Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

. Set Theory

1. A relation on a set A is a subset R C A x A. We say that © € A is related to y € A if

(x,y) € R, and we write zRy.

2. An equivalence relation is a relation R on a set A satisfying the following three properties:

(i) Reflexivity: zRx for all x € A;
(i) Symmetry: If 2Ry the yRx for all z,y € A;
(iii) Transitivity: If Ry and yRz then 2Rz for all z,y,z € A;

If R is an equivalence relation then we write x ~ y to mean zRy.

3. If ~ is an equivalence relation on A and x € A then the equivalence class of x is the set

] ={ye A:y~a}CA.

4. A partition of a set A is a family {4;};cr of subsets of A such that:

(i) Uie[ Ai = A;
(ii) If i # j then A; ﬂA]’ = .

5. The equivalence classes of an equivalence relation on A form a partition of A; conversely,
given a partition of A there exists an equivalence relation on A whose equivalence classes

are precisely the subsets of the partition.

6. The quotient set of A by an equivalence relation ~ is the set A/~ of its equivalence
classes. The quotient map, or canonical projection, is the map 7 : A/~ — A defined as

7(x) = [z] for all z € A.

. Groups

1. A binary operationon aset Aisamap f: Ax A — A. We often write f(x,y) = z-y = zy

for x,y € A.

2. A group is a pair (G, -), where G is aset and - : G x G — G is a binary operation satisfying:

(i) Associativity: z-(y-2) = (z-y) -z for all z,y,z € G,
(ii) Existence of identity: There exists e € G such that -z =z -e =z for all z € G;

(iii) Existence of inverses: For each x € G there exists y € G suchthat y-x =xz-y=¢e

for all z,y € G.



If (G,-) is a group then:
(i) The identity element e € G is unique;
(i) Each element z € G has a unique inverse 2! € G.

. A group (G,-) is called abelian if the group operation - is commutative, that is, if z-y = y-x

for all 2,y € G. In this case we often write z -y =z +y, e =0and 27! = —x.

5. The order of a group G is the number of elements in GG, and is represented as |G].

6. If Ais a set the its permutation group is the set
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Sym(A) ={f: A— A: fis bijective }

with the composition operation.

. The symmetric group on n € N elements is the group S,, = Sym({1,...,n}). It is

nonabelian for n > 2, and |S,| = n!.

A subset H C G of a group G is called a subgoup if H is itself a group under the group
operation of G, or, equivalently, if:
(i) zy € H for all z,y € H;
(i) e € H;
(i) 27 € H forall z € H.
If g € G and H is a subgroup of G then the left coset determined by g and H is the set

gH ={gh:h e H}.

The set G/H of all left cosets forms a partition of GG, and the corresponding equivalence
relation is given by

gi~g2e g g€ H
Lagrange’s Theorem: If GG is a finite group and H C G is a subgroup then |H | is a divisor
of |G]|.
The index of a subgroup H on a group G is the number [G: H] of left cosets. If G is finite
then [G:H| = |G|/|H|.

A subgroup H of a group G is called a normal subgroup if ghg~' € H for all g € G
and h € H. In that case, the set G/H of cosets forms a group under the operation
(91H)(g2H) = (g192)H for all g1, g2 € G (called the quotient group).

For each d € N the group of integers mod d is Z; = Z/dZ. We write a = b (mod d) to
signify that a, b € Z satisfy [a] = [b] in Zg.

A map ¢ : G — H between two groups is called a homomorphism if ©(g192) = ©(g1)¢(g2)
for all g1,92 € G. An isomorphism is a bijective homomorphism. If ¢ : G — H is an
isomorphism then G and H are said to be isomorphic.

If ¢ : G — H is a homomorphism then:
(i) wlec) = (en);
(i) o(g71) = (g9)! forall g € G.
The composition of homomorphisms is again a homomorphism.

Isomorphism Theorem: If ¢ : G — H is a homomorphism then:



(i) Im ¢ is a subgroup of H;
(ii) ker ¢ is a normal subgroup of G;
(iii) The map @ : G/ker ¢ — Im ¢ defined by ¢([g]) = ¢(g) is an isomorphism.
18. If GG is a group and g € G then the subgroup generated by g is

(9) ={g" :nelZ}

(where g™ has the obvious meaning). The order of g is ord(g) = |(g)|. If ord(g) = d then
(9) 2 Zq, and if ord(g) = oo then (g) =2 Z. If G = (g) for some g € G then G is said to
be cyclic.

