Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

1. Set Theory

- 1. A relation on a set A is a subset $\mathcal{R} \subset A \times A$. We say that $x \in A$ is related to $y \in A$ if $(x, y) \in \mathcal{R}$, and we write $x\mathcal{R}y$.
- 2. An equivalence relation is a relation \mathcal{R} on a set A satisfying the following three properties:
 - (i) **Reflexivity:** $x\mathcal{R}x$ for all $x \in A$;
 - (ii) Symmetry: If $x\mathcal{R}y$ the $y\mathcal{R}x$ for all $x, y \in A$;
 - (iii) **Transitivity:** If $x\mathcal{R}y$ and $y\mathcal{R}z$ then $x\mathcal{R}z$ for all $x, y, z \in A$;
 - If \mathcal{R} is an equivalence relation then we write $x \sim y$ to mean $x\mathcal{R}y$.
- 3. If \sim is an equivalence relation on A and $x \in A$ then the **equivalence class** of x is the set

$$[x] = \{y \in A : y \sim x\} \subset A.$$

- 4. A partition of a set A is a family $\{A_i\}_{i \in I}$ of subsets of A such that:
 - (i) $\bigcup_{i \in I} A_i = A;$
 - (ii) If $i \neq j$ then $A_i \cap A_j = \emptyset$.
- 5. The equivalence classes of an equivalence relation on A form a partition of A; conversely, given a partition of A there exists an equivalence relation on A whose equivalence classes are precisely the subsets of the partition.
- 6. The quotient set of A by an equivalence relation ~ is the set A/~ of its equivalence classes. The quotient map, or canonical projection, is the map π : A → A/~ defined as π(x) = [x] for all x ∈ A.

2. Groups

- 1. A binary operation on a set A is a map $f : A \times A \to A$. We often write $f(x, y) = x \cdot y = xy$ for $x, y \in A$.
- 2. A group is a pair (G, \cdot) , where G is a set and $\cdot : G \times G \to G$ is a binary operation satisfying:
 - (i) Associativity: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for all $x, y, z \in G$;
 - (ii) **Existence of identity:** There exists $e \in G$ such that $e \cdot x = x \cdot e = x$ for all $x \in G$;
 - (iii) **Existence of inverses:** For each $x \in G$ there exists $y \in G$ such that $y \cdot x = x \cdot y = e$ for all $x, y \in G$.
- 3. If (G, \cdot) is a group then:
 - (i) The identity element $e \in G$ is unique;
 - (ii) Each element $x \in G$ has a unique inverse $x^{-1} \in G$.
- 4. A group (G, \cdot) is called **abelian** if the group operation \cdot is commutative, that is, if $x \cdot y = y \cdot x$ for all $x, y \in G$. In this case we often write $x \cdot y = x + y$, e = 0 and $x^{-1} = -x$.
- 5. The **order** of a group G is the number of elements in G, and is represented as |G|.
- 6. If A is a set the its **permutation group** is the set

$$Sym(A) = \{f : A \to A : f \text{ is bijective } \}$$

with the composition operation.

- 7. The symmetric group on $n \in \mathbb{N}$ elements is the group $S_n = \text{Sym}(\{1, \ldots, n\})$. It is nonabelian for n > 2, and $|S_n| = n!$.
- 8. A subset $H \subset G$ of a group G is called a **subgoup** if H is itself a group under the group operation of G, or, equivalently, if:
 - (i) $xy \in H$ for all $x, y \in H$;
 - (ii) $e \in H$;
 - (iii) $x^{-1} \in H$ for all $x \in H$.
- 9. If $g \in G$ and H is a subgroup of G then the **left coset** determined by g and H is the set

$$gH = \{gh : h \in H\}.$$

The set G/H of all left cosets forms a partition of G, and the corresponding equivalence relation is given by

$$g_1 \sim g_2 \Leftrightarrow g_1^{-1} g_2 \in H.$$

- 10. Lagrange's Theorem: If G is a finite group and $H \subset G$ is a subgroup then |H| is a divisor of |G|.
- 11. The **index** of a subgroup H on a group G is the number [G:H] of left cosets. If G is finite then [G:H] = |G|/|H|.
- 12. A subgroup H of a group G is called a **normal subgroup** if $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. In that case, the set G/H of cosets forms a group under the operation $(g_1H)(g_2H) = (g_1g_2)H$ for all $g_1, g_2 \in G$ (called the **quotient group**).
- 13. For each $d \in \mathbb{N}$ the group of integers mod d is $\mathbb{Z}_d = \mathbb{Z}/d\mathbb{Z}$. We write $a \equiv b \pmod{d}$ to signify that $a, b \in \mathbb{Z}$ satisfy [a] = [b] in \mathbb{Z}_d .

- 14. A map $\varphi: G \to H$ between two groups is called a **homomorphism** if $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$ for all $g_1, g_2 \in G$. An **isomorphism** is a bijective homomorphism. If $\varphi: G \to H$ is an isomorphism then G and H are said to be **isomorphic**.
- 15. If $\varphi: G \to H$ is a homomorphism then:
 - (i) $\varphi(e_G) = (e_H);$
 - (ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$.
- 16. The composition of homomorphisms is again a homomorphism.
- 17. Isomorphism Theorem: If $\varphi: G \to H$ is a homomorphism then:
 - (i) $\operatorname{im} \varphi$ is a subgroup of *H*;
 - (ii) ker φ is a normal subgroup of G;
 - (iii) The map $\tilde{\varphi}: G/\ker \varphi \to \operatorname{im} \varphi$ defined by $\tilde{\varphi}([g]) = \varphi(g)$ is an isomorphism.
- 18. If G is a group and $g \in G$ then the subgroup generated by g is

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}$$

(where g^n has the obvious meaning). The **order** of g is $\operatorname{ord}(g) = |\langle g \rangle|$. If $\operatorname{ord}(g) = d$ then $\langle g \rangle \cong \mathbb{Z}_d$, and if $\operatorname{ord}(g) = \infty$ then $\langle g \rangle \cong \mathbb{Z}$. If $G = \langle g \rangle$ for some $g \in G$ then G is said to be **cyclic**.

