Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

. Set Theory

1. A relation on a set A is a subset R C A x A. We say that © € A is related to y € A if

(x,y) € R, and we write zRy.

2. An equivalence relation is a relation R on a set A satisfying the following three properties:

(i) Reflexivity: zRx for all x € A;
(i) Symmetry: If 2Ry the yRx for all z,y € A;
(iii) Transitivity: If Ry and yRz then 2Rz for all z,y,z € A;

If R is an equivalence relation then we write x ~ y to mean zRy.

3. If ~ is an equivalence relation on A and x € A then the equivalence class of x is the set

] ={ye A:y~a}CA.

4. A partition of a set A is a family {4;};cr of subsets of A such that:

(i) Uie[ Ai = A;
(ii) If i # j then A; ﬂA]’ = .

5. The equivalence classes of an equivalence relation on A form a partition of A; conversely,
given a partition of A there exists an equivalence relation on A whose equivalence classes

are precisely the subsets of the partition.

6. The quotient set of A by an equivalence relation ~ is the set A/~ of its equivalence
classes. The quotient map, or canonical projection, is the map 7 : A — A/~ defined as

7(x) = [z] for all z € A.



2. Groups

1.

A binary operation on aset Aisamap f: AxA — A. We often write f(z,y) = z-y = zy
for z,y € A.

A group is a pair (G, ), where G is a set and - : G X G — G is a binary operation satisfying:
(i) Associativity: - (y-2) = (x-y) -z for all z,y, 2z € G;
(ii) Existence of identity: There exists e € G such thate-x =z -e =z for all z € G;

(iii) Existence of inverses: For each = € G there exists y € G suchthat y-x =xz-y=e
forall z,y € G.

If (G,-) is a group then:
(i) The identity element e € G is unique;
(i) Each element z € G has a unique inverse 27! € G.

A group (G, -) is called abelian if the group operation - is commutative, thatis, if z-y = y-x
for all 2,y € G. In this case we often write x -y =2z 4y, e=0and 27! = —z.

5. The order of a group G is the number of elements in GG, and is represented as |G/.

6. If A is a set the its permutation group is the set
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Sym(A) ={f:A— A: fis bijective }

with the composition operation.
The symmetric group on n € N elements is the group S, = Sym({1,...,n}). Itis
nonabelian for n > 2, and |S,| = n!.
A subset H C G of a group G is called a subgoup if H is itself a group under the group
operation of GG, or, equivalently, if:

(i) zy € H for all z,y € H;

(ii) e € H;

(i) 27 € H forall z € H.

. If g € G and H is a subgroup of G then the left coset determined by g and H is the set

gH = {gh:h e H}.

The set G/H of all left cosets forms a partition of (G, and the corresponding equivalence
relation is given by
g1~g2 97 g2 € H

Lagrange’s Theorem: If GG is a finite group and H C G is a subgroup then |H | is a divisor
of |G].

The index of a subgroup H on a group G is the number [G: H] of left cosets. If G is finite
then [G: H| = |G|/|H]|.

A subgroup H of a group G is called a normal subgroup if ghg~' € H for all g € G

and h € H. In that case, the set G/H of cosets forms a group under the operation
(91H)(g2H) = (g192)H for all g1,¢92 € G (called the quotient group).

For each d € N the group of integers mod d is Z; = 7Z/dZ. We write a = b (mod d) to
signify that a,b € Z satisfy [a] = [b] in Zg.
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A map ¢ : G — H between two groups is called a homomorphism if p(g192) = ¢(g1)¢(g2)
for all g1,92 € G. An isomorphism is a bijective homomorphism. If ¢ : G — H is an
isomorphism then G and H are said to be isomorphic.

If ¢ : G — H is a homomorphism then:
() ¢leq) = (en):;
(i) (g™t =(g)~ ! forall g € G.
The composition of homomorphisms is again a homomorphism.
Isomorphism Theorem: If ¢ : G — H is a homomorphism then:
(i) im ¢ is a subgroup of H;
(ii) ker ¢ is a normal subgroup of G;
(iii) The map @ : G/ker ¢ — im ¢ defined by ¢([g]) = ¢(g) is an isomorphism.
If G is a group and g € G then the subgroup generated by g is

(9)={9":nelZj

(where g™ has the obvious meaning). The order of g is ord(g) = |{g)|. If ord(g) = d then
(9) = Zg, and if ord(g) = oo then (g) = Z. If G = (g) for some g € G then G is said to
be cyclic.

If G and H are groups then G x H is also a group with the operation defined by the formula
(91, h1) - (g2, h2) = (9192, hiho).



3. Rings and number theory

1.

