
Algebraic and Geometric Methods in Engineering and Physics

Abbreviated lecture notes

1. Set Theory

1. A relation on a set A is a subset R ⊂ A × A. We say that x ∈ A is related to y ∈ A if
(x, y) ∈ R, and we write xRy.

2. An equivalence relation is a relation R on a set A satisfying the following three properties:

(i) Reflexivity: xRx for all x ∈ A;

(ii) Symmetry: If xRy the yRx for all x, y ∈ A;

(iii) Transitivity: If xRy and yRz then xRz for all x, y, z ∈ A;

If R is an equivalence relation then we write x ∼ y to mean xRy.

3. If ∼ is an equivalence relation on A and x ∈ A then the equivalence class of x is the set

[x] = {y ∈ A : y ∼ x} ⊂ A.

4. A partition of a set A is a family {Ai}i∈I of subsets of A such that:

(i)
⋃
i∈I Ai = A;

(ii) If i 6= j then Ai ∩Aj = ∅.

5. The equivalence classes of an equivalence relation on A form a partition of A; conversely,
given a partition of A there exists an equivalence relation on A whose equivalence classes
are precisely the subsets of the partition.

6. The quotient set of A by an equivalence relation ∼ is the set A/∼ of its equivalence
classes. The quotient map, or canonical projection, is the map π : A→ A/∼ defined as
π(x) = [x] for all x ∈ A.
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2. Groups

1. A binary operation on a set A is a map f : A×A→ A. We often write f(x, y) = x·y = xy
for x, y ∈ A.

2. A group is a pair (G, ·), where G is a set and · : G×G→ G is a binary operation satisfying:

(i) Associativity: x · (y · z) = (x · y) · z for all x, y, z ∈ G;

(ii) Existence of identity: There exists e ∈ G such that e · x = x · e = x for all x ∈ G;

(iii) Existence of inverses: For each x ∈ G there exists y ∈ G such that y · x = x · y = e
for all x, y ∈ G.

3. If (G, ·) is a group then:

(i) The identity element e ∈ G is unique;

(ii) Each element x ∈ G has a unique inverse x−1 ∈ G.

4. A group (G, ·) is called abelian if the group operation · is commutative, that is, if x·y = y ·x
for all x, y ∈ G. In this case we often write x · y = x+ y, e = 0 and x−1 = −x.

5. The order of a group G is the number of elements in G, and is represented as |G|.
6. If A is a set the its permutation group is the set

Sym(A) = {f : A→ A : f is bijective }

with the composition operation.

7. The symmetric group on n ∈ N elements is the group Sn = Sym({1, . . . , n}). It is
nonabelian for n > 2, and |Sn| = n!.

8. A subset H ⊂ G of a group G is called a subgoup if H is itself a group under the group
operation of G, or, equivalently, if:

(i) xy ∈ H for all x, y ∈ H;

(ii) e ∈ H;

(iii) x−1 ∈ H for all x ∈ H.

9. If g ∈ G and H is a subgroup of G then the left coset determined by g and H is the set

gH = {gh : h ∈ H}.

The set G/H of all left cosets forms a partition of G, and the corresponding equivalence
relation is given by

g1 ∼ g2 ⇔ g−1
1 g2 ∈ H.

10. Lagrange’s Theorem: If G is a finite group and H ⊂ G is a subgroup then |H| is a divisor
of |G|.

11. The index of a subgroup H on a group G is the number [G :H] of left cosets. If G is finite
then [G :H] = |G|/|H|.

12. A subgroup H of a group G is called a normal subgroup if ghg−1 ∈ H for all g ∈ G
and h ∈ H. In that case, the set G/H of cosets forms a group under the operation
(g1H)(g2H) = (g1g2)H for all g1, g2 ∈ G (called the quotient group).

13. For each d ∈ N the group of integers mod d is Zd = Z/dZ. We write a ≡ b (mod d) to
signify that a, b ∈ Z satisfy [a] = [b] in Zd.
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14. A map ϕ : G→ H between two groups is called a homomorphism if ϕ(g1g2) = ϕ(g1)ϕ(g2)
for all g1, g2 ∈ G. An isomorphism is a bijective homomorphism. If ϕ : G → H is an
isomorphism then G and H are said to be isomorphic.

15. If ϕ : G→ H is a homomorphism then:

(i) ϕ(eG) = (eH);

(ii) ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

16. The composition of homomorphisms is again a homomorphism.

17. Isomorphism Theorem: If ϕ : G→ H is a homomorphism then:

(i) imϕ is a subgroup of H;

(ii) kerϕ is a normal subgroup of G;

(iii) The map ϕ̃ : G/ kerϕ→ imϕ defined by ϕ̃([g]) = ϕ(g) is an isomorphism.

18. If G is a group and g ∈ G then the subgroup generated by g is

〈g〉 = {gn : n ∈ Z}

(where gn has the obvious meaning). The order of g is ord(g) = |〈g〉|. If ord(g) = d then
〈g〉 ∼= Zd, and if ord(g) = ∞ then 〈g〉 ∼= Z. If G = 〈g〉 for some g ∈ G then G is said to
be cyclic.

19. If G and H are groups then G×H is also a group with the operation defined by the formula
(g1, h1) · (g2, h2) = (g1g2, h1h2).
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3. Rings and number theory

1. A ring (R,+, ·) is a set equipped with two binary operations such that (R,+) is an abelian
group and · is associative, has an identity 1 and is distributive with respect to +, that is,
a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

2. A ring (R,+, ·) is called commutative if · is commutative.

3. On a ring (R,+, ·) we have a · 0 = 0 · a = 0, for any a ∈ R. If a, b ∈ R \ {0} are such that
ab = 0 then a and b are called zero divisors.