19. If G and H are groups then $G \times H$ is also a group with the operation defined by the formula $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$

3. Rings and number theory

- 1. A ring $(R, +, \cdot)$ is a set equipped with two binary operations such that (R, +) is an abelian group and \cdot is associative, has an identity 1 and is **distributive** with respect to +, that is, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in R$.
- 2. A ring $(R, +, \cdot)$ is called **commutative** if \cdot is commutative.
- 3. On a ring $(R, +, \cdot)$ we have $a \cdot 0 = 0 \cdot a = 0$, for any $a \in R$. If $a, b \in R \setminus \{0\}$ are such that ab = 0 then a and b are called **zero divisors**.
- 4. An element $a \in R$ on a ring $(R, +, \cdot)$ is called **invertible** if there exists $b \in R$ such that ab = ba = 1, in which case we write $b = a^{-1}$. The set R^* of all invertible elements is a group for the multiplication.
- 5. A field is a commutative ring $(R, +, \cdot)$ such that $R^* = R \setminus \{0\}$.
- 6. $(\mathbb{Z}_d, +, \cdot)$ is a commutative ring for the multiplication given by $[m] \cdot [n] = [mn]$.
- 7. $\mathbb{Z}_d^* = \{[n] : gcd(n,d) = 1\}$. In particular, \mathbb{Z}_d is a field if and only if d is prime.
- 8. The **Euler function** $\varphi : \mathbb{N} \to \mathbb{N}$ is defined as

$$\varphi(n) = |\{m \in \mathbb{N} : m \le n \text{ and } \gcd(m, n) = 1\}|,$$

so that $|\mathbb{Z}_d^*| = \varphi(d)$. If gcd(m, n) = 1 then $\varphi(m, n) = \varphi(m)\varphi(n)$, and so if $n = p_1^{r_1} \cdots p_k^{r_k}$ with p_1, \ldots, p_k distinct prime numbers then $\varphi(n) = (p_1^{r_1} - p_1^{r_1-1}) \cdots (p_k^{r_k} - p_1^{r_k-1})$.

- 9. Euler's Theorem: If gcd(a, d) = 1 then $a^{\varphi(d)} \equiv 1 \pmod{d}$.
- 10. Chinese Remainder Theorem: If n_1, \ldots, n_k are coprime and $N = n_1 \cdot n_k$ then the map

$$\mathbb{Z}_N \ni [m] \mapsto ([m], \dots, [m]) \in \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_k}$$

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order $|G| = p_1^{r_1} \cdots p_k^{r_k}$ with p_1, \ldots, p_k distinct prime numbers then

$$G \cong G_1 \times \cdots \times G_k,$$

where $|G_i| = p_i^{r_i}$ for each $i \in \{1, \ldots, k\}$. Moreover, there exists a unique nondecreasing sequence $a_i^1, \ldots, a_i^\ell \in \mathbb{N}$ with $a_i^1 + \cdots + a_i^\ell = r_i$ such that

$$G_i \cong \mathbb{Z}_{a_i^1} \times \cdots \times \mathbb{Z}_{a_i^\ell}.$$

12. **RSA public key encryption:** Two (large) distinct prime numbers p and q are chosen, and the number N = pq is published, along with an **encryption exponent** e, chosen such that $gcd(\varphi(N), e) = 1$. To encrypt a message $[X] \in \mathbb{Z}_N$ the sender simply computes $[X]^e$. To decrypt the message the receiver uses the fact that $([X]^e)^d = [X]$, where the **decryption exponent** d is such that $[d] = [e]^{-1}$ in $\mathbb{Z}_{\varphi(N)}$. The security of this system relies on the fact that obtaining the descryption exponent requires knowledge of $\varphi(N) = (p-1)(q-1)$, which would involve factorizing N, a very hard task for p and q large enough.

4. Group actions

- 1. An action $G \stackrel{\varphi}{\curvearrowright} M$ of a group G on a set M is a homomorphism $\varphi : G \to \text{Sym}(M)$ (we write $\varphi(g) = \varphi_g$). The action is called **effective** if $\text{ker}(\varphi) = \{e\}$.
- 2. If $G \stackrel{\varphi}{\sim} M$ is an action of a group G on a set M then:
 - (i) The **orbit** of a point $x \in M$ is the set

$$\varphi_G(x) = \{\varphi_g(x) : g \in G\}.$$

The set of all orbits is denoted M/G, and is a partition of M.

(ii) The **stabilizer** of a set $X \subset M$ is the subgroup of G defined by

$$G_X = \{g \in G : \varphi_g(X) = X\}.$$

The isotropy subgroup of $x \in M$ is just $G_x = G_{\{x\}}$.

- (iii) A point $x \in M$ is called a **fixed point** of the action if $G_x = G$. The set of all fixed points of the action is denoted by M^G .
- 3. The **dihedral group on order** n is the group D_n defined by two generators r and s together with the relations

$$r^n = e, \qquad s^2 = e, \qquad rs = sr^{-1}$$

We have $|D_n| = 2n$, since

$$D_n = \{e, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}.$$

- 4. An action $G \stackrel{\varphi}{\sim} M$ is called:
 - (i) Free if $G_x = \{e\}$ for all $x \in M$;
 - (ii) **Transitive** if $\varphi_G(x) = M$ for some (thus all) $x \in M$.
- 5. The **canonical action** of a group G on a space of left cosets G/H is the action $G \overset{\varphi^{\text{can}}}{\curvearrowright} G/H$ defined by $\varphi^{\text{can}}_{g}([g_1]) = [gg_1]$.
- 6. If $G \stackrel{\varphi}{\sim} M$ and $G \stackrel{\varphi'}{\sim} M'$ are G-actions then a map $T: M \to M'$ is called:
 - (i) G-equivariant if $T(\varphi_g(x)) = \varphi'_g(T(x))$ for all $g \in G$ and $x \in M$.
 - (ii) An equivalence of *G*-actions if it is a *G*-equivariant bijection.
- 7. Any transitive action $G \stackrel{\varphi}{\curvearrowright} M$ is equivalent to $G \stackrel{\varphi^{\operatorname{can}}}{\curvearrowleft} G/G_{x_0}$, where G_{x_0} is the isotropy subgroup of any point $x_0 \in M$ and $T_{x_0} : G/G_{x_0} \to M$ given by $T_{x_0}([g]) = \varphi_g(x_0)$ is an equivalence of G-actions.
- 8. The conjugation action $G \curvearrowright^{\varphi^c} G$ is the action of G on itself given by $\varphi_g^c(h) = ghg^{-1}$. The orbits of this action are called conjugacy classes. The set Z(G) of fixed points of this action is called the center of G, and is a subgroup (subgroup of the elements in G which commute with every other element). The isotropy subgroup Z(g) of a given element $g \in G$ is called the centralizer of g (largest subgroup of G which has g in its center). The stabilizer N(H) of a subgroup $H \subset G$ is called the normalizer of H (largest subgroup of G which contains H as a normal subgroup).

- 9. If $\{j_1, \ldots, j_k\} \subset \{1, \ldots, n\}$ then $\sigma = (j_1 \cdots j_k) \in S_n$ (called a *k*-cycle) represents the permutation defined by $\sigma(j_r) = j_{r+1}$ for $r \in \{1, \ldots, k-1\}$, $\sigma(j_k) = j_1$ and $\sigma(j) = j$ for $j \notin \{j_1, \ldots, j_k\}$. This representation is not unique, as $(j_1 j_2 \cdots j_k) = (j_k j_1 \cdots j_{k-1})$. If $\{j_1, \ldots, j_k\} \cap \{j_k, \ldots, j_r\} = \{j_k\}$ then $(j_1 \cdots j_k) \circ (j_k \cdots j_r) = (j_1 \cdots j_r)$. Every permutation is the product of unique disjoint cycles.
- 10. A 2-cycle is called a **transposition**. A transposition (ij) is called **simple** if |i-j| = 1. The set of simple transpositions generates S_n .
- 11. S_n is isomorphic to the group with n-1 generators s_1, \ldots, s_{n-1} subject to the following relations:
 - (i) $s_i^2 = e$ for i = 1, ..., n 1;
 - (ii) $s_i s_j = s_j s_i$ if $|i j| \ge 2$;
 - (iii) $s_i s_{i+1}$ has order 3 for $i = 1, \ldots, n-2$.
- 12. The sign of a perturbation $\sigma \in S_n$ is $\operatorname{sgn}(\sigma) = (-1)^{n(\sigma)}$, where $n(\sigma)$ is the number of transpositions on any decomposition of σ as a product of transpositions. The map $\operatorname{sgn} : S_n \to \mathbb{Z}^*$ is a group homomorphism, and its kernel A_n is called the alternating group (normal subgroup of order n!/2).
- 13. A partition of $n \in \mathbb{N}$ is a k-tuple $(i_1, \ldots, i_k) \in \mathbb{N}^k$ where $i_1 \geq \ldots \geq i_k$ and $i_1 + \ldots + i_k = n$.
- 14. The conjugacy classes of S_n are in 1 to 1 correspondence with the partitions of n via

