Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

1. Set Theory

- 1. A relation on a set A is a subset $\mathcal{R} \subset A \times A$. We say that $x \in A$ is related to $y \in A$ if $(x, y) \in \mathcal{R}$, and we write $x \mathcal{R} y$.
- 2. An equivalence relation is a relation R on a set A satisfying the following three properties:
	- (i) Reflexivity: $x \mathcal{R} x$ for all $x \in A$;
	- (ii) Symmetry: If $x\mathcal{R}y$ the $y\mathcal{R}x$ for all $x, y \in A$;
	- (iii) **Transitivity:** If $x \mathcal{R} y$ and $y \mathcal{R} z$ then $x \mathcal{R} z$ for all $x, y, z \in A$;
	- If R is an equivalence relation then we write $x \sim y$ to mean $x \mathcal{R} y$.
- 3. If \sim is an equivalence relation on A and $x \in A$ then the **equivalence class** of x is the set

$$
[x] = \{ y \in A : y \sim x \} \subset A.
$$

- 4. A **partition** of a set A is a family $\{A_i\}_{i\in I}$ of subsets of A such that:
	- (i) $\bigcup_{i \in I} A_i = A;$
	- (ii) If $i \neq j$ then $A_i \cap A_j = \emptyset$.
- 5. The equivalence classes of an equivalence relation on A form a partition of A; conversely, given a partition of A there exists an equivalence relation on A whose equivalence classes are precisely the subsets of the partition.
- 6. The quotient set of A by an equivalence relation \sim is the set A/\sim of its equivalence classes. The quotient map, or canonical projection, is the map $\pi : A/\sim \to A$ defined as $\pi(x) = [x]$ for all $x \in A$.

2. Groups

- 1. A binary operation on a set A is a map $f : A \times A \rightarrow A$. We often write $f(x, y) = x \cdot y = xy$ for $x, y \in A$.
- 2. A group is a pair (G, \cdot) , where G is a set and $\cdot : G \times G \to G$ is a binary operation satisfying:
	- (i) **Associativity:** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for all $x, y, z \in G$;
	- (ii) Existence of identity: There exists $e \in G$ such that $e \cdot x = x \cdot e = x$ for all $x \in G$;
	- (iii) Existence of inverses: For each $x \in G$ there exists $y \in G$ such that $y \cdot x = x \cdot y = e$ for all $x, y \in G$.
- 3. If (G, \cdot) is a group then:
	- (i) The identity element $e \in G$ is unique;
	- (ii) Each element $x \in G$ has a unique inverse $x^{-1} \in G$.
- 4. A group (G, \cdot) is called **abelian** if the group operation \cdot is commutative, that is, if $x \cdot y = y \cdot x$ for all $x,y\in G.$ In this case we often write $x\cdot y=x+y, \, e=0$ and $x^{-1}=-x.$
- 5. The **order** of a group G is the number of elements in G, and is represented as $|G|$.
- 6. If \overline{A} is a set the its **permutation group** is the set

$$
\mathrm{Sym}(A)=\{f:A\to A:f \text{ is bijective }\}
$$

with the composition operation.

- 7. The symmetric group on $n \in \mathbb{N}$ elements is the group $S_n = \text{Sym}(\{1, ..., n\})$. It is nonabelian for $n > 2$, and $|S_n| = n!$.
- 8. A subset $H \subset G$ of a group G is called a **subgoup** if H is itself a group under the group operation of G , or, equivalently, if:
	- (i) $xy \in H$ for all $x, y \in H$;
	- (ii) $e \in H$:
	- (iii) $x^{-1} \in H$ for all $x \in H$.
- 9. If $q \in G$ and H is a subgroup of G then the **left coset** determined by q and H is the set

$$
gH = \{gh : h \in H\}.
$$

The set G/H of all left cosets forms a partition of G, and the corresponding equivalence relation is given by