19. If G and H are groups then G x H is also a group with the operation defined by the formula
(g1, 1) - (92, h2) = (9192, hiho2).

3. Rings and number theory

1. Aring (R,+, ") is a set equipped with two binary operations such that (R, +) is an abelian
group and - is associative, has an identity 1 and is distributive with respect to +, that is,
a-(b+c)=a-b+a-cand (a+b)-c=a-c+b-cforall ab,cecR.

2. Aring (R, +,-) is called commutative if - is commutative.

3. Onaring (R,+,:) we have a-0=0-a =0, forany a € R. If a,b € R\ {0} are such that
ab = 0 then a and b are called zero divisors.

4. An element a € R on a ring (R, +,-) is called invertible if there exists b € R such that

ab = ba = 1, in which case we write b = a—!. The set R* of all invertible elements is a

group for the multiplication.
A field is a commutative ring (R, +, ) such that R* = R\ {0}.
(Zg,+,-) is a commutative ring for the multiplication given by [m] - [n] = [mn].

7 = {[n] : ged(n,d) = 1}. In particular, Z, is a field if and only if d is prime.

© N o o

The Euler function ¢ : N — N is defined as
o(n) =|{m eN:m <nand ged(m,n) =1},

so that |Z}| = ¢(d). If ged(m,n) =1 then ¢(m,n) = p(m)p(n), and so if n = pi* - - p;*
with py,...,p distinct prime numbers then ¢(n) = (p* —p/* 1) - - (P —pg’“_l).
9. Euler’s Theorem: If gcd(a,d) =1 then oY = 1 (mod d).

10. Chinese Remainder Theorem: If ny,...,ng are coprime and N = ny - ng then the map
Zn > [m] = (Im],...,[m]) € Zp, X ... X L,

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order |G| =
Pyt - ppk with pr,..., py distinct prime numbers then

GGy x-x Gy,

where |G;| = p;* for each i € {1,...,k}. Moreover, there exists a unique nondecreasing
sequence a}, e ,af € N with az1 + -+ af = r; such that
Gi =Ly X -+ X Lyt
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12. RSA public key encryption: Two (large) distinct prime numbers p and ¢ are chosen, and
the number N = pq is published, along with an encryption exponent e, chosen such that
ged(p(N),e) = 1. To encrypt a message [X]| € Zy the sender simply computes [X]¢. To
decrypt the message the receiver uses the fact that ([X]¢)? = [X], where the decryption
exponent d is such that [d] = [e] ™! in Z,y). The security of this system relies on the
fact that obtaining the descryption exponent requires knowledge of p(N) = (p—1)(¢ —1),
which would involve factorizing N, a very hard task for p and ¢ large enough.

4. Group actions

1. An action G A M of a group G on a set M is a homomorphism ¢ : G — Sym(M) (we
write ¢(g) = ¢g4). The action is called effective if ker(p) = {e}.

2. If G A M is an action of a group G on a set M then:
(i) The orbit of a point x € M is the set

pG(r) = {pg(x) 1 g € G}.

The set of all orbits is denoted M /G, and is a partition of M.
(ii) The stabilizer of a set X C M is the subgroup of G defined by

Gx ={g€G:py(X) = X}

The isotropy subgroup of x € M is just Gy = G-
(iii) A point € M is called a fixed point of the action if G, = G. The set of all fixed
points of the action is denoted by M.

3. The dihedral group on order n is the group D,, defined by two generators r and s together
with the relations

We have |D,,| = 2n, since

n—1 n—1
D, ={eyry...,r" " s, sry . s )

4. An action G A M is called:
(i) Free if G = {e} for all x € M,
(i) Transitive if og(x) = M for some (thus all) z € M.

5. The canonical action of a group G on a space of left cosets G/ H is the action G ~ G/H
can

defined by ¢¢ ([91]) = [g991]-

6. If G A M and G A M’ are G-actions then a map T : M — M’ is called:
(i) G-equivariant if T(py(z)) = ¢} (T(x)) for all g € G and z € M.
(i) An equivalence of G-actions if it is a G-equivariant bijection.
7. Any transitive action G A Mis equivalent to G N G/Gz,, where G, is the isotropy

subgroup of any point g € M and Ty, : G/G,, — M given by T,,([g]) = @q(x0) is an
equivalence of G-actions.
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The conjugation action GG A G is the action of G on itself given by ¢ (h) = ghg™L.
The orbits of this action are called conjugacy classes. The set Z(G) of fixed points of
this action is called the center of G, and is a subgroup (subgroup of the elements in G
which commute with every other element). The isotropy subgroup Z(g) of a given element
g € G is called the centralizer of g (largest subgroup of G which has g in its center). The
stabilizer N(H) of a subgroup H C G is called the normalizer of H (largest subgroup of
G which contains H as a normal subgroup).