 $D_{(i_1,\ldots,i_k)} = \{\sigma_1 \circ \cdots \circ \sigma_k : \sigma_1, \ldots, \sigma_k \text{ are disjoint cycles of lengths } i_1, \ldots, i_k\}.$

15. Burnside's Counting Theorem: Let $G \stackrel{\varphi}{\sim} M$ be an action of a finite group G on a finite set M. Then the number of orbits is

$$|M/G| = \frac{1}{|G|} \sum_{g \in G} |M^g|,$$

where M^g is the set of points in M that are fixed by g:

$$M^g = \{ x \in M : \varphi_q(x) = x \} .$$

5. Representations of finite groups

- 1. A **representation** of a group G is an action $G \stackrel{\varphi}{\sim} V$ on a complex vector space V by linear maps. The **degree** of the representation is deg $\varphi = \dim V$. If V is finite-dimensional and has an inner product then the representation is called **unitary** if the maps φ_g are unitary for all $g \in G$.
- 2. An **intertwining map** bewteen two representations $G \stackrel{\varphi}{\sim} V$ and $G \stackrel{\varphi'}{\sim} V'$ is a linear equivariant map $T: V \to V'$. If T is invertible then the representations are said to be **equivalent**.
- 3. An **invariant subspace** for a representation $G \stackrel{\varphi}{\sim} V$ is a subspace $W \subset V$ such that $\varphi_g(W) \subset W$ for all $g \in G$. If the representation is unitary and W is an invariant subspace then W^{\perp} is also an invariant subspace.
- 4. The **direct sum** of two given representations $G \stackrel{\varphi}{\sim} V$ and $G \stackrel{\varphi'}{\sim} V'$ is the representation $G \stackrel{\varphi \oplus \varphi'}{\sim} V \oplus V'$ defined as

$$(\varphi \oplus \varphi')_g(v, v') = (\varphi_g(v), \varphi'_q(v')).$$

- 5. A representation $G \stackrel{\varphi}{\sim} V$ is said to be **irreducible** if its only invariant subspaces are $\{0\}$ and V.
- 6. **Maschke's Theorem:** Every finite-dimensional representation of a finite group is equivalent to a direct sum of irreducible representations.
- 7. Schur's Lemma: Let $G \stackrel{\varphi}{\sim} V$ and $G \stackrel{\psi}{\sim} W$ be two irreducible finite-dimensional representations of the finite group G, and let $T : V \to W$ be an intertwining map. Then either T = 0 ot T is invertible. Moreover, if the two representations coincide then $T = \lambda \operatorname{id}_V$ for some $\lambda \in \mathbb{C}$.
- 8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.
- 9. The regular representation of a finite group G on $L(G) = \{f : G \to \mathbb{C}\}$ is defined as

$$(\varphi_q^{(r)}(f))(h) = f(g^{-1}h)$$

for all $g, h \in G$. This representation is unitary for the inner product

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

10. Schur's orthogonality relations: Let G be a finite group and let $\varphi : G \to U(n)$ and $\rho : G \to U(m)$ be two inequivalent irreducible representations. Then:

(i)
$$\langle \varphi_{ij}, \rho_{kl} \rangle = 0.$$

(ii)
$$\langle \varphi_{ij}, \varphi_{kl} \rangle = \frac{1}{n} \delta_{ik} \delta_{jl}.$$

- 11. The **character** of a finite-dimensional representation $G \stackrel{\varphi}{\sim} V$ of a finite group G is the map $\chi_{\varphi} \in L(G)$ defined by $\chi_{\varphi}(g) = \operatorname{tr}(\varphi_g)$. In particular, $\chi_{\varphi}(e) = \operatorname{deg}(\varphi)$.
- 12. The character χ_{φ} of a finite-dimensional representation $G \stackrel{\varphi}{\frown} V$ of a finite group is a **class** function, that is, $\chi_{\varphi}(hgh^{-1}) = \chi_{\varphi}(g)$ for all $g, h \in G$. We represent by $Z(L(G)) \subset L(G)$ the set of class functions.

13. If $G \stackrel{\varphi}{\sim} V$ and $G \stackrel{\psi}{\sim} W$ are irreducible finite-dimensional representations of a finite group G then

$$\langle \chi_{\varphi}, \chi_{\psi} \rangle = \begin{cases} 1 \text{ if } \varphi \sim \psi \,, \\ 0 \text{ if } \varphi \not\sim \psi \,. \end{cases}$$

14. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $G \stackrel{\rho}{\sim} V$ be a finite-dimensional representation of G,

$$\rho \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},$$

where

$$m_i \varphi^{(i)} = \overbrace{\varphi^{(i)} \oplus \ldots \oplus \varphi^{(i)}}^{m_i}.$$

Then

$$m_i = \langle \chi_\rho, \chi_{\varphi^{(i)}} \rangle.$$

15. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $d_i = \deg(\varphi^{(i)})$. Then

$$d_1^2 + \ldots + d_s^2 = |G|.$$

- 16. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G. Then $\{\chi_{\varphi^{(1)}}, \ldots, \chi_{\varphi^{(s)}}\}$ is an orthonormal basis of the space Z(L(G)) of class functions. In particular, there are as many irreducible representations as conjugacy classes.
- 17. If $G \stackrel{\varphi}{\frown} V$ is a finite-dimensional representations of the finite group G and $f \in L(G)$ then

$$\varphi_f = \sum_{g \in G} f(g) \varphi_g$$

18. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G, and let $d_i = \deg(\varphi^{(i)})$ and $\chi_i = \chi_{\varphi^{(i)}}$. If a given finite-dimensional representation $G \stackrel{\varphi}{\sim} V$ decomposes as

$$\varphi \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},$$

corresponding to the orthogonal decomposition

$$V = V_1 \oplus \ldots \oplus V_s,$$

then the orthogonal projection $P_i: V \to V_i$ is

$$P_i = \frac{d_i}{|G|} \varphi_{\overline{\chi}_i}$$

19. A structure with n degrees of freedom near equilibrium is described by the symmetric positive (semi-)definite $n \times n$ mass matrix M and the symmetric $n \times n$ stiffness matrix K. The frequencies ω of small oscillations of the structure satisfy

$$\omega^2 M u = K u$$

for some $u \in \mathbb{R}^n \setminus \{0\}$. If the structure admits a symmetry group acting linearly, $G \stackrel{\varphi}{\sim} \mathbb{R}^n$, then M and K are intertwiners for φ , and so they are block diagonal with respect to the decomposition of φ into irreducible representations. Moreover, if a given irreducible representation occurs only once then M and K are multiples of the identity on the corresponding block (but this is not true if the irreducible representation occurs more than once).