$$
g_1 \sim g_2 \Leftrightarrow g_1^{-1} g_2 \in H.
$$

- 10. Lagrange's Theorem: If G is a finite group and $H \subset G$ is a subgroup then $|H|$ is a divisor of $|G|$.
- 11. The index of a subgroup H on a group G is the number $[G:H]$ of left cosets. If G is finite then $[G:H] = |G|/|H|$.
- 12. A subgroup H of a group G is called a **normal subgroup** if $ghq^{-1} \in H$ for all $q \in G$ and $h \in H$. In that case, the set G/H of cosets forms a group under the operation $(g_1H)(g_2H) = (g_1g_2)H$ for all $g_1, g_2 \in G$ (called the **quotient group**).
- 13. For each $d \in \mathbb{N}$ the group of **integers mod** d is $\mathbb{Z}_d = \mathbb{Z}/d\mathbb{Z}$. We write $a \equiv b \pmod{d}$ to signify that $a, b \in \mathbb{Z}$ satisfy $[a] = [b]$ in \mathbb{Z}_d .
- 14. A map $\varphi: G \to H$ between two groups is called a **homomorphism** if $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$ for all $g_1, g_2 \in G$. An **isomorphism** is a bijective homomorphism. If $\varphi : G \to H$ is an isomorphism then G and H are said to be **isomorphic**.
- 15. If $\varphi : G \to H$ is a homomorphism then:

$$
(i) \ \varphi(e_G) = (e_H);
$$

- (ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$.
- 16. The composition of homomorphisms is again a homomorphism.
- 17. **Isomorphism Theorem:** If φ : $G \to H$ is a homomorphism then:
- (i) Im φ is a subgroup of H;
- (ii) ker φ is a normal subgroup of G;
- (iii) The map $\tilde{\varphi}: G/\ker \varphi \to \text{Im }\varphi$ defined by $\tilde{\varphi}([g]) = \varphi(g)$ is an isomorphism.
- 18. If G is a group and $q \in G$ then the subgroup generated by q is

$$
\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}
$$

(where g^n has the obvious meaning). The **order** of g is $\text{ord}(g) = |\langle g \rangle|$. If $\text{ord}(g) = d$ then $\langle g \rangle \cong \mathbb{Z}_d$, and if $\text{ord}(g) = \infty$ then $\langle g \rangle \cong \mathbb{Z}$. If $G = \langle g \rangle$ for some $g \in G$ then G is said to be cyclic.

19. If G and H are groups then $G \times H$ is also a group with the operation defined by the formula $(q_1, h_1) \cdot (q_2, h_2) = (q_1 q_2, h_1 h_2).$

3. Rings and number theory

- 1. A ring $(R, +, \cdot)$ is a set equipped with two binary operations such that $(R, +)$ is an abelian group and \cdot is associative, has an identity 1 and is **distributive** with respect to $+$, that is, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in R$.
- 2. A ring $(R, +, \cdot)$ is called **commutative** if \cdot is commutative.
- 3. On a ring $(R, +, \cdot)$ we have $a \cdot 0 = 0 \cdot a = 0$, for any $a \in R$. If $a, b \in R \setminus \{0\}$ are such that $ab = 0$ then a and b are called zero divisors.
- 4. An element $a \in R$ on a ring $(R, +, \cdot)$ is called **invertible** if there exists $b \in R$ such that $ab=ba=1$, in which case we write $b=a^{-1}.$ The set R^* of all invertible elements is a group for the multiplication.
- 5. A field is a commutative ring $(R, +, \cdot)$ such that $R^* = R \setminus \{0\}$.
- 6. $(\mathbb{Z}_d, +, \cdot)$ is a commutative ring for the multiplication given by $[m] \cdot [n] = [mn]$.
- 7. $\mathbb{Z}_d^* = \{[n]: \gcd(n,d) = 1\}$. In particular, \mathbb{Z}_d is a field if and only if d is prime.
- 8. The Euler function $\varphi : \mathbb{N} \to \mathbb{N}$ is defined as

$$
\varphi(n) = |\{m \in \mathbb{N} : m \le n \text{ and } \gcd(m, n) = 1\}|,
$$

so that $|\mathbb{Z}_d^*| = \varphi(d)$. If $\gcd(m,n) = 1$ then $\varphi(m,n) = \varphi(m)\varphi(n)$, and so if $n = p_1^{r_1} \cdots p_k^{r_k}$ with p_1, \ldots, p_k distinct prime numbers then $\varphi(n) = (p_1^{r_1} - p_1^{r_1-1}) \cdots (p_k^{r_k} - p_1^{r_k-1}).$