If {j1,...,Jk} C {1,...,n} then 0 = (j1---ji) € Sn (called a k-cycle) represents the
permutation defined by o(j,) = jr41 for r € {1,....k — 1}, 0(ji) = 71 and o(j) = j for
Jj & {Jj1,--.,Jk}- This representation is not unique, as (j1j2- - Jjr) = (JkJji- - Jk—1). If
{jl’ s ’]k} N {]k’ v 7j7°} = {]k} then (]l o ]k) © (]kz . ]r) = (]l e ]r) Every permu-
tation is the product of unique disjoint cycles.

A 2-cycle is called a transposition. A transposition (ij) is called simple if |i —j| = 1. The
set of simple transpositions generates S,,.

Sy is isomorphic to the group with n — 1 generators si,...,s,—1 subject to the following
relations:
(i) s2=efori=1,...,n—1;

(i) sisj = sj8; if i — j| > 2;
(iii) s;s;4+1 hasorder 3fori=1,...,n — 2.

The sign of a perturbation ¢ € S, is sgn(o) = (—1)™?), where n(o) is the number
of transpositions on any decomposition of ¢ as a product of transpositions. The map
sgn : S, — Z* is a group homomorphism, and its kernel A, is called the alternating
group (normal subgroup of order n!/2).

A partition of n € Nis a k-tuple (i1, ...,i) € N* where iy > ... > ij and i1 +. . .40 = n.

The conjugacy classes of S;, are in 1 to 1 correspondence with the partitions of n via

Diy..ip) = {o10- 00} :01,...,0k are disjoint cycles of lengths iy, ..., ix}.

Burnside’s Counting Theorem: Let G A M be an action of a finite group G on a finite
set M. Then the number of orbits is

1
\M/G!:@Z\Mg!,

geG

where MY is the set of points in M that are fixed by g:

MI={zeM:yp4x)=uz}.

5. Representations of finite groups

1.

A representation of a group G is an action GG AV ona complex vector space V' by linear
maps. The degree of the representation is deg = dim V. If V is finite-dimensional and
has an inner product then the representation is called unitary if the maps ¢, are unitary
forall g € G.



/
. An intertwining map bewteen two representations G AV and G A V' is a linear equiva-

riant map 7 : V — V'. If T is invertible then the representations are said to be equivalent.

An invariant subspace for a representation G A Visa subspace W C V such that
wg(W) C W for all g € G. If the representation is unitary and W is an invariant subspace
then W is also an invariant subspace.

The direct sum of two given representations GG AV and G A V' is the representation

G -\ V @ V' defined as

(0 @ ¢")g(v,0') = (9g(v), 0 (v"))-

. A representation GG A V is said to be irreducible if its only invariant subspaces are {0}

and V.

Maschke’s Theorem: Every finite-dimensional representation of a finite group is equivalent
to a direct sum of irreducible representations.

Schur’s Lemma: Let G AV and G rwx W be two irreducible finite-dimensional represen-
tations of the finite group G, and let 7' : V' — W be an intertwining map. Then either
T =0 ot T is invertible. Moreover, if the two representations coincide then 7' = Aidy for
some \ € C.

8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.

9. The regular representation of a finite group G on L(G) = {f : G — C} is defined as

10.

11.

12.

13.

@ (f)(h) = f(g h)

for all g, h € G. This representation is unitary for the inner product

(f1. f2) = |é‘ > hil9)fa(g)-

geG

Schur’s orthogonality relations: Let G be a finite group and let ¢ : G — U(n) and
p: G — U(m) be two inequivalent irreducible representations. Then:

(i) (wij, pr1) = 0.

(i) (@ij, o) = 26651
The character of a finite-dimensional representation GG AV of a finite group G is the map
Xe € L(G) defined by x,(g) = tr(¢g). In particular, x,(e) = deg(yp).
The character x,, of a finite-dimensional representation G AV of a finite group is a class

function, that is, x,,(hgh™!) = x,(g) for all g,h € G. We represent by Z(L(G)) C L(G)
the set of class functions.