6. Topology

- 1. A distance function (or metric) on a set M is a function $d: M \times M \to \mathbb{R}$ satisfying:
 - (i) **Positivity:** $d(x,y) \ge 0$ for all $x, y \in M$, and $d(x,y) = 0 \Rightarrow x = y$;
 - (ii) Symmetry: d(x, y) = d(y, x) for all $x, y \in M$;
 - (iii) Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in M$.
 - If d is a distance then (M, d) is said to be a **metric space**.
- 2. If (M, d) is a metric space and $x \in M$ then the **open ball** with center x and radius r > 0 is the set

$$B_r(x) = \{ y \in M : d(x, y) < r \}.$$

- 3. If (M, d) is a metric space then a subset $U \subset M$ is called **open** if for each $x \in U$ there exists r > 0 such that $B_r(x) \subset U$. A subset $F \subset M$ is called **closed** if $M \setminus F$ is open.
- 4. Open balls are open sets.
- 5. The family \mathcal{T}_d of open sets on a metric space (M, d) satisfies the following properties:
 - (i) $\emptyset, M \in \mathcal{T}_d$;
 - (ii) If $\{U_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}_d$ then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_d$;
 - (iii) If $U_1, \ldots, U_n \in \mathcal{T}_d$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

6. A **topology** on a set M is a family \mathcal{T} of subsets of M satisfying the following properties:

- (i) $\emptyset, M \in \mathcal{T};$
- (ii) If $\{U_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$ then $\bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{T}$;
- (iii) If $U_1, \ldots, U_n \in \mathcal{T}$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

The sets $U \in \mathcal{T}$ are called **open sets**, and the sets $F \subset M$ such that $M \setminus F \in \mathcal{T}$ are called **closed sets**. An open set containing $x \in M$ is called a **neighborhood** of x. If \mathcal{T} is a topology on M the (M, \mathcal{T}) is said to be a **topological space**.

- 7. A topological space (M, \mathcal{T}) is said to be **Hausdorff** if given $x, y \in M$ with $x \neq y$ there exist $U, V \in \mathcal{T}$ with $U \cap V = \emptyset$ such that $x \in U$ and $y \in V$.
- 8. A subfamily $\mathcal{B} \subset \mathcal{T}$ of open sets is said to be a **basis** for the topology \mathcal{T} on M is it satisfies any of the following equivalent properties:
 - (i) For each $U \in \mathcal{T}$ there exists $\mathcal{B}_U \subset \mathcal{B}$ such that $U = \bigcup_{V \in \mathcal{B}_U} V$.
 - (ii) For each $U \in \mathcal{T}$ and each $x \in U$ there exists $U_x \in \mathcal{B}$ such that $x \in U_x \subset U$.
- 9. If (M, \mathcal{T}) is a topological space and $N \subset M$ then $\mathcal{T}_N = \{U \cap N : U \in \mathcal{T}\}$ is a topology in N (subspace topology).
- 10. A map $f: M \to N$ between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is said to be **continuous** if $f^{-1}(U) \in \mathcal{T}_M$ for all $U \in \mathcal{T}_N$.
- 11. The composition of continuous maps is continuous.
- 12. A homeomorphism between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is a continuous bijection $f : M \to N$ with continuous inverse. If such a map exists then (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are said to be homeomorphic.
- 13. If (M, \mathcal{T}) is a topological space, \sim is an equivalence relation on M and $\pi : M \to M/\sim$ is the canonical projection then the **quotient topology** on M/\sim is

$$\mathcal{T}_{\pi} = \{ U \in M / \sim : \pi^{-1}(U) \in \mathcal{T} \}$$

14. An **open cover** for a subset $N \subset M$ of a topological space (M, \mathcal{T}) is a collection $\mathcal{O} \subset \mathcal{T}$ such that

$$N \subset \bigcup_{U \in \mathcal{O}} U.$$

A subcover is a subcollection $\mathcal{O}' \subset \mathcal{O}$ which is still an open cover of N. A set N is said to be **compact** if every open cover of N admits a finite subcover.

- 15. If (M, \mathcal{T}) is Hausdorff and $N \subset M$ is compact then N is closed.
- 16. Heine-Borel theorem: a subset $K \subset \mathbb{R}^n$ is compact (for the usual topology) if and only if it is closed and bounded.
- 17. Continuous maps carry compact sets to compact sets.
- 18. A topological space is said to be **connected** if the only subsets of M which are simultaneously open and closed are \emptyset and M. A subset $N \subset M$ is said to be a **connected subset** if it is a connected topological space for the subspace topology.
- 19. A subset of \mathbb{R} with the usual topology is connected if and only if it is an interval.
- 20. Continuous maps carry connected sets to connected sets.

7. Differential geometry

- 1. A topological manifold of dimension n is a topological space (M, \mathcal{T}) such that:
 - (i) \mathcal{T} is Hausdorff.
 - (ii) \mathcal{T} has a countable basis.
 - (iii) For each $x \in M$ there exists $U \in \mathcal{T}$ with $x \in U$ and a homeomorphism $\varphi : U \to V$ for some open set $V \subset \mathbb{R}^n$.

The pair (U, φ) is called a **local chart**.

- 2. Two local charts (U, φ) and (V, ψ) on an *n*-dimensional topological manifold M are said to be **compatible** if the maps $\psi \circ \varphi^{-1} : \varphi(U \cap V) \subset \mathbb{R}^n \to \psi(U \cap V) \subset \mathbb{R}^n$ and $\varphi \circ \psi^{-1} : \psi(U \cap V) \subset \mathbb{R}^n \to \varphi(U \cap V) \subset \mathbb{R}^n$ are smooth. An **atlas** for M is a family $\mathcal{A} = \{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$ of compatible local charts such that $M = \bigcup_{\alpha \in A} U_\alpha$. Two atlases \mathcal{A} and \mathcal{A}' are said to be **equivalent** if $\mathcal{A} \cup \mathcal{A}'$ is still an atlas. A **differentiable structure** on M is a choice of an equivalence class of atlases. Finally, a **differentiable manifold of dimension** n is a topological manifold of dimension n with a choice of differentiable structure.
- 3. A map $f: M \to N$ between differentiable manifolds is said to be **differentiable**, or **smooth**, if for any choices of local charts (U, φ) on an atlas for M and (V, ψ) on an atlas for N the map $\psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V) \cap U) \subset \mathbb{R}^m \to \psi(V) \subset \mathbb{R}^n$ is smooth. The set of differentiable maps between the differentiable manifolds M and N is represented as $C^{\infty}(M, N)$, and one usually writes $C^{\infty}(M) = C^{\infty}(M, \mathbb{R})$.
- 4. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection f : M → N with a smooth inverse. A local diffeomorphism between two differentiable manifolds M and N is a smooth map f : M → N such that for each x ∈ M there exist open sets U ∋ x and V ∋ f(x) such that f|U : U → V is a diffeomorphism.
- 5. A tangent vector to a differentiable manifold M at a point $p \in M$ is a differential operator $\dot{c}(0): C^{\infty}(M) \to \mathbb{R}$ of the form

$$\dot{c}(0) \cdot f = \frac{d}{dt}_{|_{t=0}} f(c(t)),$$

where $c : \mathbb{R} \to M$ is a differentiable curve with c(0) = p.