4. An element a ∈ R on a ring (R,+, ·) is called invertible if there exists b ∈ R such that
ab = ba = 1, in which case we write b = a−1. The set R∗ of all invertible elements is a
group for the multiplication.

5. A field is a commutative ring (R,+, ·) such that R∗ = R \ {0}.
6. (Zd,+, ·) is a commutative ring for the multiplication given by [m] · [n] = [mn].

7. Z∗d = {[n] : gcd(n, d) = 1}. In particular, Zd is a field if and only if d is prime.

8. The Euler function ϕ : N→ N is defined as

ϕ(n) = |{m ∈ N : m ≤ n and gcd(m,n) = 1}|,

so that |Z∗d| = ϕ(d). If gcd(m,n) = 1 then ϕ(m,n) = ϕ(m)ϕ(n), and so if n = pr11 · · · p
rk
k

with p1, . . . , pk distinct prime numbers then ϕ(n) = (pr11 − p
r1−1
1 ) · · · (prkk − p

rk−1
1 ).

9. Euler’s Theorem: If gcd(a, d) = 1 then aϕ(d) ≡ 1 (mod d).

10. Chinese Remainder Theorem: If n1, . . . , nk are coprime and N = n1 · nk then the map

ZN 3 [m] 7→ ([m], . . . , [m]) ∈ Zn1 × . . .× Znk

is an isomorphism.

11. Classification of finite abelian groups: If G is a finite abelian group of order |G| =
pr11 · · · p

rk
k with p1, . . . , pk distinct prime numbers then

G ∼= G1 × · · · ×Gk,

where |Gi| = prii for each i ∈ {1, . . . , k}. Moreover, there exists a unique nondecreasing
sequence a1

i , . . . , a
`
i ∈ N with a1

i + · · ·+ a`i = ri such that

Gi ∼= Za1i × · · · × Za`i .

12. RSA public key encryption: Two (large) distinct prime numbers p and q are chosen, and
the number N = pq is published, along with an encryption exponent e, chosen such that
gcd(ϕ(N), e) = 1. To encrypt a message [X] ∈ ZN the sender simply computes [X]e. To
decrypt the message the receiver uses the fact that ([X]e)d = [X], where the decryption
exponent d is such that [d] = [e]−1 in Zϕ(N). The security of this system relies on the
fact that obtaining the descryption exponent requires knowledge of ϕ(N) = (p− 1)(q− 1),
which would involve factorizing N , a very hard task for p and q large enough.
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4. Group actions

1. An action G
ϕ
y M of a group G on a set M is a homomorphism ϕ : G → Sym(M) (we

write ϕ(g) = ϕg). The action is called effective if ker(ϕ) = {e}.

2. If G
ϕ
yM is an action of a group G on a set M then:

(i) The orbit of a point x ∈M is the set

ϕG(x) = {ϕg(x) : g ∈ G}.

The set of all orbits is denoted M/G, and is a partition of M .

(ii) The stabilizer of a set X ⊂M is the subgroup of G defined by

GX = {g ∈ G : ϕg(X) = X}.

The isotropy subgroup of x ∈M is just Gx = G{x}.

(iii) A point x ∈ M is called a fixed point of the action if Gx = G. The set of all fixed
points of the action is denoted by MG.

3. The dihedral group on order n is the group Dn defined by two generators r and s together
with the relations

rn = e, s2 = e, rs = sr−1.

We have |Dn| = 2n, since

Dn = {e, r, . . . , rn−1, s, sr, . . . , srn−1}.

4. An action G
ϕ
yM is called:

(i) Free if Gx = {e} for all x ∈M ;

(ii) Transitive if ϕG(x) = M for some (thus all) x ∈M .

5. The canonical action of a group G on a space of left cosets G/H is the action G
ϕcan

y G/H
defined by ϕcan

g ([g1]) = [gg1].

6. If G
ϕ
yM and G

ϕ′

yM ′ are G-actions then a map T : M →M ′ is called:

(i) G-equivariant if T (ϕg(x)) = ϕ′g(T (x)) for all g ∈ G and x ∈M .

(ii) An equivalence of G-actions if it is a G-equivariant bijection.

7. Any transitive action G
ϕ
y M is equivalent to G

ϕcan

y G/Gx0 , where Gx0 is the isotropy
subgroup of any point x0 ∈ M and Tx0 : G/Gx0 → M given by Tx0([g]) = ϕg(x0) is an
equivalence of G-actions.

8. The conjugation action G
ϕc

y G is the action of G on itself given by ϕcg(h) = ghg−1.
The orbits of this action are called conjugacy classes. The set Z(G) of fixed points of
this action is called the center of G, and is a subgroup (subgroup of the elements in G
which commute with every other element). The isotropy subgroup Z(g) of a given element
g ∈ G is called the centralizer of g (largest subgroup of G which has g in its center). The
stabilizer N(H) of a subgroup H ⊂ G is called the normalizer of H (largest subgroup of
G which contains H as a normal subgroup).
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9. If {j1, . . . , jk} ⊂ {1, . . . , n} then σ = (j1 · · · jk) ∈ Sn (called a k-cycle) represents the
permutation defined by σ(jr) = jr+1 for r ∈ {1, . . . , k − 1}, σ(jk) = j1 and σ(j) = j for
j 6∈ {j1, . . . , jk}. This representation is not unique, as (j1 j2 · · · jk) = (jk j1 · · · jk−1). If
{j1, . . . , jk} ∩ {jk, . . . , jr} = {jk} then (j1 · · · jk) ◦ (jk · · · jr) = (j1 · · · jr). Every permu-
tation is the product of unique disjoint cycles.