A ring (R,+,-) is a set equipped with two binary operations such that (R, +) is an abelian
group and - is associative, has an identity 1 and is distributive with respect to +, that is,
a-(b+c)=a-b+a-cand (a+b)-c=a-c+b-cforall abceR.

2. Aring (R, +,") is called commutative if - is commutative.
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Onaring (R,+,-) we havea-0=0-a =0, foranya € R. If a,b € R\ {0} are such that
ab = 0 then a and b are called zero divisors.

An element a € R on a ring (R, +,-) is called invertible if there exists b € R such that

ab = ba = 1, in which case we write b = a~!. The set R* of all invertible elements is a

group for the multiplication.

A field is a commutative ring (R, +, ) such that R* = R\ {0}.

(Zg,+,-) is a commutative ring for the multiplication given by [m] - [n] = [mn].
7 = {[n] : ged(n,d) = 1}. In particular, Z, is a field if and only if d is prime.
The Euler function ¢ : N — N is defined as

o(n) ={m eN:m <nand ged(m,n) = 1}|,

so that |Z4| = ¢(d). If ged(m,n) =1 then ¢(m,n) = p(m)p(n), and so if n = pi* - - pi*
with p1,...,p distinct prime numbers then ¢(n) = (p* — pi* 1) - - (P —prh),
Euler’s Theorem: If gcd(a,d) = 1 then a¥¥ =1 (mod d).

Chinese Remainder Theorem: If nq,...,n; are coprime and N = nj - n; then the map
Zn > m] = (Im],...,[m]) € Zp, X ... X L,

is an isomorphism.

Classification of finite abelian groups: If G is a finite abelian group of order |G| =
Pyt - ppk with p, ..., py distinct prime numbers then

GGy % x G,

where |G;| = p;* for each i € {1,...,k}. Moreover, there exists a unique nondecreasing
sequence a}, . 7af € N with al1 + -+ af = r1; such that
Gi%Za} X e XZaf-

RSA public key encryption: Two (large) distinct prime numbers p and ¢ are chosen, and
the number N = pq is published, along with an encryption exponent e, chosen such that
ged(p(N),e) = 1. To encrypt a message [X]| € Zy the sender simply computes [X]¢. To
decrypt the message the receiver uses the fact that ([X]¢)? = [X], where the decryption
exponent d is such that [d] = [e] ™ in Z,y). The security of this system relies on the
fact that obtaining the descryption exponent requires knowledge of ¢(N) = (p—1)(¢—1),
which would involve factorizing N, a very hard task for p and g large enough.



4. Group actions

1. An action G A M of a group G on a set M is a homomorphism ¢ : G — Sym(M) (we
write ¢(g) = ¢g4). The action is called effective if ker(p) = {e}.

2. If G A M is an action of a group G on a set M then:
(i) The orbit of a point x € M is the set

pG(r) = {pg(x) 1 g € G}.

The set of all orbits is denoted M /G, and is a partition of M.
(ii) The stabilizer of a set X C M is the subgroup of G defined by

Gx = {g€ G py(X) = X}.

The isotropy subgroup of x € M is just Gz = G,y
(iii) A point € M is called a fixed point of the action if G, = G. The set of all fixed
points of the action is denoted by M.

3. The dihedral group on order n is the group D,, defined by two generators r and s together
with the relations
r’=e, s° =g, TS =8r

We have |D,,| = 2n, since

n—1 n—1
D, ={eyry...,r" s sry . s

4. An action G A M is called:
(i) Free if G = {e} for all x € M,
(i) Transitive if og(x) = M for some (thus all) z € M.

can

5. The canonical action of a group G on a space of left cosets G/ H is the action G ~ G/H

can

defined by ¢g ([91]) = [g991]-

6. If G A M and G A M’ are G-actions then a map T : M — M’ is called:
(i) G-equivariant if T(py(z)) = ¢} (T(x)) for all g € G and z € M.
(i) An equivalence of G-actions if it is a G-equivariant bijection.

can

7. Any transitive action GG A Mis equivalent to G N G/Gz,, where G, is the isotropy
subgroup of any point g € M and Ty, : G/G,, — M given by T,,([g]) = @q(x0) is an
equivalence of G-actions.

8. The conjugation action G 2 G is the action of G on itself given by g (h) = ghg™!.

The orbits of this action are called conjugacy classes. The set Z(G) of fixed points of
this action is called the center of G, and is a subgroup (subgroup of the elements in G
which commute with every other element). The isotropy subgroup Z(g) of a given element
g € G is called the centralizer of g (largest subgroup of G which has g in its center). The
stabilizer N(H) of a subgroup H C G is called the normalizer of H (largest subgroup of
G which contains H as a normal subgroup).
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If {j1,....Jk} C {1,...,n} then 0 = (j1---ji) € Sn (called a k-cycle) represents the
permutation defined by o(j,) = jr41 for r € {1,...,k — 1}, o(jx) = j1 and o(j) = j for
Jj & {Jj1,--.,Jk}- This representation is not unique, as (ji1j2- - Jjr) = (JkJji-- - Jr—1). If
(1o iy O ks -+, G} = {dk} then (ji---jx) © (i -+ jr) = (J1---Jjr). Every permu-
tation is the product of unique disjoint cycles.

