of a perturbation σ ∈ Sn is sgn(σ) = (−1)n(σ), where n(σ) is the number
of transpositions on any decomposition of σ as a product of transpositions. The map
sgn : Sn → Z∗ is a group homomorphism, and its kernel An is called the alternating
group (normal subgroup of order n!/2).

13. A partition of n ∈ N is a k-tuple (i1, . . . , ik) ∈ Nk where i1 ≥ . . . ≥ ik and i1+. . .+ik = n.

14. The conjugacy classes of Sn are in 1 to 1 correspondence with the partitions of n via

D(i1,...,ik) = {σ1 ◦ · · · ◦ σk : σ1, . . . , σk are disjoint cycles of lengths i1, . . . , ik}.

15. Burnside’s Counting Theorem: Let G
ϕ
yM be an action of a finite group G on a finite

set M . Then the number of orbits is

|M/G| = 1

|G|
∑
g∈G
|Mg| ,

where Mg is the set of points in M that are fixed by g:

Mg = {x ∈M : ϕg(x) = x} .

5. Representations of finite groups

1. A representation of a group G is an action G
ϕ
y V on a complex vector space V by linear

maps. The degree of the representation is degϕ = dimV . If V is finite-dimensional and
has an inner product then the representation is called unitary if the maps ϕg are unitary
for all g ∈ G.
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2. An intertwining map bewteen two representations G
ϕ
y V and G

ϕ′

y V ′ is a linear equiva-
riant map T : V → V ′. If T is invertible then the representations are said to be equivalent.

3. An invariant subspace for a representation G
ϕ
y V is a subspace W ⊂ V such that

ϕg(W ) ⊂W for all g ∈ G. If the representation is unitary and W is an invariant subspace
then W⊥ is also an invariant subspace.

4. The direct sum of two given representations G
ϕ
y V and G

ϕ′

y V ′ is the representation

G
ϕ⊕ϕ′

y V ⊕ V ′ defined as

(ϕ⊕ ϕ′)g(v, v′) = (ϕg(v), ϕ
′
g(v
′)).

5. A representation G
ϕ
y V is said to be irreducible if its only invariant subspaces are {0}

and V .

6. Maschke’s Theorem: Every finite-dimensional representation of a finite group is equivalent
to a direct sum of irreducible representations.

7. Schur’s Lemma: Let G
ϕ
y V and G

ψ
y W be two irreducible finite-dimensional represen-

tations of the finite group G, and let T : V → W be an intertwining map. Then either
T = 0 ot T is invertible. Moreover, if the two representations coincide then T = λ idV for
some λ ∈ C.

8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.

9. The regular representation of a finite group G on L(G) = {f : G→ C} is defined as

(ϕ(r)
g (f))(h) = f(g−1h)

for all g, h ∈ G. This representation is unitary for the inner product

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g).

10. Schur’s orthogonality relations: Let G be a finite group and let ϕ : G → U(n) and
ρ : G→ U(m) be two inequivalent irreducible representations. Then:

(i) 〈ϕij , ρkl〉 = 0.

(ii) 〈ϕij , ϕkl〉 = 1
nδikδjl.

11. The character of a finite-dimensional representation G
ϕ
y V of a finite group G is the map

χϕ ∈ L(G) defined by χϕ(g) = tr(ϕg). In particular, χϕ(e) = deg(ϕ).

12. The character χϕ of a finite-dimensional representation G
ϕ
y V of a finite group is a class

function, that is, χϕ(hgh
−1) = χϕ(g) for all g, h ∈ G. We represent by Z(L(G)) ⊂ L(G)

the set of class functions.

13. If G
ϕ
y V and G

ψ
y W are irreducible finite-dimensional representations of a finite group

G then

〈χϕ, χψ〉 =

{
1 if ϕ ∼ ψ ,
0 if ϕ 6∼ ψ .
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14. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representa-

tions of a finite group G, and let G
ρ
y V be a finite-dimensional representation of G,

ρ ∼ m1ϕ
(1) ⊕ . . .⊕msϕ

(s),

where

miϕ
(i) =

mi︷ ︸︸ ︷
ϕ(i) ⊕ . . .⊕ ϕ(i) .

Then
mi =

〈
χρ, χϕ(i)

〉
.

15. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representa-
tions of a finite group G, and let di = deg(ϕ(i)). Then

d21 + . . .+ d2s = |G|.

16. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional represen-
tations of a finite group G. Then {χϕ(1) , . . . , χϕ(s)} is an orthonormal basis of the space
Z(L(G)) of class functions. In particular, there are as many irreducible representations as
conjugacy classes.