- 9. Euler's Theorem: If $\gcd(a, d) = 1$ then $a^{\varphi(d)} \equiv 1 \pmod{d}$.
- 10. Chinese Remainder Theorem: If n_1, \ldots, n_k are coprime and $N = n_1 \cdot n_k$ then the map

$$
\mathbb{Z}_N \ni [m] \mapsto ([m], \ldots, [m]) \in \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}
$$

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order $|G|$ = $p_1^{r_1}\cdots p_k^{r_k}$ with p_1,\ldots,p_k distinct prime numbers then

$$
G \cong G_1 \times \cdots \times G_k,
$$

where $|G_i|=p_i^{r_i}$ for each $i\in\{1,\ldots,k\}$. Moreover, there exists a unique nondecreasing sequence $a_i^1,\ldots,a_i^\ell\in\mathbb{N}$ with $a_i^1+\cdots+a_i^\ell=r_i$ such that

$$
G_i \cong \mathbb{Z}_{a_i^1} \times \cdots \times \mathbb{Z}_{a_i^{\ell}}
$$

.

12. RSA public key encryption: Two (large) distinct prime numbers p and q are chosen, and the number $N = pq$ is published, along with an encryption exponent e, chosen such that $\gcd(\varphi(N),e)=1.$ To encrypt a message $[X]\in \mathbb{Z}_N$ the sender simply computes $[X]^e.$ To decrypt the message the receiver uses the fact that $([X]^e)^d = [X]$, where the $\operatorname{\mathbf{decryption}}$ exponent d is such that $[d] = [e]^{-1}$ in $\mathbb{Z}_{\varphi(N)}$. The security of this system relies on the fact that obtaining the descryption exponent requires knowledge of $\varphi(N) = (p-1)(q-1)$, which would involve factorizing N, a very hard task for p and q large enough.

4. Group actions

- 1. An $\mathop{{\sf action}} G \stackrel{\varphi}{\curvearrowright} M$ of a group G on a set M is a homomorphism $\varphi: G \to \mathrm{Sym}(M)$ (we write $\varphi(g) = \varphi_g$. The action is called **effective** if ker $(\varphi) = \{e\}.$
- 2. If $G \stackrel{\varphi}{\wedge} M$ is an action of a group G on a set M then:
	- (i) The **orbit** of a point $x \in M$ is the set

$$
\varphi_G(x) = \{\varphi_g(x) : g \in G\}.
$$

The set of all orbits is denoted M/G , and is a partition of M.

(ii) The stabilizer of a set $X \subset M$ is the subgroup of G defined by

$$
G_X = \{ g \in G : \varphi_g(X) = X \}.
$$

The isotropy subgroup of $x \in M$ is just $G_x = G_{\{x\}}$.

- (iii) A point $x \in M$ is called a **fixed point** of the action if $G_x = G$. The set of all fixed points of the action is denoted by M^G .
- 3. The **dihedral group on order** n is the group D_n defined by two generators r and s together with the relations