10. A 2-cycle is called a transposition. A transposition (ij) is called simple if |i− j| = 1. The
set of simple transpositions generates Sn.

11. Sn is isomorphic to the group with n − 1 generators s1, . . . , sn−1 subject to the following
relations:

(i) s2
i = e for i = 1, . . . , n− 1;

(ii) sisj = sjsi if |i− j| ≥ 2;

(iii) sisi+1 has order 3 for i = 1, . . . , n− 2.

12. The sign of a perturbation σ ∈ Sn is sgn(σ) = (−1)n(σ), where n(σ) is the number
of transpositions on any decomposition of σ as a product of transpositions. The map
sgn : Sn → Z∗ is a group homomorphism, and its kernel An is called the alternating
group (normal subgroup of order n!/2).

13. A partition of n ∈ N is a k-tuple (i1, . . . , ik) ∈ Nk where i1 ≥ . . . ≥ ik and i1+. . .+ik = n.

14. The conjugacy classes of Sn are in 1 to 1 correspondence with the partitions of n via

D(i1,...,ik) = {σ1 ◦ · · · ◦ σk : σ1, . . . , σk are disjoint cycles of lengths i1, . . . , ik}.

15. Burnside’s Counting Theorem: Let G
ϕ
yM be an action of a finite group G on a finite

set M . Then the number of orbits is

|M/G| = 1

|G|
∑
g∈G
|Mg| ,

where Mg is the set of points in M that are fixed by g:

Mg = {x ∈M : ϕg(x) = x} .
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5. Representations of finite groups

1. A representation of a group G is an action G
ϕ
y V on a complex vector space V by linear

maps. The degree of the representation is degϕ = dimV . If V is finite-dimensional and
has an inner product then the representation is called unitary if the maps ϕg are unitary
for all g ∈ G.

2. An intertwining map bewteen two representations G
ϕ
y V and G

ϕ′

y V ′ is a linear equiva-
riant map T : V → V ′. If T is invertible then the representations are said to be equivalent.

3. An invariant subspace for a representation G
ϕ
y V is a subspace W ⊂ V such that

ϕg(W ) ⊂W for all g ∈ G. If the representation is unitary and W is an invariant subspace
then W⊥ is also an invariant subspace.

4. The direct sum of two given representations G
ϕ
y V and G

ϕ′

y V ′ is the representation

G
ϕ⊕ϕ′
y V ⊕ V ′ defined as

(ϕ⊕ ϕ′)g(v, v′) = (ϕg(v), ϕ′g(v
′)).

5. A representation G
ϕ
y V is said to be irreducible if its only invariant subspaces are {0}

and V .

6. Maschke’s Theorem: Every finite-dimensional representation of a finite group is equivalent
to a direct sum of irreducible representations.

7. Schur’s Lemma: Let G
ϕ
y V and G

ψ
y W be two irreducible finite-dimensional represen-

tations of the finite group G, and let T : V → W be an intertwining map. Then either
T = 0 ot T is invertible. Moreover, if the two representations coincide then T = λ idV for
some λ ∈ C.

8. Every irreducible finite-dimensional representation of a finite abelian group has degree 1.

9. The regular representation of a finite group G on L(G) = {f : G→ C} is defined as

(ϕ(r)
g (f))(h) = f(g−1h)

for all g, h ∈ G. This representation is unitary for the inner product

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g).

10. Schur’s orthogonality relations: Let G be a finite group and let ϕ : G → U(n) and
ρ : G→ U(m) be two inequivalent irreducible representations. Then:

(i) 〈ϕij , ρkl〉 = 0.

(ii) 〈ϕij , ϕkl〉 = 1
nδikδjl.

11. The character of a finite-dimensional representation G
ϕ
y V of a finite group G is the map

χϕ ∈ L(G) defined by χϕ(g) = tr(ϕg). In particular, χϕ(e) = deg(ϕ).

12. The character χϕ of a finite-dimensional representation G
ϕ
y V of a finite group is a class

function, that is, χϕ(hgh−1) = χϕ(g) for all g, h ∈ G. We represent by Z(L(G)) ⊂ L(G)
the set of class functions.
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13. If G
ϕ
y V and G

ψ
y W are irreducible finite-dimensional representations of a finite group

G then

〈χϕ, χψ〉 =

{
1 if ϕ ∼ ψ ,
0 if ϕ 6∼ ψ .

14. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representa-

tions of a finite group G, and let G
ρ
y V be a finite-dimensional representation of G,

ρ ∼ m1ϕ
(1) ⊕ . . .⊕msϕ

(s),

where

miϕ
(i) =

mi︷ ︸︸ ︷
ϕ(i) ⊕ . . .⊕ ϕ(i) .

Then
mi =

〈
χρ, χϕ(i)

〉
.

15. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representa-
tions of a finite group G, and let di = deg(ϕ(i)). Then

d2
1 + . . .+ d2

s = |G|.

16. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional represen-
tations of a finite group G. Then {χϕ(1) , . . . , χϕ(s)} is an orthonormal basis of the space
Z(L(G)) of class functions. In particular, there are as many irreducible representations as
conjugacy classes.