6. The set T_pM of all tangent vectors to the *n*-dimensional differentiable manifold M at the point $p \in M$ is a vector space of dimension n, called the **tangent space** to M at p. If (U, φ) is a local chart with $p \in U$, corresponding to the local coordinates (x^1, \ldots, x^n) , a basis for T_pM is

$$\left\{\frac{\partial}{\partial x^1}_{|_p},\ldots,\frac{\partial}{\partial x^n}_{|_p}\right\},\,$$

where

$$\frac{\partial}{\partial x^i}|_p = \dot{c}_i(0), \qquad c_i(t) = \varphi^{-1}(x^1(p), \dots, x^i(p) + t, \dots, x^n(p)).$$

If $\dot{c}(0) \in T_pM$ is a tangent vector with $\varphi(c(t)) = (x^1(t), \dots, x^n(t))$ then

$$\dot{c}(0) = \sum_{i=1}^{n} \dot{x}^{i}(0) \frac{\partial}{\partial x^{i}}_{|_{p}}.$$

7. If $f: M \to N$ is a differentiable map then the **derivative** of f at the point $p \in M$ is the linear map $(df)_p: T_pM \to T_{f(p)}N$ given by

$$(df)_p(\dot{c}(0)) = \frac{d}{dt}_{|_{t=0}} f(c(t)).$$

If (U,φ) is a local chart on M with $p \in U$, corresponding to the local coordinates (x^1,\ldots,x^n) , and (V,ψ) is a local chart on N with $f(p) \in V$, corresponding to the local coordinates (y^1,\ldots,y^m) , then

$$(df)_p\left(\sum_{i=1}^n v^i \frac{\partial}{\partial x^i}_{|_p}\right) = \sum_{j=1}^m \left(\sum_{i=1}^n \frac{\partial \hat{f}^j}{\partial x^i} v^i\right) \frac{\partial}{\partial y^j}_{|_{f(p)}}$$

where $\hat{f} = \psi \circ f \circ \varphi^{-1}$ is the local representation of f in the local coordinates (x^1, \ldots, x^n) on M and (y^1, \ldots, y^m) on N.

8. The **cotangent space** to an *n*-dimensional differentiable manifold M at as point $p \in M$ is

$$T_p^*M = (T_pM)^* = \{\alpha : T_pM \to \mathbb{R} : \alpha \text{ is linear } \}.$$

The set T_p^*M is itself an *n*-dimensional vector space, with basis

$$\left\{(dx^1)_p,\ldots,(dx^n)_p\right\}$$

satisfying

$$(dx^i)_p \left(\frac{\partial}{\partial x^j}_{|_p}\right) = \delta_{ij}$$

(dual basis).

9. The tangent bundle of an *n*-dimensional differentiable manifold M is $TM = \bigcup_{p \in M} T_p M$. The natural projection is the map $\pi : TM \to M$ defined as $\pi(v) = p$ for $v \in T_p M$. For each local chart (U, φ) of M we define the local chart $(\pi^{-1}(U), \tilde{\varphi})$ of TM by

$$\tilde{\varphi}(x^1,\ldots,x^n,v^1,\ldots,v^n) = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}_{|_{\varphi^{-1}(x^1,\ldots,x^n)}}$$

These charts fom an atlas for TM (with the appropriate topology) giving it the structure of a 2n-dimensional manifold.

- 10. A vector field on M is a smooth map $X : M \to TM$ such that $X_p \equiv X(p) \in T_pM$ for all $p \in M$, that is, such that $\pi \circ X = id_M$ (such maps are called sections of the tangent bundle). The set of vector fields on M is denoted by $\mathfrak{X}(M)$.
- 11. The **cotangent bundle** of an *n*-dimensional differentiable manifold M is $T^*M = \bigcup_{p \in M} T_p^*M$. The **natural projection** is the map $\pi : T^*M \to M$ defined as $\pi(\alpha) = p$ for $\alpha \in T_p^*M$. For each local chart (U, φ) of M we define the local chart $(\pi^{-1}(U), \tilde{\varphi})$ of T^*M by

$$\tilde{\varphi}(x^1,\ldots,x^n,p_1,\ldots,p_n) = \sum_{i=1}^n p_i(dx^i)_{\varphi^{-1}(x^1,\ldots,x^n)}$$

These charts fom an atlas for T^*M (with the appropriate topology) giving it the structure of a 2n-dimensional manifold.

- 12. A covector field on M is a smooth map $\alpha : M \to T^*M$ such that $\alpha_p \equiv \alpha(p) \in T_p^*M$ for all $p \in M$, that is, such that $\pi \circ \alpha = \mathrm{id}_M$ (such maps are called sections of the cotangent bundle).
- 13. A covariant k-tensor on T_pM is a multilinear map $T: (T_pM)^k \to \mathbb{R}$.
- 14. If T is a covariant k-tensor on T_pM and S is a covariant l-tensor on T_pM then their **tensor** product is the covariant (k + l)-tensor $T \otimes S$ defined by

$$(T \otimes S)(v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+l}) = T(v_1, \ldots, v_k)S(v_{k+1}, \ldots, v_{k+l}).$$

15. If M is an n-dimensional differentiable manifold then the vector space of covariant k-tensors on T_pM has dimension n^k , and a basis is

$$\left\{ (dx^{i_1})_p \otimes \cdots \otimes (dx^{i_k})_p \right\}_{i_1,\dots,i_k=1}^n$$

If T is a covariant k-tensor on T_pM then

$$T = \sum_{i_1,\dots,i_k=1}^n T_{i_1\dots i_k} (dx^{i_1})_p \otimes \dots \otimes (dx^{i_k})_p,$$

where

$$T_{i_1\dots i_k} = T\left(\frac{\partial}{\partial x^{i_1}}_{|_p}, \dots, \frac{\partial}{\partial x^{i_k}}_{|_p}\right)$$

16. There is a canonical identification $(T_p^*M)^* \cong T_pM$ through

$$v(\alpha) = \alpha(v)$$

for all $v \in T_pM$ and all $\alpha \in T_p^*M$.