IfG AV and G /1% W are irreducible finite-dimensional representations of a finite group
G then
lifp~a,

o Xp) = {o if o o1
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Let [¢™M], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representa-

tions of a finite group G, and let G A V be a finite-dimensional representation of G,

p~meN @, @ msgo(s),

where
m;
mi® =M @ . @ "
Then
mi = (Xp» Xop(0))-
Let [¢™M], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representa-

tions of a finite group G, and let d; = deg(go(i)). Then
i +...+d =G|

Let [¢™M],...,[¢®)] be the equivalence classes of irreducible finite-dimensional represen-
tations of a finite group GG. Then {me, e ,XSO(s)} is an orthonormal basis of the space
Z(L(Q)) of class functions. In particular, there are as many irreducible representations as
conjugacy classes.

If G AV is a finite-dimensional representations of the finite group G and f € L(G) then

Yr= Z f(9)pg-

geG
Let [p(V)], ..., [¢®)] be the equivalence classes of irreducible finite-dimensional representati-
ons of a finite group G, and let d; = deg(p®) and y; = X, If a given finite-dimensional

representation G AV decomposes as
p~me @ .. @mp®,
corresponding to the orthogonal decomposition
V=Vio..oV,

then the orthogonal projection P; : V — V; is

d;

[l
A structure with n degrees of freedom near equilibrium is described by the symmetric positive
(semi-)definite n x n mass matrix M and the symmetric n x n stiffness matrix K. The
frequencies w of small oscillations of the structure satisfy

WwMu = Ku

for some u € R™ \ {0}. If the structure admits a symmetry group acting linearly, G A Rm,
then M and K are intertwiners for ¢, and so they are block diagonal with respect to the
decomposition of ¢ into irreducible representations. Moreover, if a given irreducible repre-
sentation occurs only once then M and K are multiples of the identity on the corresponding
block (but this is not true if the irreducible representation occurs more than once).



6. Topology

1.

A distance function (or metric) on a set M is a function d: M x M — R satisfying:
(i) Positivity: d(z,y) > 0 for all z,y € M, and d(z,y) = 0=z =y;
(i) Symmetry: d(z,y) = d(y,x) for all z,y € M;
(iii) Triangle inequality: d(z,z) < d(z,y) + d(y, z) for all x,y,z € M.
If d is a distance then (M, d) is said to be a metric space.
If (M,d) is a metric space and x € M then the open ball with center z and radius r > 0

is the set
By(z)={ye M :d(z,y) <r}.

If (M,d) is a metric space then a subset U C M is called open if for each x € U there
exists r > 0 such that B.(xz) C U. A subset F' C M is called closed if M \ F is open.

4. Open balls are open sets.

5. The family 7; of open sets on a metric space (M, d) satisfies the following properties:

10.
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(i) @, M € Tq;
(i) If {Uataca C Tg then J,ca Ua € T
(iii) If Uy,...,U, € Tg then N, U; € Tg.
A topology on a set M is a family 7 of subsets of M satisfying the following properties:
(i) o,M €T,
(i) f {Uataca C T then UpcaUa € T;
(iii) If Uy,..., Uy, €T then N, U; € T.
The sets U € T are called open sets, and the sets ' C M such that M \ F' € T are

called closed sets. An open set containing x € M is called a neighborhood of z. If T is
a topology on M the (M, T) is said to be a topological space.

A topological space (M, T) is said to be Hausdorff if given x,y € M with = # y there
exist U,V € T withUNV = suchthat x € U and y € V.

A subfamily B C T of open sets is said to be a basis for the topology 7 on M is it satisfies
any of the following equivalent properties:

(i) Foreach U € T there exists By C B such that U = Uy, V-
(i) For each U € T and each = € U there exists U, € B such that x € U, C U.

If (M,T) is a topological space and N C M then Ty ={UNN : U € T} is a topology in
N (subspace topology).

A map f : M — N between two topological spaces (M, Tys) and (N, Ty) is said to be
continuous if f~1(U) € Ty for all U € Ty.

The composition of continuous maps is continuous.

A homeomorphism between two topological spaces (M, Tys) and (N, Tx) is a continuous
bijection f : M — N with continuous inverse. If such a map exists then (M, 7)) and
(N, Tn) are said to be homeomorphic.