17. If G
ϕ
y V is a finite-dimensional representations of the finite group G and f ∈ L(G) then

ϕf =
∑
g∈G

f(g)ϕg.

18. Let [ϕ(1)], . . . , [ϕ(s)] be the equivalence classes of irreducible finite-dimensional representati-
ons of a finite group G, and let di = deg(ϕ(i)) and χi = χϕ(i) . If a given finite-dimensional

representation G
ϕ
y V decomposes as

ϕ ∼ m1ϕ
(1) ⊕ . . .⊕msϕ

(s),

corresponding to the orthogonal decomposition

V = V1 ⊕ . . .⊕ Vs,

then the orthogonal projection Pi : V → Vi is

Pi =
di
|G|

ϕχi
.

19. A structure with n degrees of freedom near equilibrium is described by the symmetric positive
(semi-)definite n× n mass matrix M and the symmetric n× n stiffness matrix K. The
frequencies ω of small oscillations of the structure satisfy

ω2Mu = Ku
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for some u ∈ Rn \ {0}. If the structure admits a symmetry group acting linearly, G
ϕ
y Rn,

then M and K are intertwiners for ϕ, and so they are block diagonal with respect to the
decomposition of ϕ into irreducible representations. Moreover, if a given irreducible repre-
sentation occurs only once then M and K are multiples of the identity on the corresponding
block (but this is not true if the irreducible representation occurs more than once).
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6. Topology

1. A distance function (or metric) on a set M is a function d : M ×M → R satisfying:

(i) Positivity: d(x, y) ≥ 0 for all x, y ∈M , and d(x, y) = 0⇒ x = y;

(ii) Symmetry: d(x, y) = d(y, x) for all x, y ∈M ;

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M .

If d is a distance then (M,d) is said to be a metric space.

2. If (M,d) is a metric space and x ∈M then the open ball with center x and radius r > 0
is the set

Br(x) = {y ∈M : d(x, y) < r}.

3. If (M,d) is a metric space then a subset U ⊂ M is called open if for each x ∈ U there
exists r > 0 such that Br(x) ⊂ U . A subset F ⊂M is called closed if M \ F is open.

4. Open balls are open sets.

5. The family Td of open sets on a metric space (M,d) satisfies the following properties:

(i) ∅,M ∈ Td;

(ii) If {Uα}α∈A ⊂ Td then
⋃
α∈A Uα ∈ Td;

(iii) If U1, . . . , Un ∈ Td then
⋂n
i=1 Ui ∈ Td.

6. A topology on a set M is a family T of subsets of M satisfying the following properties:

(i) ∅,M ∈ T ;

(ii) If {Uα}α∈A ⊂ T then
⋃
α∈A Uα ∈ T ;

(iii) If U1, . . . , Un ∈ T then
⋂n
i=1 Ui ∈ T .

The sets U ∈ T are called open sets, and the sets F ⊂ M such that M \ F ∈ T are
called closed sets. An open set containing x ∈M is called a neighborhood of x. If T is
a topology on M the (M, T ) is said to be a topological space.

7. A topological space (M, T ) is said to be Hausdorff if given x, y ∈ M with x 6= y there
exist U, V ∈ T with U ∩ V = ∅ such that x ∈ U and y ∈ V .

8. A subfamily B ⊂ T of open sets is said to be a basis for the topology T on M is it satisfies
any of the following equivalent properties:

(i) For each U ∈ T there exists BU ⊂ B such that U =
⋃
V ∈BU V .

(ii) For each U ∈ T and each x ∈ U there exists Ux ∈ B such that x ∈ Ux ⊂ U .

9. If (M, T ) is a topological space and N ⊂M then TN = {U ∩N : U ∈ T } is a topology in
N (subspace topology).

10. A map f : M → N between two topological spaces (M, TM ) and (N, TN ) is said to be
continuous if f−1(U) ∈ TM for all U ∈ TN .

11. The composition of continuous maps is continuous.

12. A homeomorphism between two topological spaces (M, TM ) and (N, TN ) is a continuous
bijection f : M → N with continuous inverse. If such a map exists then (M, TM ) and
(N, TN ) are said to be homeomorphic.

13. If (M, T ) is a topological space, ∼ is an equivalence relation on M and π : M →M/∼ is
the canonical projection then the quotient topology on M/∼ is

Tπ = {U ∈M/∼ : π−1(U) ∈ T }.
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14. An open cover for a subset N ⊂ M of a topological space (M, T ) is a collection O ⊂ T
such that

N ⊂
⋃
U∈O

U.

A subcover is a subcollection O′ ⊂ O which is still an open cover of N . A set N is said
to be compact if every open cover of N admits a finite subcover.

15. If (M, T ) is Hausdorff and N ⊂M is compact then N is closed.

16. Heine-Borel theorem: a subset K ⊂ Rn is compact (for the usual topology) if and only
if it is closed and bounded.

17. Continuous maps carry compact sets to compact sets.

18. A topological space is said to be connected if the only subsets of M which are simultane-
ously open and closed are ∅ and M . A subset N ⊂ M is said to be a connected subset
if it is a connected topological space for the subspace topology.

19. A subset of R with the usual topology is connected if and only if it is an interval.

20. Continuous maps carry connected sets to connected sets.
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7. Differential geometry

1. A topological manifold of dimension n is a topological space (M, T ) such that:

(i) T is Hausdorff.

(ii) T has a countable basis.

(iii) For each x ∈ M there exists U ∈ T with x ∈ U and a homeomorphism ϕ : U → V
for some open set V ⊂ Rn.