17. A mixed tensor of type (k, l) (or k times covariant and l times contravariant) on T_pM is a multilinear map $T : (T_pM)^k \times (T_p^*M)^l \to \mathbb{R}$. If M is an n-dimensional differentiable manifold then the vector space $T_p^{(k,l)}M$ of tensors of type (k, l) on T_pM has dimension n^{k+l} , and a basis is

$$\left\{ (dx^{i_1})_p \otimes \cdots \otimes (dx^{i_k})_p \otimes \frac{\partial}{\partial x^{j_1}}_{|_p} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}}_{|_p} \right\}_{i_1, \dots, i_k, j_1, \dots, j_l = 1}^n.$$

If T is a mixed tensor of type (k, l) on T_pM then

$$T = \sum_{i_1,\dots,i_k,j_1,\dots,j_l=1}^n T^{j_1,\dots,j_l}_{i_1\dots i_k} (dx^{i_1})_p \otimes \dots \otimes (dx^{i_k})_p \otimes \frac{\partial}{\partial x^{j_1}}_{|_p} \otimes \dots \otimes \frac{\partial}{\partial x^{j_l}}_{|_p},$$

where

$$T_{i_1...,i_k}^{j_1,...,j_l} = T\left(\frac{\partial}{\partial x^{i_1}}_{|_p},\ldots,\frac{\partial}{\partial x^{i_k}}_{|_p},(dx^{j_1})_p,\ldots(dx^{j_l})_p\right)$$

- 18. The **bundle of mixed tensors of type** (k, l) on an *n*-dimensional differentiable manifold is the set $T^{(k,l)}M = \bigcup_{p \in M} T_p^{(k,l)}M$. This set is a differentiable manifold of dimension $n + n^{k+l}$ in the obvious way.
- 19. A mixed tensor field of type (k, l) on M is a section of $T^{(k,l)}M$.

- 20. A **Riemannian metric** on a differentiable manifold M is a covariant 2-tensor field g satisfying:
 - (i) Symmetry: $g_p(v, w) = g_p(w, v)$ for all $v, w \in T_pM$ and all $p \in M$.
 - (ii) **Positivity:** $g_p(v,v) > 0$ for all $v \in T_pM \setminus \{0\}$ and all $p \in M$.

The **length** of a curve $c : [t_0, t_1] \to M$ is then defined as

$$l(c) = \int_{t_0}^{t_1} \sqrt{g(\dot{c}(t), \dot{c}(t))} dt.$$

- 21. An integral curve of a vector field $X \in \mathfrak{X}(M)$ is a smooth curve $c : (-\varepsilon, \varepsilon) \to M$ satisfying $\dot{c}(t) = X_{c(t)}$ for all $t \in (-\varepsilon, \varepsilon)$.
- 22. Given $X \in \mathfrak{X}(M)$ and $p \in M$ there exists an open neighborhood $U \ni p$ and a smooth map $\phi^X : (-\varepsilon, \varepsilon) \times U \to M$ satisfying

$$\begin{cases} \frac{\partial \phi^X}{\partial t}(t,q) = X_{\phi^X(t,q)} \text{ for all } t \in (-\varepsilon,\varepsilon) \text{ and } q \in U, \\ \phi^X(0,q) = q \text{ for all } q \in U, \end{cases}$$

called the **local flow** of X. The map $\phi_t^X : U \to \phi_t^X(U)$ defined as $\phi_t^X(q) = \phi^X(t,q)$ is a diffeomorphism for all $t \in (-\varepsilon, \varepsilon)$. If ϕ^X is defined on $\mathbb{R} \times M$ the X is said to be **complete**.

23. Any vector field $X \in \mathfrak{X}(M)$ can be interpreted as a linear operator $X : C^{\infty}(M) \to C^{\infty}(M)$ bu defining $(X \cdot f)(p) = X_p \cdot f$. If $X, Y \in \mathfrak{X}(M)$ then their commutator [X, Y] as linear operators, called their **Lie bracket**, is still a vector field. If (U, φ) is a local chart and

$$X_p = \sum_{i=1}^n X^i(p) \frac{\partial}{\partial x^i}_{|_p}, \qquad Y_p = \sum_{i=1}^n Y^i(p) \frac{\partial}{\partial x^i}_{|_p}$$

for smooth functions $X^i,Y^i:U\to \mathbb{R}$ then

$$[X,Y]_p = \sum_{i=1}^n (X_p \cdot Y^i - Y_p \cdot X^i) \frac{\partial}{\partial x^i}_{|_p}.$$

8. Lie groups and Lie algebras

- A Lie algebra over a field K (usually R or C) is a pair (A, [·, ·]), where A is a vector space over K and [·, ·] : A × A → A is a binary operation satisfying:
 - (i) Antisymmetry: [X, Y] = -[Y, X] for all $X, Y \in A$.
 - (ii) **Bilinearity:** [aX + bY, Z] = a[X, Z] + b[Y, Z] for all $X, Y \in A$ and $a, b \in \mathbb{K}$.
 - (iii) Jacobi identity: [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 for all $X, Y, Z \in A$.
- 2. If (A, \circ) is an **associative algebra**, that is, a vector space with a bilinear binary operation $\circ : A \times A \to A$ such that $(X \circ Y) \circ Z = X \circ (Y \circ Z)$ for all $X, Y, Z \in A$ then $(A, [\cdot, \cdot])$ is a Lie algebra for $[A, B] = A \circ B B \circ A$.
- 3. A linear map $\phi : \mathfrak{g} \to \mathfrak{h}$ between two Lie algebras \mathfrak{g} and \mathfrak{h} is called a Lie algebra homomorphism if

$$\phi([X,Y]) = [\phi(X),\phi(Y)]$$

for all $X, Y \in \mathfrak{g}$. If ϕ is a bijection then it is called a **Lie algebra isomorphism**.

- 4. A subspace $\mathfrak{h} \subset \mathfrak{g}$ of a Lie algebra \mathfrak{g} is called a Lie subalgebra if $[X, Y] \in \mathfrak{h}$ for all $X, Y \in \mathfrak{h}$. A subalgebra $\mathfrak{i} \subset \mathfrak{g}$ is called an **ideal** if $[X, Y] \in \mathfrak{i}$ for all $X \in \mathfrak{i}$ and $Y \in \mathfrak{g}$.
- 5. If \mathfrak{g} is a Lie algebra and $\mathfrak{i} \subset \mathfrak{g}$ is an ideal the the quotient $\mathfrak{g}/\mathfrak{i}$ (as an abelian group) is a Lie algebra for the multiplication by scalars defined as

$$a\pi(X) = \pi(aX)$$

and the Lie bracket

$$[\pi(X), \pi(Y)] = \pi([X, Y])$$

where $\pi : \mathfrak{g} \to \mathfrak{g}/\mathfrak{i}$ is the quotient map.