17. If G
ϕ
y V is a finite-dimensional representations of the finite group G and f ∈ L(G) then

ϕf =
∑
g∈G

f(g)ϕg.

18. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representati-
ons of a finite group G, and let di = deg(ϕ(i)) and χi = χϕ(i) . If a given finite-dimensional

representation G
ϕ
y V decomposes as

ϕ ∼ m1ϕ
(1) ⊕ . . .⊕msϕ

(s),

corresponding to the orthogonal decomposition

V = V1 ⊕ . . .⊕ Vs,

then the orthogonal projection Pi : V → Vi is

Pi =
di
|G|

ϕχi
.

19. A structure with n degrees of freedom near equilibrium is described by the symmetric positive
(semi-)definite n× n mass matrix M and the symmetric n× n stiffness matrix K. The
frequencies ω of small oscillations of the structure satisfy

ω2Mu = Ku

for some u ∈ Rn \ {0}. If the structure admits a symmetry group acting linearly, G
ϕ
y Rn,

then M and K are intertwiners for ϕ, and so they are block diagonal with respect to the
decomposition of ϕ into irreducible representations. Moreover, if a given irreducible repre-
sentation occurs only once then M and K are multiples of the identity on the corresponding
block (but this is not true if the irreducible representation occurs more than once).
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6. Topology

1. A distance function (or metric) on a set M is a function d :M ×M → R satisfying:

(i) Positivity: d(x, y) ≥ 0 for all x, y ∈M , and d(x, y) = 0⇒ x = y;

(ii) Symmetry: d(x, y) = d(y, x) for all x, y ∈M ;

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M .

If d is a distance then (M,d) is said to be a metric space.

2. If (M,d) is a metric space and x ∈M then the open ball with center x and radius r > 0
is the set

Br(x) = {y ∈M : d(x, y) < r}.

3. If (M,d) is a metric space then a subset U ⊂ M is called open if for each x ∈ U there
exists r > 0 such that Br(x) ⊂ U . A subset F ⊂M is called closed if M \ F is open.

4. Open balls are open sets.

5. The family Td of open sets on a metric space (M,d) satisfies the following properties:

(i) ∅,M ∈ Td;

(ii) If {Uα}α∈A ⊂ Td then
⋃
α∈A Uα ∈ Td;

(iii) If U1, . . . , Un ∈ Td then
⋂n
i=1 Ui ∈ Td.

6. A topology on a set M is a family T of subsets of M satisfying the following properties:

(i) ∅,M ∈ T ;

(ii) If {Uα}α∈A ⊂ T then
⋃
α∈A Uα ∈ T ;

(iii) If U1, . . . , Un ∈ T then
⋂n
i=1 Ui ∈ T .

The sets U ∈ T are called open sets, and the sets F ⊂ M such that M \ F ∈ T are
called closed sets. An open set containing x ∈M is called a neighborhood of x. If T is
a topology on M the (M, T ) is said to be a topological space.

7. A topological space (M, T ) is said to be Hausdorff if given x, y ∈ M with x 6= y there
exist U, V ∈ T with U ∩ V = ∅ such that x ∈ U and y ∈ V .

8. A subfamily B ⊂ T of open sets is said to be a basis for the topology T on M is it satisfies
any of the following equivalent properties:

(i) For each U ∈ T there exists BU ⊂ B such that U =
⋃
V ∈BU V .

(ii) For each U ∈ T and each x ∈ U there exists Ux ∈ B such that x ∈ Ux ⊂ U .

9. If (M, T ) is a topological space and N ⊂M then TN = {U ∩N : U ∈ T } is a topology in
N (subspace topology).

10. A map f : M → N between two topological spaces (M, TM ) and (N, TN ) is said to be
continuous if f−1(U) ∈ TM for all U ∈ TN .

11. The composition of continuous maps is continuous.

12. A homeomorphism between two topological spaces (M, TM ) and (N, TN ) is a continuous
bijection f : M → N with continuous inverse. If such a map exists then (M, TM ) and
(N, TN ) are said to be homeomorphic.

13. If (M, T ) is a topological space, ∼ is an equivalence relation on M and π : M →M/∼ is
the canonical projection then the quotient topology on M/∼ is

Tπ = {U ∈M/∼ : π−1(U) ∈ T }.
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14. An open cover for a subset N ⊂ M of a topological space (M, T ) is a collection O ⊂ T
such that

N ⊂
⋃
U∈O

U.

A subcover is a subcollection O′ ⊂ O which is still an open cover of N . A set N is said
to be compact if every open cover of N admits a finite subcover.