The pair (U,ϕ) is called a local chart.

2. Two local charts (U,ϕ) and (V, ψ) on an n-dimensional topological manifold M are said
to be compatible if the maps ψ ◦ ϕ−1 : ϕ(U ∩ V ) ⊂ Rn → ψ(U ∩ V ) ⊂ Rn and
ϕ ◦ ψ−1 : ψ(U ∩ V ) ⊂ Rn → ϕ(U ∩ V ) ⊂ Rn are smooth. An atlas for M is a family
A = {(Uα, ϕα)}α∈A of compatible local charts such that M =

⋃
α∈A Uα. Two atlases A

and A′ are said to be equivalent if A ∪ A′ is still an atlas. A differentiable structure
on M is a choice of an equivalence class of atlases. Finally, a differentiable manifold
of dimension n is a topological manifold of dimension n with a choice of difrerentiable
structure.

3. A map f : M → N between differentiable manifolds is said to be differentiable, or smooth,
if for any choices of local charts (U,ϕ) on an atlas for M and (V, ψ) on an atlas for N the
map ψ ◦f ◦ϕ−1 : ϕ(f−1(V )∩U) ⊂ Rm → ψ(V ) ⊂ Rn is smooth. The set of differentiable
maps between the differentiable manifolds M and N is represented as C∞(M,N), and one
usually writes C∞(M) = C∞(M,R).

4. A diffeomorphism between two differentiable manifolds M and N is a smooth bijection
f : M → N with a smooth inverse. A local diffeomorphism between two differentiable
manifolds M and N is a smooth map f : M → N such that for each x ∈ M there exist
open sets U 3 x and V 3 f(x) such that f |U : U → V is a diffeomorphism.

5. A tangent vector to a differentiable manifold M at a point p ∈M is a differential operator
ċ(0) : C∞(M)→ R of the form

ċ(0) · f =
d

dt |t=0

f(c(t)),

where c : R→M is a differentiable curve with c(0) = p.

6. The set TpM of all tangent vectors to the n-dimensional differentiable manifold M at the
point p ∈ M is a vector space of dimension n, called the tangent space to M at p. If
(U,ϕ) is a local chart with p ∈ U , corresponding to the local coordinates (x1, . . . , xn), a
basis for TpM is {

∂

∂x1 |p
, . . . ,

∂

∂xn |p

}
,

where
∂

∂xi |p
= ċi(0), ci(t) = ϕ−1(x1(p), . . . , xi(p) + t, . . . , xn(p)).

If ċ(0) ∈ TpM is a tangent vector with ϕ(c(t)) = (x1(t), . . . , xn(t)) then

ċ(0) =
n∑
i=1

ẋi(0)
∂

∂xi |p
.
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7. If f : M → N is a differentiable map then the derivative of f at the point p ∈ M is the
linear map (df)p : TpM → Tf(p)N given by

(df)p(ċ(0)) =
d

dt |t=0

f(c(t)).

If (U,ϕ) is a local chart on M with p ∈ U , corresponding to the local coordinates
(x1, . . . , xn), and (V, ψ) is a local chart on N with f(p) ∈ V , corresponding to the lo-
cal coordinates (y1, . . . , ym), then

(df)p

(
n∑
i=1

vi
∂

∂xi |p

)
=

m∑
j=1

(
n∑
i=1

∂f̂ j

∂xi
vi

)
∂

∂yj |f(p)
,

where f̂ = ψ ◦ f ◦ϕ−1 is the local representation of f in the local coordinates (x1, . . . , xn)
on M and (y1, . . . , ym) on N .

8. The cotangent space to an n-dimensional differentiable manifold M at as point p ∈M is

T ∗pM = (TpM)∗ = {α : TpM → R : α is linear }.

The set T ∗pM is itself an n-dimensional vector space, with basis{
(dx1)p, . . . , (dx

n)p
}

satisfying

(dxi)p

(
∂

∂xj |p

)
= δij

(dual basis).

9. The tangent bundle of an n-dimensional differentiable manifold M is TM =
⋃
p∈M TpM .

The natural projection is the map π : TM → M defined as π(v) = p for v ∈ TpM . For
each local chart (U,ϕ) of M we define the local chart (π−1(U), ϕ̃) of TM by

ϕ̃(x1, . . . , xn, v1, . . . , vn) =
n∑
i=1

vi
∂

∂xi |ϕ−1(x1,...,xn)

.

These charts fom an atlas for TM (with the appropriate topology) giving it the structure
of a 2n-dimensional manifold.

10. A vector field on M is a smooth map X : M → TM such that Xp ≡ X(p) ∈ TpM for
all p ∈ M , that is, such that π ◦X = idM (such maps are called sections of the tangent
bundle). The set of vector fields on M is denoted by X(M).

11. The cotangent bundle of an n-dimensional differentiable manifoldM is T ∗M =
⋃
p∈M T ∗pM .

The natural projection is the map π : T ∗M →M defined as π(α) = p for α ∈ T ∗pM . For
each local chart (U,ϕ) of M we define the local chart (π−1(U), ϕ̃) of T ∗M by

ϕ̃(x1, . . . , xn, p1, . . . , pn) =
n∑
i=1

pi(dx
i)ϕ−1(x1,...,xn).

These charts fom an atlas for T ∗M (with the appropriate topology) giving it the structure
of a 2n-dimensional manifold.
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12. A covector field on M is a smooth map α : M → T ∗M such that αp ≡ α(p) ∈ T ∗pM for
all p ∈M , that is, such that π ◦ α = idM (such maps are called sections of the cotangent
bundle).