- 6. Isomorphism Theorem: If $\phi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism then:
 - (i) $im(\phi) \subset \mathfrak{h}$ is a subalgebra.
 - (ii) $\ker(\phi) \subset \mathfrak{g}$ is an ideal.
 - (iii) The map $\tilde{\phi} : \mathfrak{g}/\ker(\phi) \to \operatorname{im}(\phi)$ given by $\tilde{\phi}(\pi(X)) = \phi(X)$ is a Lie algebra isomorphism.
- 7. A **Lie group** is a smooth manifold G which is also a group such that the maps $\mu : G \times G \to G$ and $\iota : G \to G$ defined as $\mu(g, h) = gh$ and $\iota(g) = g^{-1}$ are smooth.
- 8. Any topologically closed subgroup $G \subset GL(n, \mathbb{R})$ is a Lie group. Examples are:
 - (i) $GL(n,\mathbb{R})$.
 - (ii) $SL(n,\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : \det A = 1\}.$
 - (iii) $O(n) = \{A \in M_{n \times n}(\mathbb{R}) : A^t A = I\}.$
 - (iv) $SO(n) = \{A \in O(n) : \det A = 1\}.$
 - (v) $U(n) = \{A \in M_{n \times n}(\mathbb{C}) : A^*A = I\}.$
 - (vi) $SU(n) = \{A \in U(n) : \det A = 1\}.$
- 9. A Lie group homomorphism is a homomorphism $\varphi : G \to H$ between Lie groups which is also a diffeomorphism. A Lie group isomorphism is a bijective Lie group homomorphism.
- 10. If $f: M \to N$ is a diffeomorphism and $X \in \mathfrak{X}(M)$ then the **pushforward** of X by f is the vector field $f_*X \in \mathfrak{X}(N)$ defined by $(f_*X)_p = (df)_{f^{-1}(p)}X_{f^{-1}(p)}$. If $X, Y \in \mathfrak{X}(M)$ then $f_*[X,Y] = [f_*X, f_*Y]$.

- 11. Let G be a Lie group. A vector field $X \in \mathfrak{X}(G)$ is said to be **left-invariant** if $(L_g)_*X = X$ for all $g \in G$. For each $V \in T_eG$, the vector field X^V defined as $X_g = (dL_g)_eV$ is left-invariant, and in fact the map $V \mapsto X^V$ is a linear isomorphism between T_eG and the space $X^L(G)$ of left-invariant vector fields.
- 12. Given a Lie group G, the subspace $\mathfrak{X}^{L}(G) \subset \mathfrak{X}(G)$ is a Lie subalgebra. The Lie algebra of G is $\mathfrak{g} = T_e G$ with the induced Lie bracket $[V, W] = [X^V, X^W]_e$.
- 13. We have $\mathfrak{gl}(n,\mathbb{R}) = M_{n\times n}(\mathbb{R})$ with the bracket [A,B] = AB BA. The same bracket works for any matrix Lie group $G \subset GL(n,\mathbb{R})$.
- 14. If $V \in \mathfrak{g}$ then $X^V \in X^L(G)$ is complete. We define the **exponential map** $\exp : \mathfrak{g} \to G$ as $\exp(V) = \phi_1^{X^V}(e)$, where $\phi_t^{X^V} : G \to G$ is the flow of X^V .
- 15. The map $\exp : \mathfrak{gl}(n,\mathbb{R}) \to GL(n,\mathbb{R})$ is given by $\exp(A) = e^A = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$. The same formula works for any matrix Lie group $G \subset GL(n,\mathbb{R})$.
- 16. If $G \subset GL(n, \mathbb{R})$ is a matrix Lie group with Lie algebra \mathfrak{g} then $A \in \mathfrak{g}$ if and only if $e^{tA} \in G$ for all $t \in \mathbb{R}$. In particular:
 - (i) $\mathfrak{gl}(n,\mathbb{R}) = M_{n \times n}(\mathbb{R}).$
 - (ii) $\mathfrak{sl}(n,\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : \operatorname{tr} A = 0\}.$
 - (iii) $\mathfrak{o}(n) = \{A \in M_{n \times n}(\mathbb{R}) : A^t = -A\}.$
 - (iv) $\mathfrak{so}(n) = \mathfrak{o}(n)$.
 - (v) $\mathfrak{u}(n) = \{A \in M_{n \times n}(\mathbb{C}) : A^* = -A\}.$
 - (vi) $\mathfrak{su}(n) = \{A \in \mathfrak{u}(n) : \operatorname{tr} A = 0\}.$
- 17. Let M be a topological space and $x_0 \in M$. The **fundamental group** of M with base point x_0 is

 $\pi_1(M, x_0) = \{c : [0, 1] \to M \text{ continuous with } c(0) = c(1) = x_0\} / \sim,$

where $c_0 \sim c_1$ if and only if they are **homotopic with base point** x_0 , that is, if there exists a continuous map $H : [0,1] \times [0,1] \rightarrow M$ such that $H(t,0) = c_0(t)$, $H(t,1) = c_1(t)$ and $H(0,s) = H(1,s) = x_0$ for all $t, s \in [0,1]$. The group operation is $[c_0] \cdot [c_1] = [c_0 * c_1]$, where

$$c_0 * c_1 = \begin{cases} c_0(2t) \text{ for } t \in [0, \frac{1}{2}] \\ c_1(2t-1) \text{ for } t \in [\frac{1}{2}, 1] \end{cases}$$

If M is **path-connected**, that is, if for every $x, y \in M$ there exists a continuous path $c : [0,1] \to M$ such that c(0) = x and c(1) = y, then the fundamental group does not depend on the base point. Finally, M is said to be **simply connected** if it is path-connected and $\pi_1(M) = \{e\}$.

18. Lie's Theorem: Given a finite-dimensional real Lie algebra \mathfrak{g} , there exists a unique simply connected Lie group \widetilde{G} with Lie algebra \mathfrak{g} . If G is any other Lie group with Lie algebra \mathfrak{g} , then there exists a discrete subgroup D of $Z(\widetilde{G})$ (the center of \widetilde{G}) such that $G \cong \widetilde{G}/D$, and $\pi_1(G) \cong D$ (where \widetilde{G}/D is given the natural differentiable structure).

9. Representations of Lie algebras

- 1. A Lie algebra \mathfrak{g} is called **simple** if dim $\mathfrak{g} > 1$ and \mathfrak{g} does not have nontrivial ideals. A Lie algebra \mathfrak{g} is called **semisimple** if $\mathfrak{g} = \mathfrak{g}_1 \otimes \ldots \otimes \mathfrak{g}_s$ for simple Lie algebras $\mathfrak{g}_1, \ldots, \mathfrak{g}_s$ (where the bracket it the direct sum is defined in the obvious way).
- 2. A representation of the Lie algebra \mathfrak{g} on a vector space V is a Lie algebra homomorphism $\pi : \mathfrak{g} \to L(V)$, where L(V) is the space of linear transformations of V with the commutator. The representation is called **irreducible** if V does not contain nontrivial invariant subspaces.
- 3. The adjoint representation $ad : \mathfrak{g} \to L(\mathfrak{g})$ is defined as $ad_X(Y) = [X, Y]$ for all $X, Y \in \mathfrak{g}$.
- The Killing form on a Lie algebra g over K (where K = R or K = C) is the bilinear form
 B: g × g → K given by B(X, Y) = tr(ad_X ad_Y).
- 5. Cartan's Theorem: A Lie algebra g is semisimple if and only if its Killing form B is nondegenerate (that is, if and only if B(X,Y) = 0 for all Y ∈ g implies X = 0). Moreover, if g is a real Lie algebra then B is negative definite if and only if g is semisimple and is the Lie algebra of a compact Lie group.
- 6. The complexification of a real Lie algebra g is the complex vector space g_C consisting of elements of the form X + iY with X, Y ∈ g with the obvious operations. A real subalgebra h ⊂ g is called a real form of the complex Lie algebra g if g ≃ h_C.
- 7. The structure constants associated to a basis $\{X_1, \ldots, X_n\}$ of a Lie algebra \mathfrak{g} are the scalars C_{ij}^k such that

$$[X_i, X_j] = \sum_{k=1}^n C_{ij}^k X_k.$$

Finding a real form of a complex Lie algebra \mathfrak{g} amounts to finding a basis with real structure constants.