15. If (M, T ) is Hausdorff and N ⊂M is compact then N is closed.

16. Heine-Borel theorem: a subset K ⊂ Rn is compact (for the usual topology) if and only
if it is closed and bounded.

17. Continuous maps carry compact sets to compact sets.

18. A topological space is said to be connected if the only subsets of M which are simultane-
ously open and closed are ∅ and M . A subset N ⊂ M is said to be a connected subset
if it is a connected topological space for the subspace topology.

19. A subset of R with the usual topology is connected if and only if it is an interval.

20. Continuous maps carry connected sets to connected sets.

7. Differential geometry

1. A topological manifold of dimension n is a topological space (M, T ) such that:

(i) T is Hausdorff.

(ii) T has a countable basis.

(iii) For each x ∈ M there exists U ∈ T with x ∈ U and a homeomorphism ϕ : U → V
for some open set V ⊂ Rn.

The pair (U,ϕ) is called a local chart.

2. Two local charts (U,ϕ) and (V, ψ) on an n-dimensional topological manifold M are said
to be compatible if the maps ψ ◦ ϕ−1 : ϕ(U ∩ V ) ⊂ Rn → ψ(U ∩ V ) ⊂ Rn and
ϕ ◦ ψ−1 : ψ(U ∩ V ) ⊂ Rn → ϕ(U ∩ V ) ⊂ Rn are smooth. An atlas for M is a family
A = {(Uα, ϕα)}α∈A of compatible local charts such that M =

⋃
α∈A Uα. Two atlases A

and A′ are said to be equivalent if A ∪ A′ is still an atlas. A differentiable structure
on M is a choice of an equivalence class of atlases. Finally, a differentiable manifold
of dimension n is a topological manifold of dimension n with a choice of difrerentiable
structure.

3. A map f :M → N between differentiable manifolds is said to be differentiable, or smooth,
if for any choices of local charts (U,ϕ) on an atlas for M and (V, ψ) on an atlas for N the
map ψ ◦f ◦ϕ−1 : ϕ(f−1(V )∩U) ⊂ Rm → ψ(V ) ⊂ Rn is smooth. The set of differentiable
maps between the differentiable manifolds M and N is represented as C∞(M,N), and one
usually writes C∞(M) = C∞(M,R).

4. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection
f : M → N with a smooth inverse. A local diffeomorphism between two differentiable
manifolds M and N is a smooth map f : M → N such that for each x ∈ M there exist
open sets U 3 x and V 3 f(x) such that f |U : U → V is a diffeomorphism.
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5. A tangent vector to a differentiable manifold M at a point p ∈M is a differential operator
ċ(0) : C∞(M)→ R of the form

ċ(0) · f =
d

dt |t=0

f(c(t)),

where c : R→M is a differentiable curve with c(0) = p.

6. The set TpM of all tangent vectors to the n-dimensional differentiable manifold M at the
point p ∈ M is a vector space of dimension n, called the tangent space to M at p. If
(U,ϕ) is a local chart with p ∈ U , corresponding to the local coordinates (x1, . . . , xn), a
basis for TpM is {

∂

∂x1 |p
, . . . ,

∂

∂xn |p

}
,

where
∂

∂xi |p
= ċi(0), ci(t) = ϕ−1(x1(p), . . . , xi(p) + t, . . . , xn(p)).

If ċ(0) ∈ TpM is a tangent vector with ϕ(c(t)) = (x1(t), . . . , xn(t)) then

ċ(0) =

n∑
i=1

ẋi(0)
∂

∂xi |p
.

7. If f : M → N is a differentiable map then the derivative of f at the point p ∈ M is the
linear map (df)p : TpM → Tf(p)N given by

(df)p(ċ(0)) =
d

dt |t=0

f(c(t)).

If (U,ϕ) is a local chart on M with p ∈ U , corresponding to the local coordinates
(x1, . . . , xn), and (V, ψ) is a local chart on N with f(p) ∈ V , corresponding to the lo-
cal coordinates (y1, . . . , ym), then

(df)p

(
n∑
i=1

vi
∂

∂xi |p

)
=

m∑
j=1

(
n∑
i=1

∂f̂ j

∂xi
vi

)
∂

∂yj |f(p)
,

where f̂ = ψ ◦ f ◦ϕ−1 is the local representation of f in the local coordinates (x1, . . . , xn)
on M and (y1, . . . , ym) on N .

8. The cotangent space to an n-dimensional differentiable manifold M at as point p ∈M is

T ∗pM = (TpM)∗ = {α : TpM → R : α is linear }.

T ∗pM is itself an n-dimensional vector space, with basis{
(dx1)p, . . . , (dx

n)p
}

satisfying

(dxi)p

(
∂

∂xj |p

)
= δij

(dual basis).
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