A 2-cycle is called a transposition. A transposition (ij) is called simple if |i — j| = 1. The
set of simple transpositions generates S,,.

Sy, is isomorphic to the group with n — 1 generators si,...,s,—1 subject to the following
relations:
(i) s2=efori=1,...,n—1;

(i) sisj = s58; if i — j| > 2;
(iii) s;s;4+1 hasorder 3fori=1,...,n — 2.

The sign of a perturbation o € S, is sgn(o) = (—1)™), where n(c) is the number
of transpositions on any decomposition of ¢ as a product of transpositions. The map
sgn : S, — Z* is a group homomorphism, and its kernel A, is called the alternating
group (normal subgroup of order n!/2).

A partition of n € Nis a k-tuple (i1, ...,i;) € N¥ where iy > ... > iy and i1 +...+ip = n.

The conjugacy classes of S;, are in 1 to 1 correspondence with the partitions of n via

D,...ip) = {010+ 00y 1 01,..., 04 are disjoint cycles of lengths iy,... it}

Burnside’s Counting Theorem: Let G A M be an action of a finite group G on a finite
set M. Then the number of orbits is

1
IM/G| = = > IM?),

16
where MY is the set of points in M that are fixed by g:

MI={xeM:p4(x)=2a}.



5. Representations of finite groups

1.

A representation of a group G is an action GG A Vona complex vector space V' by linear
maps. The degree of the representation is deg = dim V. If V is finite-dimensional and
has an inner product then the representation is called unitary if the maps ¢, are unitary
forallg € G.

/
An intertwining map bewteen two representations G AV and GA V'is a linear equiva-
riant map 7' : V — V'. If T is invertible then the representations are said to be equivalent.

An invariant subspace for a representation GG A Vis a subspace W C V such that

wg(W) C W for all g € G. If the representation is unitary and W is an invariant subspace

then W+ is also an invariant subspace.

The direct sum of two given representations GG AV and G A V' is the representation
Dy’ .

G~ V@ V' defined as

(90 ® 90,)9(?), UI) - (SDQ(U% 90:7(1)/))'

A representation G A V is said to be irreducible if its only invariant subspaces are {0}
and V.

Maschke’s Theorem: Every finite-dimensional representation of a finite group is equivalent
to a direct sum of irreducible representations.

. Schur’s Lemma: Let G A V and G rwx W be two irreducible finite-dimensional represen-

tations of the finite group G, and let 7' : V' — W be an intertwining map. Then either
T = 0 ot T is invertible. Moreover, if the two representations coincide then T" = \idy for
some \ € C.

8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.

9. The regular representation of a finite group G on L(G) = {f : G — C} is defined as

10.

11.

12.

(0§ (M) () = Fg~"h)
for all g, h € G. This representation is unitary for the inner product

(f1, f2) = |é| > hilg) falg)-

geG

Schur’s orthogonality relations: Let G be a finite group and let ¢ : G — U(n) and
p: G — U(m) be two inequivalent irreducible representations. Then:

(i) (wijs pri) = 0.

(i) (@ij, o) = 26051
The character of a finite-dimensional representation G AV of a finite group G is the map
Xy € L(G) defined by x,(g) = tr(¢g). In particular, x,(e) = deg(ep).

The character x, of a finite-dimensional representation G A V of afinite group is a class
function, that is, x,(hgh™") = x,(g) for all g, h € G. We represent by Z(L(G)) C L(G)
the set of class functions.
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fGAVand G fw\v W are irreducible finite-dimensional representations of a finite group
G then

lifp~a,

0if o L.

Let [¢™M], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representa-

(Xg» Xp) = {

tions of a finite group G, and let G A V be a finite-dimensional representation of G,

p~meN . @ msgp(s),

where
m;
mi® =D @ . @ "
Then
mi = (Xp» Xop(0))-
Let [p(M], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representa-

tions of a finite group G, and let d; = deg(¢®). Then
i +...+d2=|G|

Let [o(M],...,[¢®)] be the equivalence classes of irreducible finite-dimensional represen-
tations of a finite group GG. Then {X¢(1), . ,X@@} is an orthonormal basis of the space
Z(L(Q)) of class functions. In particular, there are as many irreducible representations as
conjugacy classes.