13. A covariant k-tensor on TpM is a multilinear map T : (TpM)k → R.

14. If T is a covariant k-tensor on TpM and S is a covariant l-tensor on TpM then their tensor
product is the covariant (k + l)-tensor T ⊗ S defined by

(T ⊗ S)(v1, . . . , vk, vk+1, . . . , vk+l) = T (v1, . . . , vk)S(vk+1, . . . , vk+l).

15. If M is an n-dimensional differentiable manifold then the vector space of covariant k-tensors
on TpM has dimension nk, and a basis is{

(dxi1)p ⊗ · · · ⊗ (dxik)p
}n
i1,...,ik=1

.

If T is a covariant k-tensor on TpM then

T =

n∑
i1,...,ik=1

Ti1...ik(dxi1)p ⊗ · · · ⊗ (dxik)p,

where

Ti1...ik = T

(
∂

∂xi1 |p
, . . . ,

∂

∂xik |p

)
.

16. There is a canonical identification (T ∗pM)∗ ∼= TpM through

v(α) = α(v)

for all v ∈ TpM and all α ∈ T ∗pM .

17. A mixed tensor of type (k, l) (or k times covariant and l times contravariant) on TpM
is a multilinear map T : (TpM)k × (T ∗pM)l → R. If M is an n-dimensional differentiable

manifold then the vector space T
(k,l)
p M of tensors of type (k, l) on TpM has dimension

nk+l, and a basis is{
(dxi1)p ⊗ · · · ⊗ (dxik)p ⊗

∂

∂xj1 |p
⊗ · · · ⊗ ∂

∂xjl |p

}n
i1,...,ik,j1,...,jl=1

.

If T is a mixed tensor of type (k, l) on TpM then

T =
n∑

i1,...,ik,j1,...,jl=1

T j1,...,jli1...ik
(dxi1)p ⊗ · · · ⊗ (dxik)p ⊗

∂

∂xj1 |p
⊗ · · · ⊗ ∂

∂xjl |p
,

where

T j1,...,jli1...ik
= T

(
∂

∂xi1 |p
, . . . ,

∂

∂xik |p
, (dxj1)p, . . . (dx

jl)p

)
.

18. The bundle of mixed tensors of type (k, l) on an n-dimensional differentiable manifold

is the set T (k,l)M =
⋃
p∈M T

(k,l)
p M . This set is a differentiable manifold of dimension

n+ nk+l in the obvious way.

19. A mixed tensor field of type (k, l) on M is a section of T (k,l)M .

14



20. A Riemannian metric on a differentiable manifold M is a covariant 2-tensor field g sa-
tisfying:

(i) Symmetry: gp(v, w) = gp(w, v) for all v, w ∈ TpM and all p ∈M .

(ii) Positivity: gp(v, v) > 0 for all v ∈ TpM \ {0} and all p ∈M .

The length of a curve c : [t0, t1]→M is then defined as

l(c) =

∫ t1

t0

√
g(ċ(t), ċ(t))dt.

21. An integral curve of a vector field X ∈ X(M) is a smooth curve c : (−ε, ε)→M satisfying
ċ(t) = Xc(t) for all t ∈ (−ε, ε).

22. Given X ∈ X(M) and p ∈M there exists an open neighborhood U 3 p and a smooth map
φX : (−ε, ε)× U →M satisfying{

∂φX

∂t (t, q) = XφX(t,q) for all t ∈ (−ε, ε) and q ∈ U,
φX(0, q) = q for all q ∈ U,

called the local flow of X. The map φXt : U → φXt (U) defined as φXt (q) = φX(t, q) is a
diffeomorphism for all t ∈ (−ε, ε). If φX is defined on R×M the X is said to be complete.

23. Any vector field X ∈ X(M) can be interpreted as a linear operator X : C∞(M)→ C∞(M)
bu defining (X · f)(p) = Xp · f . If X,Y ∈ X(M) then their commutator [X,Y ] as linear
operators, called their Lie bracket, is still a vector field. If (U,ϕ) is a local chart and

Xp =

n∑
i=1

Xi(p)
∂

∂xi |p
, Yp =

n∑
i=1

Y i(p)
∂

∂xi |p

for smooth functions Xi, Y i : U → R then

[X,Y ]p =
n∑
i=1

(Xp · Y i − Yp ·Xi)
∂

∂xi |p
.
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8. Lie groups and Lie algebras

1. A Lie algebra over a field K (usually R or C) is a pair (A, [·, ·]), where A is a vector space
over K and [·, ·] : A×A→ A is a binary operation satisfying:

(i) Antisymmetry: [X,Y ] = −[Y,X] for all X,Y ∈ A.

(ii) Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z] for all X,Y ∈ A and a, b ∈ K.

(iii) Jacobi identity: [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X,Y, Z ∈ A.

2. If (A, ◦) is an associative algebra, that is, a vector space with a bilinear binary operation
◦ : A×A→ A such that (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) for all X,Y, Z ∈ A then (A, [·, ·]) is
a Lie algebra for [A,B] = A ◦B −B ◦A.

3. A linear map φ : g → h between two Lie algebras g and h is called a Lie algebra homo-
morphism if

φ([X,Y ]) = [φ(X), φ(Y )]

for all X,Y ∈ g. If φ is a bijection then it is called a Lie algebra isomorphism.

4. A subspace h ⊂ g of a Lie algebra g is called a Lie subalgebra if [X,Y ] ∈ h for all X,Y ∈ h.
A subalgebra i ⊂ g is called an ideal if [X,Y ] ∈ i for all X ∈ i and Y ∈ g.