$$
r^n = e, \qquad s^2 = e, \qquad rs = sr^{-1}.
$$

We have $|D_n|=2n$, since

$$
D_n = \{e, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}.
$$

- 4. An action $G\stackrel{\varphi}{\curvearrowright} M$ is called:
	- (i) Free if $G_x = \{e\}$ for all $x \in M$;
	- (ii) **Transitive** if $\varphi_G(x) = M$ for some (thus all) $x \in M$.
- 5. The **canonical action** of a group G on a space of left cosets G/H is the action $G\stackrel{\varphi^{\rm can}}{\curvearrowright} G/H$ defined by $\varphi_g^{\rm can}([g_1]) = [gg_1].$
- 6. If $G\stackrel{\varphi}{\curvearrowright}M$ and $G\stackrel{\varphi'}{\curvearrowright}M'$ are G -actions then a map $T:M\to M'$ is called:
	- (i) G-equivariant if $T(\varphi_g(x)) = \varphi'_g(T(x))$ for all $g \in G$ and $x \in M$.
	- (ii) An equivalence of G -actions if it is a G -equivariant bijection.
- 7. Any transitive action $G \stackrel{\varphi}{\sim} M$ is equivalent to $G \stackrel{\varphi^{\rm can}}{\curvearrowright} G/G_{x_0},$ where G_{x_0} is the isotropy subgroup of any point $x_0\in M$ and $T_{x_0}: G/G_{x_0}\to M$ given by $T_{x_0}([g])=\varphi_g(x_0)$ is an equivalence of G-actions.
- 8. The $\bf{conjugation\, action\, } G \stackrel{\varphi^c}{\curvearrowright} G$ is the action of G on itself given by $\varphi^c_g(h)=ghg^{-1}.$ The orbits of this action are called **conjugacy classes**. The set $Z(G)$ of fixed points of this action is called the center of G , and is a subgroup (subgroup of the elements in G which commute with every other element). The isotropy subgroup $Z(g)$ of a given element $q \in G$ is called the **centralizer** of q (largest subgroup of G which has q in its center). The stabilizer $N(H)$ of a subgroup $H \subset G$ is called the **normalizer** of H (largest subgroup of G which contains H as a normal subgroup).
- 9. If $\{j_1,\ldots,j_k\}\subset\{1,\ldots,n\}$ then $\sigma=(j_1\cdots j_k)\in S_n$ (called a k-cycle) represents the permutation defined by $\sigma(j_r) = j_{r+1}$ for $r \in \{1, ..., k-1\}$, $\sigma(j_k) = j_1$ and $\sigma(j) = j$ for $j \notin \{j_1,\ldots,j_k\}$. This representation is not unique, as $(j_1 j_2 \cdots j_k) = (j_k j_1 \cdots j_{k-1})$. If $\{j_1,\ldots,j_k\}\cap\{j_k,\ldots,j_r\}=\{j_k\}$ then $(j_1\cdots j_k)\circ(j_k\cdots j_r)=(j_1\cdots j_r)$. Every permutation is the product of unique disjoint cycles.
- 10. A 2-cycle is called a **transposition**. A transposition (ij) is called **simple** if $|i-j| = 1$. The set of simple transpositions generates S_n .
- 11. S_n is isomorphic to the group with $n-1$ generators s_1, \ldots, s_{n-1} subject to the following relations:
	- (i) $s_i^2 = e$ for $i = 1, ..., n 1$;
	- (ii) $s_i s_j = s_j s_i$ if $|i j| \geq 2$;
	- (iii) $s_i s_{i+1}$ has order 3 for $i = 1, \ldots, n-2$.
- 12. The sign of a perturbation $\sigma\,\in\, S_n$ is ${\rm sgn}(\sigma)\,=\, (-1)^{n(\sigma)},$ where $n(\sigma)$ is the number of transpositions on any decomposition of σ as a product of transpositions. The map $\operatorname{sgn}\,:\, S_n\, \rightarrow\, {\mathbb Z}^*$ is a group homomorphism, and its kernel A_n is called the a<mark>lternating</mark> **group** (normal subgroup of order $n!/2$).
- 13. A partition of $n \in \mathbb{N}$ is a k -tuple $(i_1, \ldots, i_k) \in \mathbb{N}^k$ where $i_1 \geq \ldots \geq i_k$ and $i_1 + \ldots + i_k = n$.
- 14. The conjugacy classes of S_n are in 1 to 1 correspondence with the partitions of n via

 $D_{(i_1,\ldots,i_k)} = \{\sigma_1 \circ \cdots \circ \sigma_k : \sigma_1, \ldots, \sigma_k \text{ are disjoint cycles of lengths } i_1, \ldots, i_k\}.$

15. $\, {\bf Burnside's} \ {\bf Counting} \ \textbf{Theorem:} \ \, \texttt{Let} \ G \overset{\varphi}{\sim} M \ \texttt{be} \ \texttt{an action} \ \texttt{of} \ \texttt{a} \ \texttt{finite} \ \texttt{group} \ G \ \texttt{on} \ \texttt{a} \ \texttt{finite} \$ set M . Then the number of orbits is

$$
|M/G| = \frac{1}{|G|} \sum_{g \in G} |M^g|,
$$

where M^g is the set of points in M that are fixed by g :

$$
M^g = \{ x \in M : \varphi_g(x) = x \} .
$$

5. Representations of finite groups

1. A **representation** of a group G is an action $G\stackrel{\varphi}{\curvearrowright}V$ on a complex vector space V by linear maps. The **degree** of the representation is $\deg \varphi = \dim V$. If V is finite-dimensional and has an inner product then the representation is called unitary if the maps φ_g are unitary for all $q \in G$.