If G A V is a finite-dimensional representations of the finite group G and f € L(G) then

vr=>_ f9)eq
geG
Let [¢™M], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representati-

ons of a finite group G, and let d; = deg(Lp(i)) and x; = X,()- If a given finite-dimensional
representation GG AV decomposes as
P~ ml@(l) ©...0 msw(s),
corresponding to the orthogonal decomposition
V=Vi®...0Vs,

then the orthogonal projection P; : V — V; is

d;
P=—p%.
? ‘G‘ PX;
A structure with n degrees of freedom near equilibrium is described by the symmetric positive
(semi-)definite n x n mass matrix M and the symmetric n x n stiffness matrix K. The
frequencies w of small oscillations of the structure satisfy

WrMu = Ku



for some u € R™ \ {0}. If the structure admits a symmetry group acting linearly, G AR
then M and K are intertwiners for ¢, and so they are block diagonal with respect to the
decomposition of ¢ into irreducible representations. Moreover, if a given irreducible repre-
sentation occurs only once then M and K are multiples of the identity on the corresponding
block (but this is not true if the irreducible representation occurs more than once).



6. Topology

1.

A distance function (or metric) on a set M is a function d: M x M — R satisfying:
(i) Positivity: d(z,y) > 0 for all z,y € M, and d(z,y) = 0=z =y;
(i) Symmetry: d(z,y) = d(y,x) for all z,y € M;
(iii) Triangle inequality: d(z,z) < d(z,y) + d(y, z) for all x,y,z € M.
If d is a distance then (M, d) is said to be a metric space.
If (M,d) is a metric space and x € M then the open ball with center z and radius r > 0

is the set
By(z)={ye M :d(z,y) <r}.

If (M,d) is a metric space then a subset U C M is called open if for each x € U there
exists r > 0 such that B.(xz) C U. A subset F' C M is called closed if M \ F is open.

4. Open balls are open sets.

5. The family 7; of open sets on a metric space (M, d) satisfies the following properties:

10.

11.
12.

13.

(i) @, M € Tq;
(i) If {Uataca C Tg then J,ca Ua € T
(iii) If Uy,...,U, € Tg then N, U; € Tg.
A topology on a set M is a family 7 of subsets of M satisfying the following properties:
(i) o,M €T,
(i) f {Uataca C T then UpcaUa € T;
(iii) If Uy,..., Uy, €T then N, U; € T.
The sets U € T are called open sets, and the sets ' C M such that M \ F' € T are

called closed sets. An open set containing x € M is called a neighborhood of z. If T is
a topology on M the (M, T) is said to be a topological space.

A topological space (M, T) is said to be Hausdorff if given x,y € M with = # y there
exist U,V € T withUNV = suchthat x € U and y € V.

A subfamily B C T of open sets is said to be a basis for the topology 7 on M is it satisfies
any of the following equivalent properties:

(i) Foreach U € T there exists By C B such that U = Uy, V-
(i) For each U € T and each = € U there exists U, € B such that x € U, C U.

If (M,T) is a topological space and N C M then Ty ={UNN : U € T} is a topology in
N (subspace topology).

A map f : M — N between two topological spaces (M, Tys) and (N, Ty) is said to be
continuous if f~1(U) € Ty for all U € Ty.

The composition of continuous maps is continuous.

A homeomorphism between two topological spaces (M, Tys) and (N, Tx) is a continuous
bijection f : M — N with continuous inverse. If such a map exists then (M, 7)) and
(N, Tn) are said to be homeomorphic.

If (M,T) is a topological space, ~ is an equivalence relation on M and 7w : M — M/~ is
the canonical projection then the quotient topology on M/~ is

To={Uc M/~ 7 U) €T}

10



14.

15.
16.

17.

18.

19.
20.

An open cover for a subset N C M of a topological space (M, T) is a collection O C T
such that
Nc |
UeO

A subcover is a subcollection @’ C O which is still an open cover of N. A set N is said
to be compact if every open cover of N admits a finite subcover.

If (M,T) is Hausdorff and N C M is compact then N is closed.

Heine-Borel theorem: a subset K C R™ is compact (for the usual topology) if and only
if it is closed and bounded.

Continuous maps carry compact sets to compact sets.

A topological space is said to be connected if the only subsets of M which are simultane-
ously open and closed are @ and M. A subset N C M is said to be a connected subset
if it is a connected topological space for the subspace topology.

A subset of R with the usual topology is connected if and only if it is an interval.

Continuous maps carry connected sets to connected sets.

11



7. Differential geometry

1. A topological manifold of dimension n is a topological space (M, T) such that:

(i) 7T is Hausdorff.
(i) 7 has a countable basis.

(iii) For each z € M there exists U € T with z € U and a homeomorphism ¢ : U — V
for some open set V' C R".