5. If g is a Lie algebra and i ⊂ g is an ideal the the quotient g/i (as an abelian group) is a Lie
algebra for the multiplication by scalars defined as

aπ(X) = π(aX)

and the Lie bracket
[π(X), π(Y )] = π([X,Y ]),

where π : g→ g/i is the quotient map.

6. Isomorphism Theorem: If φ : g→ h is a Lie algebra homomorphism then:

(i) im(φ) ⊂ h is a subalgebra.

(ii) ker(φ) ⊂ g is an ideal.

(iii) The map φ̃ : g/ ker(φ) → im(φ) given by φ̃(π(X)) = φ(X) is a Lie algebra iso-
morphism.

7. A Lie group is a smooth manifold G which is also a group such that the maps µ : G×G→ G
and ι : G→ G defined as µ(g, h) = gh and ι(g) = g−1 are smooth.

8. Any topologically closed subgroup G ⊂ GL(n,R) is a Lie group. Examples are:

(i) GL(n,R).

(ii) SL(n,R) = {A ∈Mn×n(R) : detA = 1}.
(iii) O(n) = {A ∈Mn×n(R) : AtA = I}.
(iv) SO(n) = {A ∈ O(n) : detA = 1}.
(v) U(n) = {A ∈Mn×n(C) : A∗A = I}.
(vi) SU(n) = {A ∈ U(n) : detA = 1}.

9. A Lie group homomorphism is a homomorphism ϕ : G→ H between Lie groups which is
also a diffeomorphism. A Lie group isomorphism is a a bijective Lie group homomorphism.

10. If f : M → N is a diffeomorphism and X ∈ X(M) then the pushforward of X by f is the
vector field f∗X ∈ X(N) defined by (f∗X)p = (df)f−1(p)Xf−1(p). If X,Y ∈ X(M) then
f∗[X,Y ] = [f∗X, f∗Y ].
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11. Let G be a Lie group. A vector field X ∈ X(G) is said to be left-invariant if (Lg)∗X = X
for all g ∈ G. For each V ∈ TeG, the vector field XV defined as Xg = (dLg)eV is left-
invariant, and in fact the map V 7→ XV is a linear isomorphism between TeG and the space
XL(G) of left-invariant vector fields.

12. Given a Lie group G, the subspace XL(G) ⊂ X(G) is a Lie subalgebra. The Lie algebra of
G is g = TeG with the induced Lie bracket [V,W ] = [XV , XW ]e.

13. We have gl(n,R) = Mn×n(R) with the bracket [A,B] = AB − BA. The same bracket
works for any matrix Lie group G ⊂ GL(n,R).

14. If V ∈ g then XV ∈ XL(G) is complete. We define the exponential map exp : g→ G as

exp(V ) = φX
V

1 (e), where φX
V

t : G→ G is the flow of XV .

15. The map exp : gl(n,R) → GL(n,R) is given by exp(A) = eA =
∑+∞

k=0
1
k!A

k. The same
formula works for any matrix Lie group G ⊂ GL(n,R).

16. If G ⊂ GL(n,R) is a matrix Lie group with Lie algebra g then A ∈ g if and only if etA ∈ G
for all t ∈ R. In particular:

(i) gl(n,R) = Mn×n(R).

(ii) sl(n,R) = {A ∈Mn×n(R) : trA = 0}.
(iii) o(n) = {A ∈Mn×n(R) : At = −A}.
(iv) so(n) = o(n).

(v) u(n) = {A ∈Mn×n(C) : A∗ = −A}.
(vi) su(n) = {A ∈ u(n) : trA = 0}.

17. Let M be a topological space and x0 ∈M . The fundamental group of M with base point
x0 is

π1(M,x0) = {c : [0, 1]→M continuous with c(0) = c(1) = x0}/ ∼,

where c0 ∼ c1 if and only if they are homotopic with base point x0, that is, if there
exists a continuous map H : [0, 1]× [0, 1]→M such that H(t, 0) = c0(t), H(t, 1) = c1(t)
and H(0, s) = H(1, s) = x0 for all t, s ∈ [0, 1]. The group operation is [c0] · [c1] = [c0 ∗ c1],
where

c0 ∗ c1 =

{
c0(2t) for t ∈ [0, 1

2 ]

c1(2t− 1) for t ∈ [1
2 , 1]

If M is path-connected, that is, if for every x, y ∈ M there exists a continuous path
c : [0, 1] → M such that c(0) = x and c(1) = y, then the fundamental group does not
depend on the base point. Finally, M is said to be simply connected if it is path-connected
and π1(M) = {e}.

18. Lie’s Theorem: Given a finite-dimensional real Lie algebra g, there exists a unique simply
connected Lie group G̃ with Lie algebra g. If G is any other Lie group with Lie algebra g,
then there exists a discrete subgroup D of Z(G̃) (the center of G̃) such that G ∼= G̃/D,
and π1(G) ∼= D (where G̃/D is given the natural differentiable structure).
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9. Representations of Lie algebras

1. A Lie algebra g is called simple if dim g > 1 and g does not have nontrivial ideals. A Lie
algebra g is called semisimple if g = g1⊗ . . .⊗ gs for simple Lie algebras g1, . . . , gs (where
the bracket it the direct sum is defined in the obvious way).

2. A representation of the Lie algebra g on a vector space V is a Lie algebra homomorphism
π : g→ L(V ), where L(V ) is the space of linear transformations of V with the commutator.
The representation is called irreducible if V does not contain nontrivial invariant subspaces.