- 2. An **intertwining map** bewteen two representations $G \stackrel{\varphi}{\curvearrowright} V$ and $G \stackrel{\varphi'}{\curvearrowright} V'$ is a linear equivariant map $T:V\to V'.$ If T is invertible then the representations are said to be **equivalent**.
- 3. An **invariant subspace** for a representation $G \stackrel{\varphi}{\sim} V$ is a subspace $W \subset V$ such that $\varphi_q(W) \subset W$ for all $g \in G$. If the representation is unitary and W is an invariant subspace then W^{\perp} is also an invariant subspace.
- 4. The $\operatorname{\sf direct}$ sum of two given representations $G \stackrel{\varphi}{\curvearrowright} V$ and $G \stackrel{\varphi'}{\curvearrowright} V'$ is the representation $G\stackrel{\varphi\oplus\varphi'}{\curvearrowright} V\oplus V'$ defined as

$$
(\varphi \oplus \varphi')_g(v, v') = (\varphi_g(v), \varphi'_g(v')).
$$

- 5. A representation $G \stackrel{\varphi}{\sim} V$ is said to be **irreducible** if its only invariant subspaces are $\{0\}$ and V .
- 6. Maschke's Theorem: Every finite-dimensional representation of a finite group is equivalent to a direct sum of irreducible representations.
- 7. $\operatorname{\mathsf{Schur'}}$ s Lemma: Let $G\stackrel{\varphi}{\curvearrowright}V$ and $G\stackrel{\psi}{\curvearrowright}W$ be two irreducible finite-dimensional representations of the finite group G, and let $T: V \to W$ be an intertwining map. Then either $T = 0$ ot T is invertible. Moreover, if the two representations coincide then $T = \lambda \, id_V$ for some $\lambda \in \mathbb{C}$.
- 8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.
- 9. The regular representation of a finite group G on $L(G) = \{f : G \to \mathbb{C}\}\$ is defined as

$$
(\varphi_g^{(r)}(f))(h) = f(g^{-1}h)
$$

for all $g, h \in G$. This representation is unitary for the inner product

$$
\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.
$$

10. Schur's orthogonality relations: Let G be a finite group and let $\varphi : G \to U(n)$ and $\rho: G \to U(m)$ be two inequivalent irreducible representations. Then:

(i)
$$
\langle \varphi_{ij}, \rho_{kl} \rangle = 0.
$$

- (ii) $\langle \varphi_{ij}, \varphi_{kl} \rangle = \frac{1}{n}$ $\frac{1}{n}\delta_{ik}\delta_{jl}$.
- 11. The $\boldsymbol{\mathsf{character}}$ of a finite-dimensional representation $G\stackrel{\varphi}{\curvearrowright}V$ of a finite group G is the map $\chi_{\varphi} \in L(G)$ defined by $\chi_{\varphi}(g) = \text{tr}(\varphi_g)$. In particular, $\chi_{\varphi}(e) = \text{deg}(\varphi)$.
- 12. The character χ_{φ} of a finite-dimensional representation $G\stackrel{\varphi}{\curvearrowright}V$ of a finite group is a ${\sf class}$ ${\sf function}, \text{ that is, } \chi_\varphi(hgh^{-1})=\chi_\varphi(g) \text{ for all } g,h\in G.$ We represent by $Z(L(G))\subset L(G)$ the set of class functions.
- 13. If $G\stackrel{\varphi}{\sim}V$ and $G\stackrel{\psi}{\sim}W$ are irreducible finite-dimensional representations of a finite group G then

$$
\langle \chi_{\varphi}, \chi_{\psi} \rangle = \begin{cases} 1 \text{ if } \varphi \sim \psi, \\ 0 \text{ if } \varphi \not\sim \psi. \end{cases}
$$

14. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G , and let $G \stackrel{\rho}{\curvearrowright} V$ be a finite-dimensional representation of G ,

$$
\rho \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},
$$

where

$$
m_i\varphi^{(i)}=\overbrace{\varphi^{(i)}\oplus\ldots\oplus\varphi^{(i)}}^{m_i}.
$$