The pair (U, ¢) is called a local chart.

2. Two local charts (U, ) and (V,1) on an n-dimensional topological manifold M are said
to be compatible if the maps Yo' : pUNV) C R* - (U NV) C R and
poyp L :p(UNV)CR® = oUNV) C R" are smooth. An atlas for M is a family
A = {(Ua, ¥a) }aca of compatible local charts such that M = (J,c 4 Ua. Two atlases A
and A’ are said to be equivalent if AU A’ is still an atlas. A differentiable structure
on M is a choice of an equivalence class of atlases. Finally, a differentiable manifold
of dimension n is a topological manifold of dimension n with a choice of difrerentiable
structure.

3. Amap f: M — N between differentiable manifolds is said to be differentiable, or smooth,
if for any choices of local charts (U, ¢) on an atlas for M and (V,1) on an atlas for N the
map Yo fop t:o(f~HV)NU) C R™ — ¢(V) C R™ is smooth. The set of differentiable
maps between the differentiable manifolds M and N is represented as C*° (M, N), and one
usually writes C*°(M) = C*°(M,R).

4. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection
f M — N with a smooth inverse. A local diffeomorphism between two differentiable
manifolds M and N is a smooth map f : M — N such that for each x € M there exist
open sets U 3 x and V' 5 f(x) such that f|y : U — V is a diffeomorphism.

5. A tangent vector to a differentiable manifold M at a point p € M is a differential operator
¢(0) : C°°(M) — R of the form

d

o)1 =5 S,

where ¢ : R — M is a differentiable curve with ¢(0) = p.

6. The set T,,M of all tangent vectors to the n-dimensional differentiable manifold M at the

point p € M is a vector space of dimension n, called the tangent space to M at p. If

(U, @) is a local chart with p € U, corresponding to the local coordinates (z,...,2"), a

basis for T),M is
o9 9
Oty Oxny, )

= éi(o)v Ci(t) = 90_1(x1(p), ) :Ez(p) +1,... ’xn(p))'

where

0
ox'|,
If ¢(0) € T,M is a tangent vector with (c(t)) = (x!(t),...,2"(t)) then




10.

11.

If f: M — N is a differentiable map then the derivative of f at the point p € M is the
linear map (df ), : TyM — Ty, N given by

d

(@) =

f(e(t))-

If (U,¢) is a local chart on M with p € U, corresponding to the local coordinates
(zt,...,2"), and (V,%) is a local chart on N with f(p) € V, corresponding to the lo-
cal coordinates (y',...,y™), then

(@) <;v 8a:i|p> =2 ( 8xiv> Ayl

j=1 \i=1

)
l#(p)

where f =10 fop !is the local representation of f in the local coordinates (!, ..., 2")
on M and (y',...,4™) on N.

The cotangent space to an n-dimensional differentiable manifold M at as point p € M is
TyM = (T,M)" = {a: TpM — R : ais linear }.
The set T;M is itself an n-dimensional vector space, with basis

{(dwl)p, . (dx")p}

i 0
(dz*)p (alep> = 0ij
(dual basis).

The tangent bundle of an n-dimensional differentiable manifold M is TM = UpeM T,M.
The natural projection is the map 7 : TM — M defined as w(v) = p for v € T,M. For
each local chart (U, ¢) of M we define the local chart (7=*(U), @) of TM by

satisfying

v

=1

These charts fom an atlas for TM (with the appropriate topology) giving it the structure
of a 2n-dimensional manifold.

A vector field on M is a smooth map X : M — T'M such that X, = X(p) € T,M for
all p € M, that is, such that 7 o X = id; (such maps are called sections of the tangent
bundle). The set of vector fields on M is denoted by X(M).

The cotangent bundle of an n-dimensional differentiable manifold M is T*M = UpeM T,M.
The natural projection is the map 7 : T*M — M defined as m(a) = p for a € Ty M. For
each local chart (U, ¢) of M we define the local chart (7=1(U), $) of T*M by

n
(10(1‘17 cen @ Py, 7pn) = Zpi(dxz)zpfl(rl,“.,m")'
=1

These charts fom an atlas for 7" M (with the appropriate topology) giving it the structure
of a 2n-dimensional manifold.

13



12.

13.
14.

15.

16.

17.

18.

19.

A covector field on M is a smooth map o : M — T M such that o, = a(p) € T, M for
all p € M, that is, such that m o« = idj; (such maps are called sections of the cotangent
bundle).

A covariant k-tensor on T, M is a multilinear map T : (T, M)* — R.

If T"is a covariant k-tensor on T}, M and S is a covariant [-tensor on T}, M then their tensor
product is the covariant (k + [)-tensor T'® S defined by

(T® S)(Ul, ey Uk, U1, - - - 7vk+l) = T(Ul,. . .,Uk)S(?}k+1, R 7vk+l).