3. The adjoint representation ad : g→ L(g) is defined as adX(Y ) = [X,Y ] for all X,Y ∈ g.

4. The Killing form on a Lie algebra g over K (where K = R or K = C) is the bilinear form
B : g× g→ K given by B(X,Y ) = tr(adX adY ).

5. Cartan’s Theorem: A Lie algebra g is semisimple if and only if its Killing form B is
nondegenerate (that is, if and only if B(X,Y ) = 0 for all Y ∈ g implies X = 0). Moreover,
if g is a real Lie algebra then B is negative definite if and only if g is semisimple and is the
Lie algebra of a compact Lie group.

6. The complexification of a real Lie algebra g is the complex vector space gC consisting of
elements of the form X+ iY with X,Y ∈ g with the obvious operations. A real subalgebra
h ⊂ g is called a real form of the complex Lie algebra g if g ∼= hC.

7. The structure constants associated to a basis {X1, . . . , Xn} of a Lie algebra g are the
scalars Ckij such that

[Xi, Xj ] =

n∑
k=1

CkijXk.

Finding a real form of a complex Lie algebra g amounts to finding a basis with real structure
constants.

8. Any complex semisimple Lie algebra g contains a unique (up to isomorphism) real form k
whose Killing form is definite negative (called a compact real form). Moreover, there is a
one-to-one correspondence between finite-dimensional irreducible representations of g and
unitary irreducible representations of the simply connected compact group K whose Lie
algebra is the compact real form k.

9. Every complex semisimple algebra g has a Cartan subalgebra, that is, a maximal abelian
subalgebra h ⊂ g such that adH are simultaneously diagonalizable for all H ∈ h. Therefore
we have the root decomposition

g = h⊗ gα1 ⊗ . . .⊕ gαs ,

where the covectors α1, . . . , αs ∈ h∗, called the roots, satisfy

adH(X) = αi(H)X

for all X ∈ gαi . The rank of g is rank(g) = dim(h).

10. A Cartan subalgebra h ⊂ g always contains a real subspace hR, with real dimension equal
to rank(g), such that the roots can be seen as elements of h∗R. Moreover, the Killing form
B restricts to a real inner product on hR, an so the linear isomorphism Φ : hR → h∗R defined
by Φ(X)(Y ) = B(X,Y ) induces an inner product on h∗R. It turns out that the geometry
of the roots relative to this inner product is highly constrained.
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11. The finite-dimensional simple complex Lie algebras are:

(i) sl(n+ 1,C) for n ≥ 1;

(ii) s0(2n+ 1,C) for n ≥ 2;

(iii) sp(n,C) for n ≥ 3 (the symplectic Lie algebras);

(iv) s0(2n,C) for n ≥ 4;

(v) e6, e7, e8, f4 and g2 (the exceptional Lie algebras).

12. There exist r = rank(g) roots α1, . . . , αr, called simple roots, such that any root α can
be written as

α =

r∑
i=1

niαi

with all ni ∈ Z−0 or with all ni ∈ Z+
0 .

13. The fundamental weights associated to a given choice α1, . . . , αr of simple roots are the
covectors λ1, . . . , λr ∈ h∗R defined by

2
〈λi, αj〉
〈αj , αj〉

= δij

for i, j = 1, . . . , r. The weight lattice is Λw = spanZ{λ1, . . . , λr}, and the dominant
weights are the elements of Λw+ = spanZ+

0
{λ1, . . . , λr}.

14. Highest weight theorem: If π : g→ L(V ) is an irreducible finite-dimensional representa-
tion of the complex semisimple Lie algebra g then:

(i) The linear transformations in

π(h) = {π(H) : H ∈ h}

are simultaneously diagonalizable, so that

V =
⊕
λ∈Λw

Vλ

with π(H)v = λ(H)v for all H ∈ h and v ∈ Vλ. Here Vλ = {0} except for finitely
many λ ∈ Λw, called the weights of the representation.

(ii) There exists a highest weight λmax ∈ Λw such that:

1. dimVλmax = 1.

2. π(Xα)v = 0 for all v ∈ Vλmax and Xα ∈ gα with α a positive root.

3. V = spanC

{
π(X−αi1

) ◦ · · · ◦ π(X−αis
)vλmax : s ∈ N, i1, . . . , is ∈ {1, . . . , r}

}
,

where Xαi ∈ gαi and vλmax ∈ Vλmax \ {0}.
(iii) All weights of π are of the form λmax −m1α1 − . . .−mrαr with m1, . . . ,mr ∈ Z+

0 .

(iv) For every dominant weight λ ∈ Λw+ there exists a unique (up to equivalence) irreducible
finite-dimensional representation of g with highest weight λ.

15. If G
ϕ
y V and G

ψ
yW are finite-dimensional representations of a group G then their tensor

product is the representation G
ϕ⊗ψ
y V ⊗W determined by

(ϕ⊗ ψ)g(v ⊗ w) = ϕg(v)⊗ ψg(w)

for all g ∈ G, v ∈ V and w ∈W .
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16. If π : g → L(V ) and ρ : g → L(W ) are finite-dimensional representations of a Lie algebra
g then their tensor product is the representation π ⊗ ρ : g→ L(V ⊗W ) determined by

(π ⊗ ρ)(X)(v ⊗ w) = π(X)(v)⊗ w + v ⊗ ρ(X)(w)

for all X ∈ g, v ∈ V and w ∈W .
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