Then

$$
m_i = \langle \chi_{\rho}, \chi_{\varphi^{(i)}} \rangle.
$$

15. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G , and let $d_i=\deg(\varphi^{(i)})$. Then

$$
d_1^2 + \ldots + d_s^2 = |G|.
$$

- 16. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G. Then $\{\chi_{\varphi^{(1)}}, \ldots, \chi_{\varphi^{(s)}}\}$ is an orthonormal basis of the space $Z(L(G))$ of class functions. In particular, there are as many irreducible representations as conjugacy classes.
- 17. If $G\stackrel{\varphi}{\curvearrowright} V$ is a finite-dimensional representations of the finite group G and $f\in L(G)$ then

$$
\varphi_f = \sum_{g \in G} f(g) \varphi_g.
$$

18. Let $[\varphi^{(1)}], \ldots, [\varphi^{(s)}]$ be the equivalence classes of irreducible finite-dimensional representations of a finite group G , and let $d_i=\deg(\varphi^{(i)})$ and $\chi_i=\chi_{\varphi^{(i)}}.$ If a given finite-dimensional representation $G\stackrel{\varphi}{\curvearrowright} V$ decomposes as

$$
\varphi \sim m_1 \varphi^{(1)} \oplus \ldots \oplus m_s \varphi^{(s)},
$$

corresponding to the orthogonal decomposition

$$
V=V_1\oplus\ldots\oplus V_s,
$$

then the orthogonal projection $P_i:V\rightarrow V_i$ is

$$
P_i = \frac{d_i}{|G|} \varphi_{\overline{\chi}_i}.
$$

19. A structure with n degrees of freedom near equilibrium is described by the symmetric positive (semi-)definite $n \times n$ mass matrix M and the symmetric $n \times n$ stiffness matrix K. The frequencies ω of small oscillations of the structure satisfy

$$
\omega^2 M u = K u
$$

for some $u\in \mathbb{R}^n\setminus\{0\}.$ If the structure admits a symmetry group acting linearly, $G\stackrel{\varphi}{\curvearrowright} \mathbb{R}^n,$ then M and K are intertwiners for φ , and so they are block diagonal with respect to the decomposition of φ into irreducible representations. Moreover, if a given irreducible representation occurs only once then M and K are multiples of the identity on the corresponding block (but this is not true if the irreducible representation occurs more than once).

6. Topology

- 1. A distance function (or metric) on a set M is a function $d : M \times M \to \mathbb{R}$ satisfying:
	- (i) **Positivity:** $d(x, y) \ge 0$ for all $x, y \in M$, and $d(x, y) = 0 \Rightarrow x = y$;
	- (ii) **Symmetry:** $d(x, y) = d(y, x)$ for all $x, y \in M$;
	- (iii) Triangle inequality: $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
	- If d is a distance then (M, d) is said to be a **metric space**.
- 2. If (M, d) is a metric space and $x \in M$ then the **open ball** with center x and radius $r > 0$ is the set

$$
B_r(x) = \{ y \in M : d(x, y) < r \}.
$$

- 3. If (M, d) is a metric space then a subset $U \subset M$ is called **open** if for each $x \in U$ there exists $r > 0$ such that $B_r(x) \subset U$. A subset $F \subset M$ is called **closed** if $M \setminus F$ is open.
- 4. Open balls are open sets.
- 5. The family \mathcal{T}_d of open sets on a metric space (M, d) satisfies the following properties:
	- (i) $\varnothing, M \in \mathcal{T}_d$;
	- (ii) If $\{U_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}_d$ then $\bigcup_{{\alpha}\in A}U_{\alpha}\in \mathcal{T}_d$;
	- (iii) If $U_1, \ldots, U_n \in \mathcal{T}_d$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

6. A topology on a set M is a family T of subsets of M satisfying the following properties:

- (i) $\varnothing, M \in \mathcal{T}$;
- (ii) If $\{U_{\alpha}\}_{{\alpha}\in A}\subset {\mathcal{T}}$ then $\bigcup_{{\alpha}\in A}U_{\alpha}\in {\mathcal{T}};$
- (iii) If $U_1, \ldots, U_n \in \mathcal{T}$ then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

The sets $U \in \mathcal{T}$ are called **open sets**, and the sets $F \subset M$ such that $M \setminus F \in \mathcal{T}$ are called **closed sets**. An open set containing $x \in M$ is called a **neighborhood** of x. If T is a topology on M the (M, \mathcal{T}) is said to be a **topological space**.