If M is an n-dimensional differentiable manifold then the vector space of covariant k-tensors
on T, M has dimension nk, and a basis is

n

{(dz"), ® -+ @ (da™®), }

01yeenytip=1"

If T is a covariant k-tensor on T,,M then

T = Z Ti, iy, (dxil)p Q@ (dxik)pv

i1, ip=1

0 0
Ellk =T <8x21 |p7 R &clkh,) .

There is a canonical identification (7,;M)* = T;,M through

where

forallv € T,M and all a € T;M.

A mixed tensor of type (k, 1) (or k times covariant and [ times contravariant) on 1), M
is a multilinear map T': (T, M)k x (T;M)l — R. If M is an n-dimensional differentiable

manifold then the vector space Tlgk’l)M of tensors of type (k,l) on T,M has dimension
nF* and a basis is

. 4 %) o "
{(da:”)p@---@(dx““)p@ ®- - ® }

J1 ' i ) . )
Oz lp A lp U1yl s J 1o J1=1

If T is a mixed tensor of type (k,1) on T, M then

n
o ) ) 0 0
_ J15-+501 11 . 1k e
T= ) @ L@h),e--edt)egn @@z
U1y lksJ 150 J1=1
where 5 5
J1yeesdl j ]
TP =T <8xi1 T D) (dz?t),, ... (dxﬂz)p> :

The bundle of mixed tensors of type (k,l) on an n-dimensional differentiable manifold
is the set T®D N = UpeM Té’“”

k+1in the obvious way.

M. This set is a differentiable manifold of dimension
n—+mn

A mixed tensor field of type (k,l) on M is a section of 7).
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20.

21.

22.

23.

A Riemannian metric on a differentiable manifold M is a covariant 2-tensor field g sa-
tisfying:

(i) Symmetry: g,(v,w) = gp(w,v) for all v,w € T,M and all p € M.

(i) Positivity: g,(v,v) > 0 for all v € T,M \ {0} and all p € M.
The length of a curve c: [tg,t1] — M is then defined as

le) = [ Valelo) oy

An integral curve of a vector field X € X(M) is a smooth curve ¢ : (—e,e) — M satisfying
é(t) = X forall t € (—¢,¢).

Given X € X(M) and p € M there exists an open neighborhood U > p and a smooth map
&% 1 (—e,e) x U — M satisfying

ag;tX(t,q) = XX (t,q) for all t € (—e,e) and ¢ € U,
#X(0,q) = q forall g € U,

called the local flow of X. The map ¢;* : U — ¢;X(U) defined as ¢;X(q) = ¢X(t,q) is a
diffeomorphism for all t € (—¢,¢). If X is defined on R x M the X is said to be complete.

Any vector field X € X(M) can be interpreted as a linear operator X : C*°(M) — C*°(M)
bu defining (X - f)(p) = X, - f. If X, Y € X(M) then their commutator [X,Y] as linear
operators, called their Lie bracket, is still a vector field. If (U, ) is a local chart and

i=1 P i=1 P

for smooth functions X, Y*: U — R then

(X, Y], => (X, Y'Y, X >8xi\ :
i=1 P
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8. Lie groups and Lie algebras

1.

10.

A Lie algebra over a field K (usually R or C) is a pair (A4, [-,:]), where A is a vector space
over K and [-,:] : A x A — A is a binary operation satisfying:

(i) Antisymmetry: [X,Y] = —[Y, X] for all X,Y € A.

(ii) Bilinearity: [aX +bY,Z] = a[X,Z] 4+ b]Y, Z] for all X, Y € A and a,b € K.

(iii) Jacobi identity: [[X,Y], Z] + [[Y, Z], X]+ [[Z,X], Y] =0 for all X,Y,Z € A.
If (4, 0) is an associative algebra, that is, a vector space with a bilinear binary operation
0:Ax A— Asuchthat (XoY)oZ =Xo(YoZ)forall X,Y,Z € A then (A,[,]) is
a Lie algebra for [A,B] = Ao B — Bo A.

A linear map ¢ : g — b between two Lie algebras g and b is called a Lie algebra homo-
morphism if

P([X,Y]) = [o(X), 9(Y)]
for all X, Y € g. If ¢ is a bijection then it is called a Lie algebra isomorphism.

A subspace b C g of a Lie algebra g is called a Lie subalgebra if [X,Y] € b for all X,Y € b.
A subalgebra i C g is called an ideal if [X,Y] €iforall X €eiand Y € g.