- 8. Any complex semisimple Lie algebra g contains a unique (up to isomorphism) real form t whose Killing form is definite negative (called a **compact real form**). Moreover, there is a one-to-one correspondence between finite-dimensional irreducible representations of g and unitary irreducible representations of the simply connected compact group K whose Lie algebra is the compact real form t.
- 9. Every complex semisimple algebra g has a Cartan subalgebra, that is, a maximal abelian subalgebra h ⊂ g such that ad_H are simultaneously diagonalizable for all H ∈ h. Therefore we have the root decomposition

$$\mathfrak{g} = \mathfrak{h} \otimes \mathfrak{g}_{\alpha_1} \otimes \ldots \oplus \mathfrak{g}_{\alpha_s},$$

where the covectors $\alpha_1, \ldots, \alpha_s \in \mathfrak{h}^*$, called the **roots**, satisfy

$$\operatorname{ad}_H(X) = \alpha_i(H)X$$

for all $X \in \mathfrak{g}_{\alpha_i}$. The **rank** of \mathfrak{g} is $\operatorname{rank}(\mathfrak{g}) = \dim(\mathfrak{h})$.

10. A Cartan subalgebra h ⊂ g always contains a real subspace h_ℝ, with real dimension equal to rank(g), such that the roots can be seen as elements of h_ℝ^{*}. Moreover, the Killing form B restricts to a real inner product on h_ℝ, an so the linear isomorphism Φ : h_ℝ → h_ℝ^{*} defined by Φ(X)(Y) = B(X,Y) induces an inner product on h_ℝ^{*}. It turns out that the geometry of the roots relative to this inner product is highly constrained.

- 11. The finite-dimensional simple complex Lie algebras are:
 - (i) $\mathfrak{sl}(n+1,\mathbb{C})$ for $n \ge 1$;
 - (ii) $\mathfrak{so}(2n+1,\mathbb{C})$ for $n \geq 2$;
 - (iii) $\mathfrak{sp}(n,\mathbb{C})$ for $n \geq 3$ (the symplectic Lie algebras);
 - (iv) $\mathfrak{so}(2n,\mathbb{C})$ for $n \geq 4$;
 - (v) \mathfrak{e}_6 , \mathfrak{e}_7 , \mathfrak{e}_8 , \mathfrak{f}_4 and \mathfrak{g}_2 (the exceptional Lie algebras).
- 12. There exist $r = \operatorname{rank}(\mathfrak{g})$ roots $\alpha_1, \ldots, \alpha_r$, called **simple roots**, such that any root α can be written as

$$\alpha = \sum_{i=1}^{r} n_i \alpha_i$$

with all $n_i \in \mathbb{Z}_0^-$ or with all $n_i \in \mathbb{Z}_0^+$.

The fundamental weights associated to a given choice α₁,..., α_r of simple roots are the covectors λ₁,..., λ_r ∈ β^{*}_ℝ defined by

$$2\frac{\langle\lambda_i,\alpha_j\rangle}{\langle\alpha_j,\alpha_j\rangle} = \delta_{ij}$$

for i, j = 1, ..., r. The weight lattice is $\Lambda^w = \operatorname{span}_{\mathbb{Z}} \{\lambda_1, ..., \lambda_r\}$, and the dominant weights are the elements of $\Lambda^w_+ = \operatorname{span}_{\mathbb{Z}^+} \{\lambda_1, ..., \lambda_r\}$.

- 14. Highest weight theorem: If $\pi : \mathfrak{g} \to L(V)$ is an irreducible finite-dimensional representation of the complex semisimple Lie algebra \mathfrak{g} then:
 - (i) The linear transformations in

$$\pi(\mathfrak{h}) = \{\pi(H) : H \in \mathfrak{h}\}$$

are simultaneously diagonalizable, so that

$$V = \bigoplus_{\lambda \in \Lambda^w} V_\lambda$$

with $\pi(H)v = \lambda(H)v$ for all $H \in \mathfrak{h}$ and $v \in V_{\lambda}$. Here $V_{\lambda} = \{0\}$ except for finitely many $\lambda \in \Lambda^w$, called the **weights** of the representation.

- (ii) There exists a **highest weight** $\lambda_{\max} \in \Lambda^w$ such that:
 - 1. dim $V_{\lambda_{\max}} = 1$.
 - 2. $\pi(X_{\alpha})v = 0$ for all $v \in V_{\lambda_{\max}}$ and $X_{\alpha} \in \mathfrak{g}_{\alpha}$ with α a positive root.
 - 3. $V = \operatorname{span}_{\mathbb{C}} \left\{ \pi(X_{-\alpha_{i_1}}) \circ \cdots \circ \pi(X_{-\alpha_{i_s}}) v_{\lambda_{\max}} : s \in \mathbb{N}, i_1, \dots, i_s \in \{1, \dots, r\} \right\},$ where $X_{\alpha_i} \in \mathfrak{g}_{\alpha_i}$ and $v_{\lambda_{\max}} \in V_{\lambda_{\max}} \setminus \{0\}.$
- (iii) All weights of π are of the form $\lambda_{\max} m_1 \alpha_1 \ldots m_r \alpha_r$ with $m_1, \ldots, m_r \in \mathbb{Z}_0^+$.
- (iv) For every dominant weight $\lambda \in \Lambda^w_+$ there exists a unique (up to equivalence) irreducible finite-dimensional representation of \mathfrak{g} with highest weight λ .
- 15. If $G \stackrel{\varphi}{\sim} V$ and $G \stackrel{\psi}{\sim} W$ are finite-dimensional representations of a group G then their **tensor product** is the representation $G \stackrel{\varphi \otimes \psi}{\sim} V \otimes W$ determined by

$$(\varphi \otimes \psi)_g(v \otimes w) = \varphi_g(v) \otimes \psi_g(w)$$

for all $g \in G$, $v \in V$ and $w \in W$.

16. If $\pi : \mathfrak{g} \to L(V)$ and $\rho : \mathfrak{g} \to L(W)$ are finite-dimensional representations of a Lie algebra \mathfrak{g} then their **tensor product** is the representation $\pi \otimes \rho : \mathfrak{g} \to L(V \otimes W)$ determined by

 $(\pi \otimes \rho)(X)(v \otimes w) = \pi(X)(v) \otimes w + v \otimes \rho(X)(w)$

for all $X \in \mathfrak{g}$, $v \in V$ and $w \in W$.