- 7. A topological space (M, \mathcal{T}) is said to be **Hausdorff** if given $x, y \in M$ with $x \neq y$ there exist $U, V \in \mathcal{T}$ with $U \cap V = \emptyset$ such that $x \in U$ and $y \in V$.
- 8. A subfamily $\mathcal{B} \subset \mathcal{T}$ of open sets is said to be a **basis** for the topology \mathcal{T} on M is it satisfies any of the following equivalent properties:
	- (i) For each $U \in \mathcal{T}$ there exists $\mathcal{B}_U \subset \mathcal{B}$ such that $U = \bigcup_{V \in \mathcal{B}_U} V$.
	- (ii) For each $U \in \mathcal{T}$ and each $x \in U$ there exists $U_x \in \mathcal{B}$ such that $x \in U_x \subset U$.
- 9. If (M, \mathcal{T}) is a topological space and $N \subset M$ then $\mathcal{T}_N = \{U \cap N : U \in \mathcal{T}\}\)$ is a topology in N (subspace topology).
- 10. A map $f : M \to N$ between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is said to be continuous if $f^{-1}(U) \in \mathcal{T}_M$ for all $U \in \mathcal{T}_N$.
- 11. The composition of continuous maps is continuous.
- 12. A **homeomorphism** between two topological spaces (M, \mathcal{T}_M) and (N, \mathcal{T}_N) is a continuous bijection $f : M \to N$ with continuous inverse. If such a map exists then (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are said to be **homeomorphic**.
- 13. If (M, \mathcal{T}) is a topological space, \sim is an equivalence relation on M and $\pi : M \to M/\sim$ is the canonical projection then the quotient topology on M/\sim is

$$
\mathcal{T}_{\pi} = \{ U \in M/\sim : \pi^{-1}(U) \in \mathcal{T} \}.
$$

14. An open cover for a subset $N \subset M$ of a topological space (M, \mathcal{T}) is a collection $\mathcal{O} \subset \mathcal{T}$ such that

$$
N \subset \bigcup_{U \in \mathcal{O}} U.
$$

A subcover is a subcollection $\mathcal{O}' \subset \mathcal{O}$ which is still an open cover of N. A set N is said to be **compact** if every open cover of N admits a finite subcover.

- 15. If (M, \mathcal{T}) is Hausdorff and $N \subset M$ is compact then N is closed.
- 16. Heine-Borel theorem: a subset $K \subset \mathbb{R}^n$ is compact (for the usual topology) if and only if it is closed and bounded.
- 17. Continuous maps carry compact sets to compact sets.
- 18. A topological space is said to be **connected** if the only subsets of M which are simultaneously open and closed are \emptyset and M. A subset $N \subset M$ is said to be a **connected subset** if it is a connected topological space for the subspace topology.
- 19. A subset of $\mathbb R$ with the usual topology is connected if and only if it is an interval.
- 20. Continuous maps carry connected sets to connected sets.

7. Differential geometry

- 1. A topological manifold of dimension n is a topological space (M, \mathcal{T}) such that:
	- (i) T is Hausdorff.
	- (ii) T has a countable basis.
	- (iii) For each $x \in M$ there exists $U \in \mathcal{T}$ with $x \in U$ and a homeomorphism $\varphi : U \to V$ for some open set $V \subset \mathbb{R}^n$.

The pair (U, φ) is called a **local chart**.