If g is a Lie algebra and i C g is an ideal the the quotient g/i (as an abelian group) is a Lie
algebra for the multiplication by scalars defined as

am(X) =7m(aX)
and the Lie bracket
(X)), m(Y)] = = ([X, Y]),

where 7 : g — g/i is the quotient map.
Isomorphism Theorem: If ¢ : g — 0 is a Lie algebra homomorphism then:

(i) im(¢) C b is a subalgebra.

(ii) ker(¢) C g is an ideal.

(iii) The map ¢ : g/ker(¢) — im(¢) given by ¢(m(X)) = ¢(X) is a Lie algebra iso-

morphism.

A Lie group is a smooth manifold G which is also a group such that the maps 1 : GXG — G
and ¢ : G — G defined as (g, h) = gh and 1(g) = g~! are smooth.

Any topologically closed subgroup G C GL(n,R) is a Lie group. Examples are:
(i) GL(n,R).

(i) SL(n,R) ={A € Myxn(R) : det A =1}.
(iii) O(n) = {A € Myyn(R) : A'A = I}

(iv) SO(n) ={A€O(n):det A=1}.

(v) U(n) ={A € Mpxn(C): A*A=1T}.

(vi) SU(n) ={AecU(n):det A=1}.
A Lie group homomorphism is a homomorphism ¢ : G — H between Lie groups which is

also a diffeomorphism. A Lie group isomorphism is a a bijective Lie group homomorphism.

If f: M — N is a diffeomorphism and X € X(M) then the pushforward of X by f is the
vector field f.X € X(N) defined by (f.X)p = (df)p-1() Xf-1(p)- If X, Y € X(M) then
X, Y] = [/ X, Y]
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11.

12.

13.

14.

15.

16.

17.

18.

Let G be a Lie group. A vector field X € X(G) is said to be left-invariant if (L)X = X
for all g € G. For each V € T.G, the vector field XV defined as X, = (dL;).V is left-
invariant, and in fact the map V — XV is a linear isomorphism between T.G and the space
XE(G) of left-invariant vector fields.

Given a Lie group G, the subspace X(G) C X(G) is a Lie subalgebra. The Lie algebra of
G is g = T.G with the induced Lie bracket [V, W] = [XV, XW]..

We have gl(n,R) = M,,x,(R) with the bracket [4, B] = AB — BA. The same bracket
works for any matrix Lie group G C GL(n,R).

If V€ gthen XV € XL (@) is complete. We define the exponential map exp : g — G as
exp(V) = ¢ (e), where ¢ : G — G is the flow of XV

The map exp : gl(n,R) — GL(n,R) is given by exp(A4) = e = 370 HAF. The same
formula works for any matrix Lie group G C GL(n,R).

If G € GL(n,R) is a matrix Lie group with Lie algebra g then A € g if and only if ¢4 € G
for all t € R. In particular:

(i) gl(n,R) = Myxn(R).
(i) sl(n,R) ={A € Mpxn(R) : tr A = 0}.

)
(iii) o(n) = {A € Myxn(R) : At = —A}.
(iv) so(n) = o(n).
(v) u(n) ={A € Myxn(C): A* = —A}.

(vi) su(n) = {A cu(n):tr A =0}
Let M be a topological space and g € M. The fundamental group of M with base point
o is
m1(M,xo) = {c:[0,1] — M continuous with ¢(0) = ¢(1) = o}/ ~,
where ¢y ~ c; if and only if they are homotopic with base point x, that is, if there
exists a continuous map H : [0, 1] x [0,1] — M such that H(t,0) = co(t), H(t,1) = c1(t)
and H(0,s) = H(1,s) = xg for all t,s € [0,1]. The group operation is [co] - [c1] = [co * c1],
where
2t) for t € [0, 1
co*cC] = co(2t) for [ 2]1
c1(2t —1) for t € [5,1]

If M is path-connected, that is, if for every x,y € M there exists a continuous path
¢ :[0,1] — M such that ¢(0) = = and ¢(1) = y, then the fundamental group does not
depend on the base point. Finally, M is said to be simply connected if it is path-connected
and w1 (M) = {e}.

Lie’s Theorem: Given a finite-dimensional real Lie algebra g, there exists a unique simply
connected Lie group G with Lie algebra g. If G is any other Lie group with Lie algebra g,
then there exists a discrete subgroup D of Z(G) (the center of G) such that G = G/D,
and 71 (G) 2 D (where G/D is given the natural differentiable structure).
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9. Representations of Lie algebras

1.

A Lie algebra g is called simple if dimg > 1 and g does not have nontrivial ideals. A Lie
algebra g is called semisimple if g = g1 ® ... ® g5 for simple Lie algebras g1,...,gs (where
the bracket it the direct sum is defined in the obvious way).

. A representation of the Lie algebra g on a vector space V is a Lie algebra homomorphism

m:g— L(V), where L(V) is the space of linear transformations of V' with the commutator.
The representation is called irreducible if V' does not contain nontrivial invariant subspaces.