If (M,T) is a topological space, ~ is an equivalence relation on M and 7w : M — M/~ is
the canonical projection then the quotient topology on M/~ is

To={Uc M/~ 7 U) €T}
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An open cover for a subset N C M of a topological space (M, T) is a collection O C T
such that
Nc |
UeO

A subcover is a subcollection @’ C O which is still an open cover of N. A set N is said
to be compact if every open cover of N admits a finite subcover.

If (M,T) is Hausdorff and N C M is compact then N is closed.

Heine-Borel theorem: a subset K C R™ is compact (for the usual topology) if and only
if it is closed and bounded.

Continuous maps carry compact sets to compact sets.

A topological space is said to be connected if the only subsets of M which are simultane-
ously open and closed are @ and M. A subset N C M is said to be a connected subset
if it is a connected topological space for the subspace topology.

A subset of R with the usual topology is connected if and only if it is an interval.

. Continuous maps carry connected sets to connected sets.

7. Differential geometry

1

. A topological manifold of dimension n is a topological space (M, T) such that:

(i) T is Hausdorff.
(i) 7 has a countable basis.

(iii) For each z € M there exists U € T with z € U and a homeomorphism ¢ : U — V
for some open set V' C R".

The pair (U, ¢) is called a local chart.

Two local charts (U, ¢) and (V,4) on an n-dimensional topological manifold M are said
to be compatible if the maps Yo' : pUNV) C R* - (U NV) C R"® and
pop i p(UNV) C R - U NV) C R"™ are smooth. An atlas for M is a family
A = {(Ua,¢a)}aca of compatible local charts such that M = |J,c4 Ua. Two atlases A
and A’ are said to be equivalent if AU A’ is still an atlas. A differentiable structure
on M is a choice of an equivalence class of atlases. Finally, a differentiable manifold
of dimension n is a topological manifold of dimension n with a choice of difrerentiable
structure.

A map f : M — N between differentiable manifolds is said to be differentiable, or smooth,
if for any choices of local charts (U, ¢) on an atlas for M and (V) on an atlas for N the
map o fop =t p(f~H(V)NU) C R™ — ¢(V) C R™ is smooth. The set of differentiable
maps between the differentiable manifolds A/ and N is represented as C*°(M, N), and one
usually writes C*°(M) = C*°(M,R).

. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection

f M — N with a smooth inverse. A local diffeomorphism between two differentiable
manifolds M and N is a smooth map f : M — N such that for each © € M there exist
open sets U 3 x and V' 3 f(x) such that f|y : U — V is a diffeomorphism.



5. A tangent vector to a differentiable manifold M at a point p € M is a differential operator
¢(0) : C*°(M) — R of the form

d

o)1 =5 S,

where ¢ : R — M is a differentiable curve with ¢(0) = p.

6. The set T, M of all tangent vectors to the n-dimensional differentiable manifold M at the

point p € M is a vector space of dimension n, called the tangent space to M at p. If

(U, ) is a local chart with p € U, corresponding to the local coordinates (z!,...,2"), a

basis for T),M is
9 o
oxl,” oz, )’

= éi(o)v Ci(t) = Soil(xl(p)’ ) ‘/Ez(p) +1,... ’xn(p))'

where

0
ox'|,
If ¢(0) € T,M is a tangent vector with ¢(c(t)) = (z(t),...,2"(t)) then

¢(0) =y _d'(0) 0

ozt
1 lp

7. If f: M — N is a differentiable map then the derivative of f at the point p € M is the
linear map (df), : TyM — Ty N given by

(A),(e0)) = 55 F(elt)

If (U,p) is a local chart on M with p € U, corresponding to the local coordinates

(z',...,2"), and (V,%) is a local chart on N with f(p) € V, corresponding to the lo-
cal coordinates (y!,...,y™), then
n m n na
-0 afr .\ 0
<#h<§:w .:):§:< ,w).
= 97 S\T o9 ) o,
where f = 1o foyp !isthe local representation of f in the local coordinates (z?, ..., z")

on M and (y',...,4™) on N.

8. The cotangent space to an n-dimensional differentiable manifold M at as point p € M is
TyM = (T,M)" = {a: Tp,M — R : ais linear }.
T;M is itself an n-dimensional vector space, with basis

{(da")p,. (da™)y }

i 0
(@ (5, ) =00

satisfying

(dual basis).
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