- 2. Two local charts (U, φ) and (V, ψ) on an *n*-dimensional topological manifold M are said to be $\textbf{\textit{compatible}}$ if the maps $\psi \circ \varphi^{-1}$: $\varphi(U \cap V) \, \subset \, \mathbb{R}^n \, \to \, \psi(U \cap V) \, \subset \, \mathbb{R}^n$ and $\varphi\circ\psi^{-1}:\psi(U\cap V)\subset{\mathbb R}^n\to \varphi(U\cap V)\subset{\mathbb R}^n$ are smooth. An **atlas** for M is a family $\mathcal{A}=\{(U_\alpha,\varphi_\alpha)\}_{\alpha\in A}$ of compatible local charts such that $M=\bigcup_{\alpha\in A}U_\alpha.$ Two atlases $\mathcal A$ and A' are said to be equivalent if $A\cup A'$ is still an atlas. A differentiable structure on M is a choice of an equivalence class of atlases. Finally, a **differentiable manifold** of dimension n is a topological manifold of dimension n with a choice of difrerentiable structure.
- 3. A map $f: M \to N$ between differentiable manifolds is said to be **differentiable**, or **smooth**, if for any choices of local charts (U, φ) on an atlas for M and (V, ψ) on an atlas for N the map $\psi\circ f\circ \varphi^{-1}:\varphi(f^{-1}(V)\cap U)\subset{\mathbb R}^m\to \psi(V)\subset{\mathbb R}^n$ is smooth. The set of differentiable maps between the differentiable manifolds M and N is represented as $C^{\infty}(M, N)$, and one usually writes $C^{\infty}(M) = C^{\infty}(M,\mathbb{R})$.
- 4. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection $f : M \to N$ with a smooth inverse. A local diffeomorphism between two differentiable manifolds M and N is a smooth map $f : M \to N$ such that for each $x \in M$ there exist open sets $U \ni x$ and $V \ni f(x)$ such that $f|_{U}: U \to V$ is a diffeomorphism.

5. A tangent vector to a differentiable manifold M at a point $p \in M$ is a differential operator $\dot{c}(0): C^{\infty}(M) \to \mathbb{R}$ of the form

$$
\dot{c}(0) \cdot f = \frac{d}{dt}\Big|_{t=0} f(c(t)),
$$

where $c : \mathbb{R} \to M$ is a differentiable curve with $c(0) = p$.

6. The set T_pM of all tangent vectors to the *n*-dimensional differentiable manifold M at the point $p \in M$ is a vector space of dimension n, called the **tangent space** to M at p. If (U,φ) is a local chart with $p\in U$, corresponding to the local coordinates $(x^{1},\ldots,x^{n}),$ a basis for T_pM is

$$
\left\{\frac{\partial}{\partial x^1}_{|p},\ldots,\frac{\partial}{\partial x^n}_{|p}\right\},\,
$$

where

$$
\frac{\partial}{\partial x^i}_{|p} = \dot{c}_i(0), \qquad c_i(t) = \varphi^{-1}(x^1(p), \dots, x^i(p) + t, \dots, x^n(p)).
$$

If $\dot{c}(0) \in T_pM$ is a tangent vector with $\varphi(c(t)) = (x^1(t), \ldots, x^n(t))$ then

$$
\dot{c}(0) = \sum_{i=1}^{n} \dot{x}^i(0) \frac{\partial}{\partial x^i}_{|p}.
$$

7. If $f : M \to N$ is a differentiable map then the **derivative** of f at the point $p \in M$ is the linear map $(df)_p : T_pM \to T_{f(p)}N$ given by

$$
(df)_p(\dot{c}(0)) = \frac{d}{dt}\Big|_{t=0} f(c(t)).
$$

If (U, φ) is a local chart on M with $p \in U$, corresponding to the local coordinates (x^1, \ldots, x^n) , and (V, ψ) is a local chart on N with $f(p) \in V$, corresponding to the local coordinates (y^1,\ldots,y^m) , then

$$
(df)_p \left(\sum_{i=1}^n v^i \frac{\partial}{\partial x^i}_{|p} \right) = \sum_{j=1}^m \left(\sum_{i=1}^n \frac{\partial \hat{f}^j}{\partial x^i} v^i \right) \frac{\partial}{\partial y^j}_{|_{f(p)}},
$$

where $\hat{f}=\psi\circ f\circ\varphi^{-1}$ is the local representation of f in the local coordinates (x^{1},\ldots,x^{n}) on M and (y^1, \ldots, y^m) on $N.$

8. The cotangent space to an n-dimensional differentiable manifold M at as point $p \in M$ is

$$
T_p^*M = (T_pM)^* = \{ \alpha : T_pM \to \mathbb{R} : \alpha \text{ is linear } \}.
$$

 $T^{\ast}_{p}M$ is itself an n -dimensional vector space, with basis

$$
\{(dx^1)_p,\ldots,(dx^n)_p\}
$$

satisfying

$$
(dx^i)_p \left(\frac{\partial}{\partial x^j}_{|p}\right) = \delta_{ij}
$$

(dual basis).