The adjoint representation ad : g — L(g) is defined as adx (V) = [X, Y] forall X, Y € g.

4. The Killing form on a Lie algebra g over K (where K = R or K = C) is the bilinear form

10.

B:gxg— Kgiven by B(X,Y) = tr(adx ady).

Cartan’s Theorem: A Lie algebra g is semisimple if and only if its Killing form B is
nondegenerate (that is, if and only if B(X,Y) =0 for all Y € g implies X = 0). Moreover,
if g is a real Lie algebra then B is negative definite if and only if g is semisimple and is the
Lie algebra of a compact Lie group.

The complexification of a real Lie algebra g is the complex vector space g¢ consisting of
elements of the form X 4+ ¢Y with X,Y € g with the obvious operations. A real subalgebra
h C g is called a real form of the complex Lie algebra g if g = .

The structure constants associated to a basis {X1,...,X,,} of a Lie algebra g are the
scalars C’fj such that

n
X5, X5 = CEXp.
k=1

Finding a real form of a complex Lie algebra g amounts to finding a basis with real structure
constants.

Any complex semisimple Lie algebra g contains a unique (up to isomorphism) real form ¢
whose Killing form is definite negative (called a compact real form). Moreover, there is a
one-to-one correspondence between finite-dimensional irreducible representations of g and
unitary irreducible representations of the simply connected compact group K whose Lie
algebra is the compact real form &.

Every complex semisimple algebra g has a Cartan subalgebra, that is, a maximal abelian
subalgebra ) C g such that ady; are simultaneously diagonalizable for all H € §. Therefore
we have the root decomposition

§=b®ga; ® ... D o,
where the covectors aq, ..., as € h*, called the roots, satisfy
adg(X) = a;(H)X

for all X € gq,. The rank of g is rank(g) = dim(h).

A Cartan subalgebra h C g always contains a real subspace hg, with real dimension equal
to rank(g), such that the roots can be seen as elements of h. Moreover, the Killing form
B restricts to a real inner product on hg, an so the linear isomorphism ® : hg — by defined
by ®(X)(Y) = B(X,Y) induces an inner product on bh. It turns out that the geometry
of the roots relative to this inner product is highly constrained.
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11. The finite-dimensional simple complex Lie algebras are:
(i) sl(n+1,C) for n > 1;
(ii) so(2n +1,C) for n > 2;
(iii) sp(n,C) for n > 3 (the symplectic Lie algebras);
(iv) so(2n,C) for n > 4;
(v) e6, 7, ¢s, f4 and go (the exceptional Lie algebras).

12. There exist » = rank(g) roots a1, ..., «,, called simple roots, such that any root « can

be written as
-
o = E n; o
i=1

with all n; € Zg or with all n; € Zar.

13. The fundamental weights associated to a given choice ay, ..., a, of simple roots are the
covectors Ai,..., A, € by defined by
oo v
2< Z7aj> — 51‘7
{aj, ;)
fori,j = 1,...,r. The weight lattice is A*¥ = spany{\1,..., A}, and the dominant
weights are the elements of AY = spanzg{)\l, D

14. Highest weight theorem: If 7 : g — L(V) is an irreducible finite-dimensional representa-
tion of the complex semisimple Lie algebra g then:

(i) The linear transformations in
m(h) = {n(H) : H € b}

are simultaneously diagonalizable, so that

V= wn

AEAW
with 7(H)v = M(H)v for all H € h and v € V). Here V) = {0} except for finitely
many A € A", called the weights of the representation.
(ii) There exists a highest weight \,.x € A" such that:
1. dimV,, =1

2. 7(Xo)v=0forallveV,, and X, € go with a a positive root.
3. V = spang {F(X_ail) 0o m(X o, )Urpayx * 5 € Nyig,. .. is € {1,...,r}},
where X, € go, and vy, € V.. \ {0}
(iii) All weights of 7 are of the form Apax — mia1 — ... — mya, with my,...,m, € Z(')".
(iv) For every dominant weight A € A"} there exists a unique (up to equivalence) irreducible
finite-dimensional representation of g with highest weight A.

15. IfFG A Vand G ;{v W are finite-dimensional representations of a group GG then their tensor
. : ® :
product is the representation GG @mw V @ W determined by

(P @1)g(v @ w) = pg(v) @ hg(w)

forallge G,veVandwe W.
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16. If m: g — L(V) and p : g — L(W) are finite-dimensional representations of a Lie algebra
g then their tensor product is the representation 7 ® p: g — L(V ® W) determined by

(m @ p)(X)(v @ w) =7m(X)(v) @w+v & p(X)(w)

forall X eg,veVandweW.
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